Datasets:
cfpark00
commited on
Commit
·
0dd6946
1
Parent(s):
499090a
notebooks
Browse files- README.md +11 -4
- data/json/2024/math.json +25 -22
- test_dataset.ipynb +175 -0
- to_json.ipynb → to_parquet.ipynb +87 -94
README.md
CHANGED
@@ -15,6 +15,8 @@ tags:
|
|
15 |
configs:
|
16 |
- config_name: default
|
17 |
data_files:
|
|
|
|
|
18 |
- split: 2024_math
|
19 |
path: data/2024_math-*
|
20 |
dataset_info:
|
@@ -26,15 +28,20 @@ dataset_info:
|
|
26 |
- name: problem
|
27 |
dtype: string
|
28 |
- name: answer
|
29 |
-
dtype:
|
30 |
- name: score
|
31 |
dtype: int64
|
|
|
|
|
32 |
splits:
|
|
|
|
|
|
|
33 |
- name: 2024_math
|
34 |
-
num_bytes:
|
35 |
num_examples: 46
|
36 |
-
download_size:
|
37 |
-
dataset_size:
|
38 |
---
|
39 |
|
40 |
# KoreanSAT Benchmark
|
|
|
15 |
configs:
|
16 |
- config_name: default
|
17 |
data_files:
|
18 |
+
- split: 2023_math
|
19 |
+
path: data/2023_math-*
|
20 |
- split: 2024_math
|
21 |
path: data/2024_math-*
|
22 |
dataset_info:
|
|
|
28 |
- name: problem
|
29 |
dtype: string
|
30 |
- name: answer
|
31 |
+
dtype: int64
|
32 |
- name: score
|
33 |
dtype: int64
|
34 |
+
- name: review
|
35 |
+
dtype: float64
|
36 |
splits:
|
37 |
+
- name: 2023_math
|
38 |
+
num_bytes: 23272
|
39 |
+
num_examples: 46
|
40 |
- name: 2024_math
|
41 |
+
num_bytes: 22985
|
42 |
num_examples: 46
|
43 |
+
download_size: 30248
|
44 |
+
dataset_size: 46257
|
45 |
---
|
46 |
|
47 |
# KoreanSAT Benchmark
|
data/json/2024/math.json
CHANGED
@@ -20,27 +20,30 @@
|
|
20 |
{"id":20,"name":"20","problem":"20. \uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 \\(t(t\\geq0)\\)\uc5d0\uc11c\uc758 \uc18d\ub3c4 \\(v(t)\\)\uc640 \uac00\uc18d\ub3c4 \\(a(t)\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\text{(\uac00)} \\quad 0 \\leq t \\leq 2 \\text{\uc77c \ub54c}, \\quad v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\]\n\\[\n\\text{(\ub098)} \\quad t \\geq 2 \\text{\uc77c \ub54c}, \\quad a(t) = 6t + 4\\text{\uc774\ub2e4.}\n\\]\n\uc2dc\uac01 \\( t=0 \\)\uc5d0\uc11c \\( t=3 \\)\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"25","score":4}
|
21 |
{"id":21,"name":"21","problem":"21. \uc790\uc5f0\uc218 \\(n\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x)\\)\ub97c\n\\[\nf(x) =\n\\begin{cases} \n |3^{x+2}-n| & (x<0) \\\\ \n | \\log_2 (x+4) -n| & (x \\geq 0)\n\\end{cases}\n\\]\n\uc774\ub77c \ud558\uc790. \uc2e4\uc218 \\(t\\)\uc5d0 \ub300\ud558\uc5ec \\(x\\)\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd \\(f(x) = t\\)\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c \\(g(t)\\)\ub77c \ud560 \ub54c, \ud568\uc218 \\(g(t)\\)\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 \\(n\\)\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n","answer":"10","score":4}
|
22 |
{"id":22,"name":"22","problem":"22. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 \\( f(x) \\)\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( g(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\( f(4) \\)\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\[\n\\begin{aligned}\n\\text{(\uac00)} & \\quad \\text{\ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec} \\\\\n& \\quad f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub098)} & \\quad \\text{\ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub2e4)} & \\quad f(0) = -3, \\, f(g(1)) = 6\n\\end{aligned}\n\\]\n","answer":"483","score":4}
|
|
|
23 |
{"id":23,"name":"23_prob","problem":"23. \ub2e4\ud56d\uc2dd $(x^3 + 3)^5$ \uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c $x^9$\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":"3","score":2}
|
24 |
-
{"id":24,"name":"
|
25 |
-
{"id":25,"name":"
|
26 |
-
{"id":26,"name":"
|
27 |
-
{"id":27,"name":"
|
28 |
-
{"id":28,"name":"
|
29 |
-
{"id":29,"name":"
|
30 |
-
{"id":30,"name":"
|
31 |
-
|
32 |
-
{"id":
|
33 |
-
{"id":
|
34 |
-
{"id":
|
35 |
-
{"id":
|
36 |
-
{"id":
|
37 |
-
{"id":
|
38 |
-
{"id":
|
39 |
-
{"id":
|
40 |
-
|
41 |
-
{"id":
|
42 |
-
{"id":
|
43 |
-
{"id":
|
44 |
-
{"id":
|
45 |
-
{"id":
|
|
|
|
|
46 |
