cfpark00 commited on
Commit
0dd6946
·
1 Parent(s): 499090a
README.md CHANGED
@@ -15,6 +15,8 @@ tags:
15
  configs:
16
  - config_name: default
17
  data_files:
 
 
18
  - split: 2024_math
19
  path: data/2024_math-*
20
  dataset_info:
@@ -26,15 +28,20 @@ dataset_info:
26
  - name: problem
27
  dtype: string
28
  - name: answer
29
- dtype: string
30
  - name: score
31
  dtype: int64
 
 
32
  splits:
 
 
 
33
  - name: 2024_math
34
- num_bytes: 22489
35
  num_examples: 46
36
- download_size: 15235
37
- dataset_size: 22489
38
  ---
39
 
40
  # KoreanSAT Benchmark
 
15
  configs:
16
  - config_name: default
17
  data_files:
18
+ - split: 2023_math
19
+ path: data/2023_math-*
20
  - split: 2024_math
21
  path: data/2024_math-*
22
  dataset_info:
 
28
  - name: problem
29
  dtype: string
30
  - name: answer
31
+ dtype: int64
32
  - name: score
33
  dtype: int64
34
+ - name: review
35
+ dtype: float64
36
  splits:
37
+ - name: 2023_math
38
+ num_bytes: 23272
39
+ num_examples: 46
40
  - name: 2024_math
41
+ num_bytes: 22985
42
  num_examples: 46
43
+ download_size: 30248
44
+ dataset_size: 46257
45
  ---
46
 
47
  # KoreanSAT Benchmark
data/json/2024/math.json CHANGED
@@ -20,27 +20,30 @@
20
  {"id":20,"name":"20","problem":"20. \uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 \\(t(t\\geq0)\\)\uc5d0\uc11c\uc758 \uc18d\ub3c4 \\(v(t)\\)\uc640 \uac00\uc18d\ub3c4 \\(a(t)\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\text{(\uac00)} \\quad 0 \\leq t \\leq 2 \\text{\uc77c \ub54c}, \\quad v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\]\n\\[\n\\text{(\ub098)} \\quad t \\geq 2 \\text{\uc77c \ub54c}, \\quad a(t) = 6t + 4\\text{\uc774\ub2e4.}\n\\]\n\uc2dc\uac01 \\( t=0 \\)\uc5d0\uc11c \\( t=3 \\)\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"25","score":4}
21
  {"id":21,"name":"21","problem":"21. \uc790\uc5f0\uc218 \\(n\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x)\\)\ub97c\n\\[\nf(x) =\n\\begin{cases} \n |3^{x+2}-n| & (x<0) \\\\ \n | \\log_2 (x+4) -n| & (x \\geq 0)\n\\end{cases}\n\\]\n\uc774\ub77c \ud558\uc790. \uc2e4\uc218 \\(t\\)\uc5d0 \ub300\ud558\uc5ec \\(x\\)\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd \\(f(x) = t\\)\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c \\(g(t)\\)\ub77c \ud560 \ub54c, \ud568\uc218 \\(g(t)\\)\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 \\(n\\)\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n","answer":"10","score":4}
22
  {"id":22,"name":"22","problem":"22. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 \\( f(x) \\)\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( g(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\( f(4) \\)\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\[\n\\begin{aligned}\n\\text{(\uac00)} & \\quad \\text{\ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec} \\\\\n& \\quad f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub098)} & \\quad \\text{\ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub2e4)} & \\quad f(0) = -3, \\, f(g(1)) = 6\n\\end{aligned}\n\\]\n","answer":"483","score":4}
 
23
  {"id":23,"name":"23_prob","problem":"23. \ub2e4\ud56d\uc2dd $(x^3 + 3)^5$ \uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c $x^9$\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":"3","score":2}
24
- {"id":24,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":2}
25
- {"id":25,"name":"23_geom","problem":"23. \uc88c\ud45c\uacf5\uac04\uc758 \uc810 A(2, 2, -1)\uc744 \\(x\\)\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 B\ub77c \ud558\uc790. \uc810 C(-2, 1, 1)\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? \\hfill [2\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