{"id":46,"name":"30_geom","problem":"30. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 $ABCD$ \uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 $BCD$ \uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 $B$\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c $S$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AB$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $B$\uac00 \uc544\ub2cc \uc810\uc744 $P$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AC$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $C$\uac00 \uc544\ub2cc \uc810\uc744 $Q$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AD$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $D$\uac00 \uc544\ub2cc \uc810\uc744 $R$ \ud558\uace0, \\\\\n\uc810 $P$\uc5d0\uc11c \uad6c $S$\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 $\\alpha$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 $PQR$\uc758 \ud3c9\uba74 $\\alpha$ \uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 $k$\uc774\ub2e4. $k^2$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"147","score":4}
|
|
|
20 |
{"id":20,"name":"20","problem":"20. \uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 \\(t(t\\geq0)\\)\uc5d0\uc11c\uc758 \uc18d\ub3c4 \\(v(t)\\)\uc640 \uac00\uc18d\ub3c4 \\(a(t)\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\text{(\uac00)} \\quad 0 \\leq t \\leq 2 \\text{\uc77c \ub54c}, \\quad v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\]\n\\[\n\\text{(\ub098)} \\quad t \\geq 2 \\text{\uc77c \ub54c}, \\quad a(t) = 6t + 4\\text{\uc774\ub2e4.}\n\\]\n\uc2dc\uac01 \\( t=0 \\)\uc5d0\uc11c \\( t=3 \\)\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"25","score":4}
|
21 |
{"id":21,"name":"21","problem":"21. \uc790\uc5f0\uc218 \\(n\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x)\\)\ub97c\n\\[\nf(x) =\n\\begin{cases} \n |3^{x+2}-n| & (x<0) \\\\ \n | \\log_2 (x+4) -n| & (x \\geq 0)\n\\end{cases}\n\\]\n\uc774\ub77c \ud558\uc790. \uc2e4\uc218 \\(t\\)\uc5d0 \ub300\ud558\uc5ec \\(x\\)\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd \\(f(x) = t\\)\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c \\(g(t)\\)\ub77c \ud560 \ub54c, \ud568\uc218 \\(g(t)\\)\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 \\(n\\)\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n","answer":"10","score":4}
|
22 |
{"id":22,"name":"22","problem":"22. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 \\( f(x) \\)\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( g(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\( f(4) \\)\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\[\n\\begin{aligned}\n\\text{(\uac00)} & \\quad \\text{\ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec} \\\\\n& \\quad f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub098)} & \\quad \\text{\ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub2e4)} & \\quad f(0) = -3, \\, f(g(1)) = 6\n\\end{aligned}\n\\]\n","answer":"483","score":4}
|
23 |
+
|
24 |
{"id":23,"name":"23_prob","problem":"23. \ub2e4\ud56d\uc2dd $(x^3 + 3)^5$ \uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c $x^9$\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":"3","score":2}
|
25 |
+
{"id":24,"name":"24_prob","problem":"24. \uc22b\uc790 1, 2, 3, 4, 5 \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":"4","score":3}
|
26 |
+
{"id":25,"name":"25_prob","problem":"25. \ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{8}{13}$\n \\item[2] $\\frac{17}{26}$\n \\item[3] $\\frac{9}{13}$\n \\item[4] $\\frac{19}{26}$\n \\item[5] $\\frac{10}{13}$\n\\end{itemize}\n","answer":"5","score":3}
|
27 |
+
{"id":26,"name":"26_prob","problem":"26. \uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \n\uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \n\uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 A, \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 B\ub77c \ud560 \ub54c, $P(A \\cup B)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{11}{20}$\n \\item[2] $\\frac{3}{5}$\n \\item[3] $\\frac{13}{20}$\n \\item[4] $\\frac{7}{10}$\n \\item[5] $\\frac{3}{4}$\n\\end{itemize}\n","answer":"2","score":3}
|
28 |
+
{"id":27,"name":"27_prob","problem":"27. \uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec \\( N(\\mu, \\sigma^2) \\) \ub97c \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( 746.1 \\leq m \\leq 755.9 \\)\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c \\( n \\) \uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( a \\leq m \\leq b \\)\uc77c \ub54c, \\( b-a \\)\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 \\( n \\)\uc758 \ucd5c\uc18c\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, \\( Z \\)\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, \\( P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\) \ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":"2","score":3}
|
29 |
+
{"id":28,"name":"28_prob","problem":"28. \uc5f0\uc18d\ud655\ub960\ubcc0\uc218 \\( X \\) \uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 \\( 0 \\leq X \\leq a \\) \uc774\uace0, \\( X \\)\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.\\\\\n\\begin{center}\n\\begin{tikzpicture}\n % Draw axes\n \\draw[->] (0,0) -- (5,0) node[right] {$x$};\n \\draw[->] (0,0) -- (0,4) node[above] {$y$};\n % Label points\n \\node at (1,-0.3) {$O$};\n \\node at (3,-0.3) {$b$};\n \\node at (5,-0.3) {$a$};\n \\node at (-0.3,3) {$c$};\n % Draw the function\n \\draw[thick] (0,0) -- (3,3) -- (5,0);\n % Dotted lines for the heights\n \\draw[dashed] (3,0) -- (3,3);\n \\draw[dashed] (5,0) -- (5,0);\n\\end{tikzpicture}\n\\end{center}\n\\( P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\)\uc77c \ub54c,\\\\\n\\( a + b + c \\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b, c\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810] \n\\begin{itemize}\n \\item[1] \\(\\frac{11}{2}\\)\n \\item[2] 6\n \\item[3] \\(\\frac{13}{2}\\)\n \\item[4] 7\n \\item[5] \\(\\frac{15}{2}\\)\n\\end{itemize}\n","answer":"4","score":4}
|
30 |
+
{"id":29,"name":"29_prob","problem":"29. \uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0 \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\ub97c \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 $k$\uc5d0 \ub300\ud558\uc5ec $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 $k$\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4. \\\\\n\\[\n\\begin{array}{|c|c|c|c|c|c|}\n\\hline\n\\text{1\ubc88\uc9f8 \uc790\ub9ac} & \\text{2\ubc88\uc9f8 \uc790\ub9ac} & \\text{3\ubc88\uc9f8 \uc790\ub9ac} & \\text{4\ubc88\uc9f8 \uc790\ub9ac} & \\text{5\ubc88\uc9f8 \uc790\ub9ac} & \\text{6\ubc88\uc9f8 \uc790\ub9ac} \\\\\n\\hline\n1 & 2 & 3 & 4 & 5 & 6 \\\\\n\\hline\n\\end{array}\n\\]\n\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4. \\\\\n\\framebox{\n\\parbox{\\textwidth}{\n\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 $k$\uc774\uba74 $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.\n}\n} \\\\\n\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc744 $\\frac{p}{q}$\uc774\ub2e4. $p+q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"196","score":4}
|
31 |
+
{"id":30,"name":"30_prob","problem":"30. \uc9d1\ud569 $X=\\{x \\mid x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\}$\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 $f: X \\rightarrow X$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\begin{quote}\n\\textbf{(\uac00)} 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 $x$\uc5d0 \ub300\ud558\uc5ec $f(x) \\leq f(x+1)$ \uc774\ub2e4.\n\\textbf{(\ub098)} $1 \\leq x \\leq 5$\uc77c \ub54c $f(x) \\leq x$\uc774\uace0, \\\\\n$6 \\leq x \\leq 10$\uc77c \ub54c $f(x) \\geq x$\uc774\ub2e4.\n\\textbf{(\ub2e4)} $f(6) = f(5) + 6$\n\\end{quote}\n","answer":"673","score":4}
|
32 |
+
|
33 |
+
{"id":31,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":2}
|
34 |
+
{"id":32,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{4}{3}$\n \\item[2] $\\frac{13}{9}$\n \\item[3] $\\frac{14}{9}$\n \\item[4] $\\frac{5}{3}$\n \\item[5] $\\frac{16}{9}$\n\\end{itemize}\n","answer":"2","score":3}
|
35 |
+
{"id":33,"name":"25_calc","problem":"25. \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $\\lim_{n \\to \\infty} \\frac{a_{n+1}}{3^n + 2^{2n-1}} = 3$\uc77c \ub54c, $a_2$\uc758 \uac12\uc740? \\hspace{3mm}[3\uc810]\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":"4","score":3}
|
36 |
+
{"id":34,"name":"26_calc","problem":"26. \uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 $y=\\sqrt{\\sec^2x + \\tan x} \\ \\left( 0 \\leq x \\leq \\frac{\\pi}{3} \\right)$ \uc640 $x$\ucd95, $y$\ucd95 \ubc0f \uc9c1\uc120 $x=\\frac{\\pi}{3}$\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 $x$\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}$\n \\item[2] $\\frac{\\sqrt{3}}{2} + \\ln 2$\n \\item[3] $\\sqrt{3} + \\frac{\\ln 2}{2}$\n \\item[4] $\\sqrt{3} + \\ln 2$\n \\item[5] $\\frac{\\sqrt{3}}{2} + 2 \\ln 2$\n\\end{itemize}\n","answer":"3","score":3}
|
37 |
+