26
- {"id":26,"name":"24_prob","problem":"24. \uc22b\uc790 1, 2, 3, 4, 5 \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":"4","score":3}
27
- {"id":27,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{4}{3}$\n \\item[2] $\\frac{13}{9}$\n \\item[3] $\\frac{14}{9}$\n \\item[4] $\\frac{5}{3}$\n \\item[5] $\\frac{16}{9}$\n\\end{itemize}\n","answer":"2","score":3}
28
- {"id":28,"name":"24_geom","problem":"24. \ucd08\uc810\uc774 $F\\left(\\frac{1}{3}, 0\\right)$\uc774\uace0 \uc900\uc120\uc774 $x = -\\frac{1}{3}$\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 $(a, 2)$\ub97c \uc9c0\ub0a0 \ub54c, $a$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":3}
29
- {"id":29,"name":"25_prob","problem":"25. \ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{8}{13}$\n \\item[2] $\\frac{17}{26}$\n \\item[3] $\\frac{9}{13}$\n \\item[4] $\\frac{19}{26}$\n \\item[5] $\\frac{10}{13}$\n\\end{itemize}\n","answer":"5","score":3}
30
- {"id":30,"name":"25_calc","problem":"25. \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $\\lim_{n \\to \\infty} \\frac{a_{n+1}}{3^n + 2^{2n-1}} = 3$\uc77c \ub54c, $a_2$\uc758 \uac12\uc740? \\hspace{3mm}[3\uc810]\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":"4","score":3}
31
- {"id":31,"name":"25_geom","problem":"25. \ud0c0\uc6d0 $\\dfrac{x^2}{a^2} + \\dfrac{y^2}{b^2} = 1$ \uc704\uc758 \uc810 $(2, 1)$\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 $-\\dfrac{1}{2}$\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294?\\\\\n(\ub2e8, $a$, $b$\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] $2 \\sqrt{3}$\n \\item[2] $4$\n \\item[3] $2 \\sqrt{5}$\n \\item[4] $2 \\sqrt{6}$\n \\item[5] $2 \\sqrt{7}$\n\\end{itemize}\n","answer":"2","score":3}
32
- {"id":32,"name":"26_prob","problem":"26. \uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \n\uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \n\uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 A, \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 B\ub77c \ud560 \ub54c, $P(A \\cup B)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{11}{20}$\n \\item[2] $\\frac{3}{5}$\n \\item[3] $\\frac{13}{20}$\n \\item[4] $\\frac{7}{10}$\n \\item[5] $\\frac{3}{4}$\n\\end{itemize}\n","answer":"2","score":3}
33
- {"id":33,"name":"26_calc","problem":"26. \uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 $y=\\sqrt{\\sec^2x + \\tan x} \\ \\left( 0 \\leq x \\leq \\frac{\\pi}{3} \\right)$ \uc640 $x$\ucd95, $y$\ucd95 \ubc0f \uc9c1\uc120 $x=\\frac{\\pi}{3}$\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 $x$\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}$\n \\item[2] $\\frac{\\sqrt{3}}{2} + \\ln 2$\n \\item[3] $\\sqrt{3} + \\frac{\\ln 2}{2}$\n \\item[4] $\\sqrt{3} + \\ln 2$\n \\item[5] $\\frac{\\sqrt{3}}{2} + 2 \\ln 2$\n\\end{itemize}\n","answer":"3","score":3}
34
- {"id":34,"name":"26_geom","problem":"26. \uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130\n\\[\n\\vec{a} = (2, 4), \\quad \\vec{b} = (2, 8), \\quad \\vec{c} = (1, 0)\n\\]\n\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 \\(\\vec{p}, \\vec{q}\\)\uac00\n\\[\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t\ub294 \\, \uc2e4\uc218)\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\(\\left| \\vec{p} - \\vec{q} \\right|\\)\uc758 \ucd5c\uc18c\uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{3}{2}\\)\n \\item[2] 2\n \\item[3] \\(\\frac{5}{2}\\)\n \\item[4] 3\n \\item[5] \\(\\frac{7}{2}\\)\n\\end{itemize}\n","answer":"5","score":3}
35