{"id":35,"name":"27_calc","problem":"27. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $1$\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_1B_1$\uc774 \uc788\ub2e4. \ud638 $A_1B_1$ \uc704\uc5d0 \uc810 $P_1$, \uc120\ubd84 $OA_1$ \uc704\uc5d0 \uc810 $C_1$, \uc120\ubd84 $OB_1$ \uc704\uc5d0 \uc810 $D_1$\uc744 \uc0ac\uac01\ud615 $OC_1P_1D_1$\uc774 $OC_1 : OD_1 = 3:4$\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\n\ubd80\ucc44\uaf34 $OA_1B_1$\uc758 \ub0b4\ubd80\uc5d0 \uc810 $Q_1$\uc744 $P_1Q_1 = A_1Q_1$, $\\angle P_1Q_1A_1 = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_1Q_1A_1$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_1$\uc774\ub77c \ud558\uc790.\n\uadf8\ub9bc $R_1$\uc5d0\uc11c \uc120\ubd84 $OA_1$ \uc704\uc758 \uc810 $A_2$\uc640 \uc120\ubd84 $OB_1$ \uc704\uc758 \uc810 $B_2$\ub97c $OQ_1 = OA_2 = OB_2$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $OQ_1$, \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_2B_2$\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9bc $R_1$\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 $P_2, C_2, D_2, Q_2$\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_2Q_2A_2$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_2$\ub77c \ud558\uc790.\n\uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec $n$\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc $R_n$\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c $S_n$\uc774\ub77c \ud560 \ub54c, $\\lim_{n \\to \\infty} S_n$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{9}{40}$\n \\item[2] $\\frac{1}{4}$\n \\item[3] $\\frac{11}{40}$\n \\item[4] $\\frac{3}{10}$\n \\item[5] $\\frac{13}{40}$\n\\end{itemize}\n","answer":"1","score":3}
|
38 |
+
{"id":36,"name":"28_calc","problem":"28. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 $AB$\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 $\\angle AOC = \\frac{\\pi}{2}$\uc778 \uc810 $C$\uac00 \uc788\ub2e4. \ud638 $BC$ \uc704\uc5d0 \uc810 $P$\uc640 \ud638 $CA$ \uc704\uc5d0 \uc810 $Q$\ub97c $PB = QC$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 $AP$ \uc704\uc5d0 \uc810 $R$\uc744 $\\angle CQR = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\\\\\n\uc120\ubd84 $AP$\uc640 \uc120\ubd84 $CO$\uc758 \uad50\uc810\uc744 $S$\ub77c \ud558\uc790. $\\angle PAB = \\theta$\uc77c \ub54c, \uc0bc\uac01\ud615 $POB$\uc758 \ub113\uc774\ub97c $f(\\theta)$, \uc0ac\uac01\ud615 $CQRS$\uc758 \ub113\uc774\ub97c $g(\\theta)$\ub77c \ud558\uc790. \\\\\n\\[\n\\lim_{\\theta \\to 0^{+}} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2}\n\\]\n\uc758 \uac12\uc740? (\ub2e8, $0 < \\theta < \\frac{\\pi}{4}$) [4\uc810] \n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"2","score":4}
|
39 |
+
{"id":37,"name":"29_calc","problem":"29. \uc138 \uc0c1\uc218 \\(a, b, c\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x) = ae^{2x} + be^x + c\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n(\uac00)\\ \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\]\n\\[\n(\ub098)\\ f(\\ln 2) = 0\n\\]\n\ud568\uc218 \\(f(x)\\)\uc758 \uc5ed\ud568\uc218\ub97c \\(g(x)\\)\ub77c \ud560 \ub54c,\n\\[\n\\int_0^{14} g(x) dx = p + q \\ln 2 \uc774\ub2e4. \\ p+q\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.\n\\]\n(\ub2e8, \\(p, q\\)\ub294 \uc720\ub9ac\uc218\uc774\uace0, \\(\\ln 2\\)\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"162","score":4}
|
40 |
+
{"id":38,"name":"30_calc","problem":"30. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 $f(x)$\uc640\\\\\n\ud568\uc218 $g(x) = e^{\\sin \\pi x} - 1$\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 $h(x) = g(f(x))$\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\begin{itemize}\n \\item[(\uac00)] \ud568\uc218 $h(x)$\ub294 $x = 0$\uc5d0\uc11c \uadf9\ub313\uac12 $0$\uc744 \uac16\ub294\ub2e4.\n \\item[(\ub098)] \uc5f4\ub9b0\uad6c\uac04 $(0, 3)$\uc5d0\uc11c \ubc29\uc815\uc2dd $h(x) = 1$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.\n\\end{itemize}\n$f(3) = \\frac{1}{2}, f'(3) = 0$\uc77c \ub54c, $f(2) = \\frac{q}{p}$\uc774\ub2e4. $p + q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"125","score":4}
|
41 |
+
|
42 |
+
{"id":39,"name":"23_geom","problem":"23. \uc88c\ud45c\uacf5\uac04\uc758 \uc810 A(2, 2, -1)\uc744 \\(x\\)\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 B\ub77c \ud558\uc790. \uc810 C(-2, 1, 1)\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? \\hfill [2\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
|
43 |
+
{"id":40,"name":"24_geom","problem":"24. \ucd08\uc810\uc774 $F\\left(\\frac{1}{3}, 0\\right)$\uc774\uace0 \uc900\uc120\uc774 $x = -\\frac{1}{3}$\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 $(a, 2)$\ub97c \uc9c0\ub0a0 \ub54c, $a$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":3}
|
44 |
+
{"id":41,"name":"25_geom","problem":"25. \ud0c0\uc6d0 $\\dfrac{x^2}{a^2} + \\dfrac{y^2}{b^2} = 1$ \uc704\uc758 \uc810 $(2, 1)$\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 $-\\dfrac{1}{2}$\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294?\\\\\n(\ub2e8, $a$, $b$\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] $2 \\sqrt{3}$\n \\item[2] $4$\n \\item[3] $2 \\sqrt{5}$\n \\item[4] $2 \\sqrt{6}$\n \\item[5] $2 \\sqrt{7}$\n\\end{itemize}\n","answer":"2","score":3}
|
45 |
+
{"id":42,"name":"26_geom","problem":"26. \uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130\n\\[\n\\vec{a} = (2, 4), \\quad \\vec{b} = (2, 8), \\quad \\vec{c} = (1, 0)\n\\]\n\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 \\(\\vec{p}, \\vec{q}\\)\uac00\n\\[\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t\ub294 \\, \uc2e4\uc218)\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\(\\left| \\vec{p} - \\vec{q} \\right|\\)\uc758 \ucd5c\uc18c\uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{3}{2}\\)\n \\item[2] 2\n \\item[3] \\(\\frac{5}{2}\\)\n \\item[4] 3\n \\item[5] \\(\\frac{7}{2}\\)\n\\end{itemize}\n","answer":"5","score":3}
|
46 |
+
{"id":43,"name":"27_geom","problem":"27. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 $\\alpha$\uac00 \uc788\ub2e4. \ud3c9\uba74 $\\alpha$ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_1$\uc774\ub77c \ud560 \ub54c $\\sin \\theta_1 = \\frac{4}{5}$\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 $\\frac{\\pi}{2} - \\theta_1$\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_2$\ub77c \ud560 \ub54c, $\\cos \\theta_2$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{7}}{4}$\n \\item[2] $\\frac{\\sqrt{7}}{5}$\n \\item[3] $\\frac{\\sqrt{7}}{6}$\n \\item[4] $\\frac{\\sqrt{7}}{7}$\n \\item[5] $\\frac{\\sqrt{7}}{8}$\n\\end{itemize}\n","answer":"3","score":3}
|
47 |
+
{"id":44,"name":"28_geom","problem":"28. \ub450 \ucd08\uc810\uc774 $F(c,0), F'(-c,0)(c>0)$\uc778 \uc30d\uace1\uc120 $C$\uc640 y\ucd95 \uc704\uc758 \uc810 $A$\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 $C$\uac00 \uc120\ubd84 $AF$\uc640 \ub9cc\ub098\ub294 \uc810\uc744 $P$, \uc120\ubd84 $AF'$\uacfc \ub9cc\ub098\ub294 \uc810\uc744 $P'$\uc774\ub77c \ud558\uc790. \\\\\n\uc9c1\uc120 $AF$\ub294 \uc30d\uace1\uc120 $C$\uc758 \ud55c \uc810\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 \\\\\n\\[\n\\frac{AP}{PP'} = \\frac{5}{6}, \\quad PF = 1\n\\]\n\uc77c \ub54c, \uc30d\uace1\uc120 $C$\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]} \\\\\n\\begin{itemize}\n \\item[1] $\\frac{13}{6}$\n \\item[2] $9\/4$\n \\item[3] $7\/3$\n \\item[4] $\\frac{29}{12}$\n \\item[5] $\\frac{5}{2}$\n\\end{itemize}\n","answer":"5","score":4}
|
48 |
+
{"id":45,"name":"29_geom","problem":"29.\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc5d0\\ \\(\\overline{AB} = \\overline{CD} = \\overline{AD} = 2\\),\\ \\(\\angle ABC = \\angle BCD = \\frac{\\pi}{3}\\)\\ \uc778\\ \uc0ac\ub2e4\ub9ac\uaf34\\ \\(ABCD\\)\\ \uac00\\ \uc788\ub2e4.\\ \ub2e4\uc74c\\ \uc870\uac74\uc744\\ \ub9cc\uc871\uc2dc\ud0a4\ub294\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc758\\ \ub450\\ \uc810\\ \\(P, Q\\)\uc5d0\\ \ub300\ud558\uc5ec\\ \\(CP \\cdot DQ\\)\uc758\\ \uac12\uc744\\ \uad6c\ud558\uc2dc\uc624.\\ [4\uc810]\n\\begin{itemize}\n \\item[(\uac00)] \\(\\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\\)\n \\item[(\ub098)] \\(\\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\\)\n \\item[(\ub2e4)] \\(2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\\)\n\\end{itemize}\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) -- (2,0) -- (2.5,1.5) -- (-0.5,1.5) -- cycle;\n \\node[below] at (0,0) {B};\n \\node[below] at (2,0) {C};\n \\node[above] at (2.5,1.5) {D};\n \\node[above] at (-0.5,1.5) {A};\n\\end{tikzpicture}\n\\end{center}\n","answer":"11","score":4}
|
49 |
{"id":46,"name":"30_geom","problem":"30. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 $ABCD$ \uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 $BCD$ \uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 $B$\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c $S$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AB$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $B$\uac00 \uc544\ub2cc \uc810\uc744 $P$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AC$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $C$\uac00 \uc544\ub2cc \uc810\uc744 $Q$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AD$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $D$\uac00 \uc544\ub2cc \uc810\uc744 $R$ \ud558\uace0, \\\\\n\uc810 $P$\uc5d0\uc11c \uad6c $S$\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 $\\alpha$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 $PQR$\uc758 \ud3c9\uba74 $\\alpha$ \uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 $k$\uc774\ub2e4. $k^2$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"147","score":4}