- {"id":35,"name":"27_prob","problem":"27. \uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec \\( N(\\mu, \\sigma^2) \\) \ub97c \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( 746.1 \\leq m \\leq 755.9 \\)\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c \\( n \\) \uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( a \\leq m \\leq b \\)\uc77c \ub54c, \\( b-a \\)\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 \\( n \\)\uc758 \ucd5c\uc18c\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, \\( Z \\)\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, \\( P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\) \ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":"2","score":3}
36
- {"id":36,"name":"27_calc","problem":"27. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $1$\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_1B_1$\uc774 \uc788\ub2e4. \ud638 $A_1B_1$ \uc704\uc5d0 \uc810 $P_1$, \uc120\ubd84 $OA_1$ \uc704\uc5d0 \uc810 $C_1$, \uc120\ubd84 $OB_1$ \uc704\uc5d0 \uc810 $D_1$\uc744 \uc0ac\uac01\ud615 $OC_1P_1D_1$\uc774 $OC_1 : OD_1 = 3:4$\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\n\ubd80\ucc44\uaf34 $OA_1B_1$\uc758 \ub0b4\ubd80\uc5d0 \uc810 $Q_1$\uc744 $P_1Q_1 = A_1Q_1$, $\\angle P_1Q_1A_1 = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_1Q_1A_1$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_1$\uc774\ub77c \ud558\uc790.\n\uadf8\ub9bc $R_1$\uc5d0\uc11c \uc120\ubd84 $OA_1$ \uc704\uc758 \uc810 $A_2$\uc640 \uc120\ubd84 $OB_1$ \uc704\uc758 \uc810 $B_2$\ub97c $OQ_1 = OA_2 = OB_2$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $OQ_1$, \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_2B_2$\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9bc $R_1$\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 $P_2, C_2, D_2, Q_2$\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_2Q_2A_2$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_2$\ub77c \ud558\uc790.\n\uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec $n$\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc $R_n$\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c $S_n$\uc774\ub77c \ud560 \ub54c, $\\lim_{n \\to \\infty} S_n$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{9}{40}$\n \\item[2] $\\frac{1}{4}$\n \\item[3] $\\frac{11}{40}$\n \\item[4] $\\frac{3}{10}$\n \\item[5] $\\frac{13}{40}$\n\\end{itemize}\n","answer":"1","score":3}
37
- {"id":37,"name":"27_geom","problem":"27. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 $\\alpha$\uac00 \uc788\ub2e4. \ud3c9\uba74 $\\alpha$ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_1$\uc774\ub77c \ud560 \ub54c $\\sin \\theta_1 = \\frac{4}{5}$\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 $\\frac{\\pi}{2} - \\theta_1$\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_2$\ub77c \ud560 \ub54c, $\\cos \\theta_2$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{7}}{4}$\n \\item[2] $\\frac{\\sqrt{7}}{5}$\n \\item[3] $\\frac{\\sqrt{7}}{6}$\n \\item[4] $\\frac{\\sqrt{7}}{7}$\n \\item[5] $\\frac{\\sqrt{7}}{8}$\n\\end{itemize}\n","answer":"3","score":3}
38