|
test_dataset.ipynb
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 8,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"application/vnd.jupyter.widget-view+json": {
|
11 |
+
"model_id": "200e6aa0e51e40f4bb9b226a9c2743d5",
|
12 |
+
"version_major": 2,
|
13 |
+
"version_minor": 0
|
14 |
+
},
|
15 |
+
"text/plain": [
|
16 |
+
"README.md: 0%| | 0.00/1.21k [00:00<?, ?B/s]"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
"metadata": {},
|
20 |
+
"output_type": "display_data"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"data": {
|
24 |
+
"application/vnd.jupyter.widget-view+json": {
|
25 |
+
"model_id": "d0a3126bae1841ebaad270538537a05b",
|
26 |
+
"version_major": 2,
|
27 |
+
"version_minor": 0
|
28 |
+
},
|
29 |
+
"text/plain": [
|
30 |
+
"2023_math-00000-of-00001.parquet: 0%| | 0.00/14.5k [00:00<?, ?B/s]"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
"metadata": {},
|
34 |
+
"output_type": "display_data"
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"data": {
|
38 |
+
"application/vnd.jupyter.widget-view+json": {
|
39 |
+
"model_id": "c35de5d0d6004fe5ad6ed253ce1fa5c1",
|
40 |
+
"version_major": 2,
|
41 |
+
"version_minor": 0
|
42 |
+
},
|
43 |
+
"text/plain": [
|
44 |
+
"2024_math-00000-of-00001.parquet: 0%| | 0.00/15.7k [00:00<?, ?B/s]"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "display_data"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"application/vnd.jupyter.widget-view+json": {
|
53 |
+
"model_id": "9bd4552a43804c5b8083377b8aa82b67",
|
54 |
+
"version_major": 2,
|
55 |
+
"version_minor": 0
|
56 |
+
},
|
57 |
+
"text/plain": [
|
58 |
+
"Generating 2023_math split: 0%| | 0/46 [00:00<?, ? examples/s]"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
"metadata": {},
|
62 |
+
"output_type": "display_data"
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"application/vnd.jupyter.widget-view+json": {
|
67 |
+
"model_id": "36a17f59853646aabfd573d79d1b426e",
|
68 |
+
"version_major": 2,
|
69 |
+
"version_minor": 0
|
70 |
+
},
|
71 |
+
"text/plain": [
|
72 |
+
"Generating 2024_math split: 0%| | 0/46 [00:00<?, ? examples/s]"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"metadata": {},
|
76 |
+
"output_type": "display_data"
|
77 |
+
}
|
78 |
+
],
|
79 |
+
"source": [
|
80 |
+
"from datasets import load_dataset\n",
|
81 |
+
"\n",
|
82 |
+
"ds = load_dataset(\"cfpark00/KoreanSAT\")"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 9,
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [
|
90 |
+
{
|
91 |
+
"data": {
|
92 |
+
"text/plain": [
|
93 |
+
"DatasetDict({\n",
|
94 |
+
" 2023_math: Dataset({\n",
|
95 |
+
" features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
|
96 |
+
" num_rows: 46\n",
|
97 |
+
" })\n",
|
98 |
+
" 2024_math: Dataset({\n",
|
99 |
+
" features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
|
100 |
+
" num_rows: 46\n",
|
101 |
+
" })\n",
|
102 |
+
"})"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"execution_count": 9,
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "execute_result"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"ds"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 13,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"data": {
|
121 |
+
"text/plain": [
|
122 |
+
"{'id': 31,\n",
|
123 |
+
" 'name': '23_calc',\n",
|
124 |
+
" 'problem': '23. \\\\lim_{x \\\\to 0} \\\\frac{\\\\ln(x+1)}{\\\\sqrt{x+4} - 2} \\\\text{의 값은? [2점]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] 1\\n \\\\item[2] 2\\n \\\\item[3] 3\\n \\\\item[4] 4\\n \\\\item[5] 5\\n\\\\end{itemize}\\n',\n",
|
125 |
+
" 'answer': 3,\n",
|
126 |
+
" 'score': 2,\n",
|
127 |
+
" 'review': None}"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
"execution_count": 13,
|
131 |
+
"metadata": {},
|
132 |
+
"output_type": "execute_result"
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"source": [
|
136 |
+
"ds[\"2024_math\"][30]"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": null,
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": []
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": []
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"metadata": {
|
155 |
+
"kernelspec": {
|
156 |
+
"display_name": "venv1",
|
157 |
+
"language": "python",
|
158 |
+
"name": "python3"
|
159 |
+
},
|
160 |
+
"language_info": {
|
161 |
+
"codemirror_mode": {
|
162 |
+
"name": "ipython",
|
163 |
+
"version": 3
|
164 |
+
},
|
165 |
+
"file_extension": ".py",
|
166 |
+
"mimetype": "text/x-python",
|
167 |
+
"name": "python",