- {"id":38,"name":"28_prob","problem":"28. \uc5f0\uc18d\ud655\ub960\ubcc0\uc218 \\( X \\) \uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 \\( 0 \\leq X \\leq a \\) \uc774\uace0, \\( X \\)\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.\\\\\n\\begin{center}\n\\begin{tikzpicture}\n % Draw axes\n \\draw[->] (0,0) -- (5,0) node[right] {$x$};\n \\draw[->] (0,0) -- (0,4) node[above] {$y$};\n % Label points\n \\node at (1,-0.3) {$O$};\n \\node at (3,-0.3) {$b$};\n \\node at (5,-0.3) {$a$};\n \\node at (-0.3,3) {$c$};\n % Draw the function\n \\draw[thick] (0,0) -- (3,3) -- (5,0);\n % Dotted lines for the heights\n \\draw[dashed] (3,0) -- (3,3);\n \\draw[dashed] (5,0) -- (5,0);\n\\end{tikzpicture}\n\\end{center}\n\\( P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\)\uc77c \ub54c,\\\\\n\\( a + b + c \\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b, c\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810] \n\\begin{itemize}\n \\item[1] \\(\\frac{11}{2}\\)\n \\item[2] 6\n \\item[3] \\(\\frac{13}{2}\\)\n \\item[4] 7\n \\item[5] \\(\\frac{15}{2}\\)\n\\end{itemize}\n","answer":"4","score":4}
39
- {"id":39,"name":"28_calc","problem":"28. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 $AB$\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 $\\angle AOC = \\frac{\\pi}{2}$\uc778 \uc810 $C$\uac00 \uc788\ub2e4. \ud638 $BC$ \uc704\uc5d0 \uc810 $P$\uc640 \ud638 $CA$ \uc704\uc5d0 \uc810 $Q$\ub97c $PB = QC$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 $AP$ \uc704\uc5d0 \uc810 $R$\uc744 $\\angle CQR = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\\\\\n\uc120\ubd84 $AP$\uc640 \uc120\ubd84 $CO$\uc758 \uad50\uc810\uc744 $S$\ub77c \ud558\uc790. $\\angle PAB = \\theta$\uc77c \ub54c, \uc0bc\uac01\ud615 $POB$\uc758 \ub113\uc774\ub97c $f(\\theta)$, \uc0ac\uac01\ud615 $CQRS$\uc758 \ub113\uc774\ub97c $g(\\theta)$\ub77c \ud558\uc790. \\\\\n\\[\n\\lim_{\\theta \\to 0^{+}} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2}\n\\]\n\uc758 \uac12\uc740? (\ub2e8, $0 < \\theta < \\frac{\\pi}{4}$) [4\uc810] \n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"2","score":4}
40
- {"id":40,"name":"28_geom","problem":"28. \ub450 \ucd08\uc810\uc774 $F(c,0), F'(-c,0)(c>0)$\uc778 \uc30d\uace1\uc120 $C$\uc640 y\ucd95 \uc704\uc758 \uc810 $A$\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 $C$\uac00 \uc120\ubd84 $AF$\uc640 \ub9cc\ub098\ub294 \uc810\uc744 $P$, \uc120\ubd84 $AF'$\uacfc \ub9cc\ub098\ub294 \uc810\uc744 $P'$\uc774\ub77c \ud558\uc790. \\\\\n\uc9c1\uc120 $AF$\ub294 \uc30d\uace1\uc120 $C$\uc758 \ud55c \uc810\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 \\\\\n\\[\n\\frac{AP}{PP'} = \\frac{5}{6}, \\quad PF = 1\n\\]\n\uc77c \ub54c, \uc30d\uace1\uc120 $C$\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]} \\\\\n\\begin{itemize}\n \\item[1] $\\frac{13}{6}$\n \\item[2] $9\/4$\n \\item[3] $7\/3$\n \\item[4] $\\frac{29}{12}$\n \\item[5] $\\frac{5}{2}$\n\\end{itemize}\n","answer":"5","score":4}
41
- {"id":41,"name":"29_prob","problem":"29. \uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0 \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\ub97c \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 $k$\uc5d0 \ub300\ud558\uc5ec $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 $k$\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4. \\\\\n\\[\n\\begin{array}{|c|c|c|c|c|c|}\n\\hline\n\\text{1\ubc88\uc9f8 \uc790\ub9ac} & \\text{2\ubc88\uc9f8 \uc790\ub9ac} & \\text{3\ubc88\uc9f8 \uc790\ub9ac} & \\text{4\ubc88\uc9f8 \uc790\ub9ac} & \\text{5\ubc88\uc9f8 \uc790\ub9ac} & \\text{6\ubc88\uc9f8 \uc790\ub9ac} \\\\\n\\hline\n1 & 2 & 3 & 4 & 5 & 6 \\\\\n\\hline\n\\end{array}\n\\]\n\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4. \\\\\n\\framebox{\n\\parbox{\\textwidth}{\n\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 $k$\uc774\uba74 $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.\n}\n} \\\\\n\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc744 $\\frac{p}{q}$\uc774\ub2e4. $p+q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"196","score":4}
42
- {"id":42,"name":"29_calc","problem":"29. \uc138 \uc0c1\uc218 \\(a, b, c\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x) = ae^{2x} + be^x + c\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n(\uac00)\\ \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\]\n\\[\n(\ub098)\\ f(\\ln 2) = 0\n\\]\n\ud568\uc218 \\(f(x)\\)\uc758 \uc5ed\ud568\uc218\ub97c \\(g(x)\\)\ub77c \ud560 \ub54c,\n\\[\n\\int_0^{14} g(x) dx = p + q \\ln 2 \uc774\ub2e4. \\ p+q\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.\n\\]\n(\ub2e8, \\(p, q\\)\ub294 \uc720\ub9ac\uc218\uc774\uace0, \\(\\ln 2\\)\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"162","score":4}
43
- {"id":43,"name":"29_geom","problem":"29.\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc5d0\\ \\(\\overline{AB} = \\overline{CD} = \\overline{AD} = 2\\),\\ \\(\\angle ABC = \\angle BCD = \\frac{\\pi}{3}\\)\\ \uc778\\ \uc0ac\ub2e4\ub9ac\uaf34\\ \\(ABCD\\)\\ \uac00\\ \uc788\ub2e4.\\ \ub2e4\uc74c\\ \uc870\uac74\uc744\\ \ub9cc\uc871\uc2dc\ud0a4\ub294\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc758\\ \ub450\\ \uc810\\ \\(P, Q\\)\uc5d0\\ \ub300\ud558\uc5ec\\ \\(CP \\cdot DQ\\)\uc758\\ \uac12\uc744\\ \uad6c\ud558\uc2dc\uc624.\\ [4\uc810]\n\\begin{itemize}\n \\item[(\uac00)] \\(\\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\\)\n \\item[(\ub098)] \\(\\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\\)\n \\item[(\ub2e4)] \\(2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\\)\n\\end{itemize}\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) -- (2,0) -- (2.5,1.5) -- (-0.5,1.5) -- cycle;\n \\node[below] at (0,0) {B};\n \\node[below] at (2,0) {C};\n \\node[above] at (2.5,1.5) {D};\n \\node[above] at (-0.5,1.5) {A};\n\\end{tikzpicture}\n\\end{center}\n","answer":"11","score":4}
44
- {"id":44,"name":"30_prob","problem":"30. \uc9d1\ud569 $X=\\{x \\mid x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\}$\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 $f: X \\rightarrow X$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\begin{quote}\n\\textbf{(\uac00)} 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 $x$\uc5d0 \ub300\ud558\uc5ec $f(x) \\leq f(x+1)$ \uc774\ub2e4.\n\\textbf{(\ub098)} $1 \\leq x \\leq 5$\uc77c \ub54c $f(x) \\leq x$\uc774\uace0, \\\\\n$6 \\leq x \\leq 10$\uc77c \ub54c $f(x) \\geq x$\uc774\ub2e4.\n\\textbf{(\ub2e4)} $f(6) = f(5) + 6$\n\\end{quote}\n","answer":"673","score":4}
45
- {"id":45,"name":"30_calc","problem":"30. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 $f(x)$\uc640\\\\\n\ud568\uc218 $g(x) = e^{\\sin \\pi x} - 1$\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 $h(x) = g(f(x))$\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\begin{itemize}\n \\item[(\uac00)] \ud568\uc218 $h(x)$\ub294 $x = 0$\uc5d0\uc11c \uadf9\ub313\uac12 $0$\uc744 \uac16\ub294\ub2e4.\n \\item[(\ub098)] \uc5f4\ub9b0\uad6c\uac04 $(0, 3)$\uc5d0\uc11c \ubc29\uc815\uc2dd $h(x) = 1$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.\n\\end{itemize}\n$f(3) = \\frac{1}{2}, f'(3) = 0$\uc77c \ub54c, $f(2) = \\frac{q}{p}$\uc774\ub2e4. $p + q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"125","score":4}
 
 
46