|
168 |
+
"nbconvert_exporter": "python",
|
169 |
+
"pygments_lexer": "ipython3",
|
170 |
+
"version": "3.8.9"
|
171 |
+
}
|
172 |
+
},
|
173 |
+
"nbformat": 4,
|
174 |
+
"nbformat_minor": 2
|
175 |
+
}
|
to_json.ipynb → to_parquet.ipynb
RENAMED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -11,18 +11,18 @@
|
|
11 |
},
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
-
"execution_count":
|
15 |
"metadata": {},
|
16 |
"outputs": [
|
17 |
{
|
18 |
"data": {
|
19 |
"application/vnd.jupyter.widget-view+json": {
|
20 |
-
"model_id": "
|
21 |
"version_major": 2,
|
22 |
"version_minor": 0
|
23 |
},
|
24 |
"text/plain": [
|
25 |
-
"
|
26 |
]
|
27 |
},
|
28 |
"metadata": {},
|
@@ -31,21 +31,7 @@
|
|
31 |
{
|
32 |
"data": {
|
33 |
"application/vnd.jupyter.widget-view+json": {
|
34 |
-
"model_id": "
|
35 |
-
"version_major": 2,
|
36 |
-
"version_minor": 0
|
37 |
-
},
|
38 |
-
"text/plain": [
|
39 |
-
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
40 |
-
]
|
41 |
-
},
|
42 |
-
"metadata": {},
|
43 |
-
"output_type": "display_data"
|
44 |
-
},
|
45 |
-
{
|
46 |
-
"data": {
|
47 |
-
"application/vnd.jupyter.widget-view+json": {
|
48 |
-
"model_id": "e9c7863b49734ed2b44438e8312d7d5c",
|
49 |
"version_major": 2,
|
50 |
"version_minor": 0
|
51 |
},
|
@@ -58,48 +44,38 @@
|
|
58 |
}
|
59 |
],
|
60 |
"source": [
|
61 |
-
"dataset=load_dataset(\"json\",data_files={\"
|
|
|
62 |
]
|
63 |
},
|
64 |
{
|
65 |
"cell_type": "code",
|
66 |
-
"execution_count":
|
67 |
"metadata": {},
|
68 |
"outputs": [
|
69 |
{
|
70 |
"data": {
|
|
|
|
|
|
|
|
|
|
|
71 |
"text/plain": [
|
72 |
-
"
|
73 |
-
" 2024_math: Dataset({\n",
|
74 |
-
" features: ['id', 'name', 'problem', 'answer', 'score'],\n",
|
75 |
-
" num_rows: 46\n",
|
76 |
-
" })\n",
|
77 |
-
"})"
|
78 |
]
|
79 |
},
|
80 |
-
"execution_count": 40,
|
81 |
"metadata": {},
|
82 |
-
"output_type": "
|
83 |
-
}
|
84 |
-
],
|
85 |
-
"source": [
|
86 |
-
"dataset"
|
87 |
-
]
|
88 |
-
},
|
89 |
-
{
|
90 |
-
"cell_type": "code",
|
91 |
-
"execution_count": 44,
|
92 |
-
"metadata": {},
|
93 |
-
"outputs": [
|
94 |
{
|
95 |
"data": {
|
96 |
"application/vnd.jupyter.widget-view+json": {
|
97 |
-
"model_id": "
|
98 |
"version_major": 2,
|
99 |
"version_minor": 0
|
100 |
},
|
101 |
"text/plain": [
|
102 |
-
"
|
103 |
]
|
104 |
},
|
105 |
"metadata": {},
|
@@ -108,12 +84,12 @@
|
|
108 |
{
|
109 |
"data": {
|
110 |
"application/vnd.jupyter.widget-view+json": {
|
111 |
-
"model_id": "
|
112 |
"version_major": 2,
|
113 |
"version_minor": 0
|
114 |
},
|
115 |
"text/plain": [
|
116 |
-
"
|
117 |
]
|
118 |
},
|
119 |
"metadata": {},
|
@@ -122,16 +98,26 @@
|
|
122 |
{
|
123 |
"data": {
|
124 |
"application/vnd.jupyter.widget-view+json": {
|
125 |
-
"model_id": "
|
126 |
"version_major": 2,
|
127 |
"version_minor": 0
|
128 |
},
|
129 |
"text/plain": [
|
130 |
-
"
|
131 |
]
|
132 |
},
|
133 |
"metadata": {},
|
134 |
"output_type": "display_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
}
|
136 |
],
|
137 |
"source": [
|
@@ -155,60 +141,70 @@
|
|
155 |
},
|
156 |
{
|
157 |
"cell_type": "code",
|
158 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
"metadata": {},
|
160 |
"outputs": [
|
161 |
{
|
162 |
"data": {
|
163 |
-
"application/vnd.jupyter.widget-view+json": {
|
164 |
-
"model_id": "4008ff6d9bd347d9898bb7bde7df1ae3",
|
165 |
-
"version_major": 2,
|
166 |
-
"version_minor": 0
|
167 |
-
},
|
168 |
"text/plain": [
|
169 |
-
"
|
|
|
|
|
|
|
|
|
170 |
]
|
171 |
},
|
|
|
172 |
"metadata": {},
|
173 |
-
"output_type": "
|
174 |
-
}
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
203 |
{
|
204 |
"data": {
|
205 |
"application/vnd.jupyter.widget-view+json": {
|
206 |
-
"model_id": "
|
207 |
"version_major": 2,
|
208 |
"version_minor": 0
|
209 |
},
|
210 |
"text/plain": [
|
211 |
-
"
|
212 |
]
|
213 |
},
|
214 |
"metadata": {},
|
@@ -216,23 +212,20 @@
|
|
216 |
},
|
217 |
{
|
218 |
"data": {
|
219 |
-
"application/vnd.jupyter.widget-view+json": {
|
220 |
-
"model_id": "abbcfec95f544869bbce8682a7108610",
|
221 |
-
"version_major": 2,
|
222 |
-
"version_minor": 0
|
223 |
-
},
|
224 |
"text/plain": [
|
225 |
-
"
|
226 |
]
|
227 |
},
|
|
|
228 |
"metadata": {},
|
229 |
-
"output_type": "
|
230 |
}
|
231 |
],
|
232 |
"source": [
|
233 |
"from datasets import load_dataset\n",
|
234 |
"\n",
|
235 |
-
"ds = load_dataset(\"cfpark00/KoreanSAT\")"
|
|
|
236 |
]
|
237 |
},
|
238 |
{
|
@@ -397,7 +390,7 @@
|
|
397 |
"name": "python",
|
398 |
"nbconvert_exporter": "python",
|
399 |
"pygments_lexer": "ipython3",
|
400 |
-
"version": "3.