  {"id":46,"name":"30_geom","problem":"30. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 $ABCD$ \uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 $BCD$ \uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 $B$\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c $S$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AB$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $B$\uac00 \uc544\ub2cc \uc810\uc744 $P$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AC$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $C$\uac00 \uc544\ub2cc \uc810\uc744 $Q$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AD$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $D$\uac00 \uc544\ub2cc \uc810\uc744 $R$ \ud558\uace0, \\\\\n\uc810 $P$\uc5d0\uc11c \uad6c $S$\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 $\\alpha$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 $PQR$\uc758 \ud3c9\uba74 $\\alpha$ \uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 $k$\uc774\ub2e4. $k^2$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"147","score":4}
 
20
  {"id":20,"name":"20","problem":"20. \uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 \\(t(t\\geq0)\\)\uc5d0\uc11c\uc758 \uc18d\ub3c4 \\(v(t)\\)\uc640 \uac00\uc18d\ub3c4 \\(a(t)\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\text{(\uac00)} \\quad 0 \\leq t \\leq 2 \\text{\uc77c \ub54c}, \\quad v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\]\n\\[\n\\text{(\ub098)} \\quad t \\geq 2 \\text{\uc77c \ub54c}, \\quad a(t) = 6t + 4\\text{\uc774\ub2e4.}\n\\]\n\uc2dc\uac01 \\( t=0 \\)\uc5d0\uc11c \\( t=3 \\)\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"25","score":4}
21
  {"id":21,"name":"21","problem":"21. \uc790\uc5f0\uc218 \\(n\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x)\\)\ub97c\n\\[\nf(x) =\n\\begin{cases} \n |3^{x+2}-n| & (x<0) \\\\ \n | \\log_2 (x+4) -n| & (x \\geq 0)\n\\end{cases}\n\\]\n\uc774\ub77c \ud558\uc790. \uc2e4\uc218 \\(t\\)\uc5d0 \ub300\ud558\uc5ec \\(x\\)\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd \\(f(x) = t\\)\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c \\(g(t)\\)\ub77c \ud560 \ub54c, \ud568\uc218 \\(g(t)\\)\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 \\(n\\)\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n","answer":"10","score":4}
22
  {"id":22,"name":"22","problem":"22. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 \\( f(x) \\)\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( g(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\( f(4) \\)\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\[\n\\begin{aligned}\n\\text{(\uac00)} & \\quad \\text{\ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec} \\\\\n& \\quad f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub098)} & \\quad \\text{\ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub2e4)} & \\quad f(0) = -3, \\, f(g(1)) = 6\n\\end{aligned}\n\\]\n","answer":"483","score":4}
23
+
24
  {"id":23,"name":"23_prob","problem":"23. \ub2e4\ud56d\uc2dd $(x^3 + 3)^5$ \uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c $x^9$\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":"3","score":2}
25
+ {"id":24,"name":"24_prob","problem":"24. \uc22b\uc790 1, 2, 3, 4, 5 \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":"4","score":3}
26
+ {"id":25,"name":"25_prob","problem":"25. \ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{8}{13}$\n \\item[2] $\\frac{17}{26}$\n \\item[3] $\\frac{9}{13}$\n \\item[4] $\\frac{19}{26}$\n \\item[5] $\\frac{10}{13}$\n\\end{itemize}\n","answer":"5","score":3}
27
+ {"id":26,"name":"26_prob","problem":"26. \uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \n\uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \n\uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 A, \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 B\ub77c \ud560 \ub54c, $P(A \\cup B)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{11}{20}$\n \\item[2] $\\frac{3}{5}$\n \\item[3] $\\frac{13}{20}$\n \\item[4] $\\frac{7}{10}$\n \\item[5] $\\frac{3}{4}$\n\\end{itemize}\n","answer":"2","score":3}