|
401 |
}
|
402 |
},
|
403 |
"nbformat": 4,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
11 |
},
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
+
"execution_count": 4,
|
15 |
"metadata": {},
|
16 |
"outputs": [
|
17 |
{
|
18 |
"data": {
|
19 |
"application/vnd.jupyter.widget-view+json": {
|
20 |
+
"model_id": "b5d51386a14e407ca2bdd18926ef997c",
|
21 |
"version_major": 2,
|
22 |
"version_minor": 0
|
23 |
},
|
24 |
"text/plain": [
|
25 |
+
"Generating 2023_math split: 0 examples [00:00, ? examples/s]"
|
26 |
]
|
27 |
},
|
28 |
"metadata": {},
|
|
|
31 |
{
|
32 |
"data": {
|
33 |
"application/vnd.jupyter.widget-view+json": {
|
34 |
+
"model_id": "a3015bdd603e44c789b8347863bb94c8",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"version_major": 2,
|
36 |
"version_minor": 0
|
37 |
},
|
|
|
44 |
}
|
45 |
],
|
46 |
"source": [
|
47 |
+
"dataset=load_dataset(\"json\",data_files={\"2023_math\":\"./data/json/2023/math.json\",\n",
|
48 |
+
" \"2024_math\":\"./data/json/2024/math.json\"})"
|
49 |
]
|
50 |
},
|
51 |
{
|
52 |
"cell_type": "code",
|
53 |
+
"execution_count": 5,
|
54 |
"metadata": {},
|
55 |
"outputs": [
|
56 |
{
|
57 |
"data": {
|
58 |
+
"application/vnd.jupyter.widget-view+json": {
|
59 |
+
"model_id": "221c4bba0e78418b9686c1ba0a0fa668",
|
60 |
+
"version_major": 2,
|
61 |
+
"version_minor": 0
|
62 |
+
},
|
63 |
"text/plain": [
|
64 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
|
|
|
|
|
|
|
|
|
|
65 |
]
|
66 |
},
|
|
|
67 |
"metadata": {},
|
68 |
+
"output_type": "display_data"
|
69 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
{
|
71 |
"data": {
|
72 |
"application/vnd.jupyter.widget-view+json": {
|
73 |
+
"model_id": "1763d5a9fc5c4c8099d0deb716f06c73",
|
74 |
"version_major": 2,
|
75 |
"version_minor": 0
|
76 |
},
|
77 |
"text/plain": [
|
78 |
+
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
79 |
]
|
80 |
},
|
81 |
"metadata": {},
|
|
|
84 |
{
|
85 |
"data": {
|
86 |
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "04f7bfc0e76c438ab84048301cb0e10e",
|
88 |
"version_major": 2,
|
89 |
"version_minor": 0
|
90 |
},
|
91 |
"text/plain": [
|
92 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
93 |
]
|
94 |
},
|
95 |
"metadata": {},
|
|
|
98 |
{
|
99 |
"data": {
|
100 |
"application/vnd.jupyter.widget-view+json": {
|
101 |
+
"model_id": "8707c527afaf47d0928b5167c509d5f7",
|
102 |
"version_major": 2,
|
103 |
"version_minor": 0
|
104 |
},
|
105 |
"text/plain": [
|
106 |
+
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
107 |
]
|
108 |
},
|
109 |
"metadata": {},
|
110 |
"output_type": "display_data"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"data": {
|
114 |
+
"text/plain": [
|
115 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/cfpark00/KoreanSAT/commit/8fdf990d118abc5511f7fe828a4ae482e4b67d07', commit_message='Upload dataset', commit_description='', oid='8fdf990d118abc5511f7fe828a4ae482e4b67d07', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/cfpark00/KoreanSAT', endpoint='https://huggingface.co', repo_type='dataset', repo_id='cfpark00/KoreanSAT'), pr_revision=None, pr_num=None)"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"execution_count": 5,
|
119 |
+
"metadata": {},
|
120 |
+
"output_type": "execute_result"
|
121 |
}
|
122 |
],
|
123 |
"source": [
|
|
|
141 |
},
|
142 |
{
|
143 |
"cell_type": "code",
|
144 |
+
"execution_count": null,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [],
|
147 |
+
"source": []
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 4,
|
152 |
"metadata": {},
|
153 |
"outputs": [
|
154 |
{
|
155 |
"data": {
|
|
|
|
|
|
|
|
|
|
|
156 |
"text/plain": [
|
157 |
+
"{'id': 1,\n",
|
158 |
+
" 'name': '1',\n",
|
159 |
+
" 'problem': '1. \\\\left( \\\\frac{4}{2^{\\\\sqrt{2}}} \\\\right)^{2 + \\\\sqrt{2}} \\\\text{의 값은? [2점]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] $\\\\frac{1}{4}$\\n \\\\item[2] $\\\\frac{1}{2}$\\n \\\\item[3] $1$\\n \\\\item[4] $2$\\n \\\\item[5] $4$\\n\\\\end{itemize}\\n',\n",
|
160 |
+
" 'answer': -1,\n",
|
161 |
+
" 'score': -1}"
|
162 |
]
|
163 |
},
|
164 |
+
"execution_count": 4,
|
165 |
"metadata": {},
|
166 |
+
"output_type": "execute_result"
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"dataset[\"2023_math\"][0]"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [],
|
178 |
+
"source": []
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": null,
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [],
|
185 |
+
"source": []
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": null,
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [],
|
192 |
+
"source": []
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": 19,
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [
|
199 |
{
|
200 |
"data": {
|
201 |
"application/vnd.jupyter.widget-view+json": {
|
202 |
+
"model_id": "ed6870fcaa5d4641ae911c05f8d5e1a3",
|
203 |
"version_major": 2,
|
204 |
"version_minor": 0
|
205 |
},
|
206 |
"text/plain": [
|
207 |
+
"Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
208 |
]
|
209 |
},
|
210 |
"metadata": {},
|
|
|
212 |
},
|
213 |
{
|
214 |
"data": {
|
|
|
|
|
|
|
|
|
|
|
215 |
"text/plain": [
|
216 |
+
"33057"
|
217 |
]
|
218 |
},
|
219 |
+
"execution_count": 19,
|
220 |
"metadata": {},
|
221 |
+
"output_type": "execute_result"
|
222 |
}
|
223 |
],
|
224 |
"source": [
|
225 |
"from datasets import load_dataset\n",
|
226 |
"\n",
|
227 |
+
"ds = load_dataset(\"cfpark00/KoreanSAT\")\n",
|
228 |
+
"ds[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
|
229 |
]
|
230 |
},
|
231 |
{
|
|
|
390 |
"name": "python",
|
391 |
"nbconvert_exporter": "python",
|
392 |
"pygments_lexer": "ipython3",
|
393 |
+
"version": "3.8.9"
|
394 |
}
|
395 |
},
|
396 |
"nbformat": 4,
|