28
+ {"id":27,"name":"27_prob","problem":"27. \uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec \\( N(\\mu, \\sigma^2) \\) \ub97c \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( 746.1 \\leq m \\leq 755.9 \\)\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c \\( n \\) \uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( a \\leq m \\leq b \\)\uc77c \ub54c, \\( b-a \\)\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 \\( n \\)\uc758 \ucd5c\uc18c\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, \\( Z \\)\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, \\( P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\) \ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":"2","score":3}
29
+ {"id":28,"name":"28_prob","problem":"28. \uc5f0\uc18d\ud655\ub960\ubcc0\uc218 \\( X \\) \uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 \\( 0 \\leq X \\leq a \\) \uc774\uace0, \\( X \\)\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.\\\\\n\\begin{center}\n\\begin{tikzpicture}\n % Draw axes\n \\draw[->] (0,0) -- (5,0) node[right] {$x$};\n \\draw[->] (0,0) -- (0,4) node[above] {$y$};\n % Label points\n \\node at (1,-0.3) {$O$};\n \\node at (3,-0.3) {$b$};\n \\node at (5,-0.3) {$a$};\n \\node at (-0.3,3) {$c$};\n % Draw the function\n \\draw[thick] (0,0) -- (3,3) -- (5,0);\n % Dotted lines for the heights\n \\draw[dashed] (3,0) -- (3,3);\n \\draw[dashed] (5,0) -- (5,0);\n\\end{tikzpicture}\n\\end{center}\n\\( P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\)\uc77c \ub54c,\\\\\n\\( a + b + c \\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b, c\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810] \n\\begin{itemize}\n \\item[1] \\(\\frac{11}{2}\\)\n \\item[2] 6\n \\item[3] \\(\\frac{13}{2}\\)\n \\item[4] 7\n \\item[5] \\(\\frac{15}{2}\\)\n\\end{itemize}\n","answer":"4","score":4}
30
+ {"id":29,"name":"29_prob","problem":"29. \uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0 \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\ub97c \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 $k$\uc5d0 \ub300\ud558\uc5ec $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 $k$\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4. \\\\\n\\[\n\\begin{array}{|c|c|c|c|c|c|}\n\\hline\n\\text{1\ubc88\uc9f8 \uc790\ub9ac} & \\text{2\ubc88\uc9f8 \uc790\ub9ac} & \\text{3\ubc88\uc9f8 \uc790\ub9ac} & \\text{4\ubc88\uc9f8 \uc790\ub9ac} & \\text{5\ubc88\uc9f8 \uc790\ub9ac} & \\text{6\ubc88\uc9f8 \uc790\ub9ac} \\\\\n\\hline\n1 & 2 & 3 & 4 & 5 & 6 \\\\\n\\hline\n\\end{array}\n\\]\n\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4. \\\\\n\\framebox{\n\\parbox{\\textwidth}{\n\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 $k$\uc774\uba74 $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.\n}\n} \\\\\n\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc744 $\\frac{p}{q}$\uc774\ub2e4. $p+q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"196","score":4}
31
+ {"id":30,"name":"30_prob","problem":"30. \uc9d1\ud569 $X=\\{x \\mid x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\}$\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 $f: X \\rightarrow X$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\begin{quote}\n\\textbf{(\uac00)} 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 $x$\uc5d0 \ub300\ud558\uc5ec $f(x) \\leq f(x+1)$ \uc774\ub2e4.\n\\textbf{(\ub098)} $1 \\leq x \\leq 5$\uc77c \ub54c $f(x) \\leq x$\uc774\uace0, \\\\\n$6 \\leq x \\leq 10$\uc77c \ub54c $f(x) \\geq x$\uc774\ub2e4.\n\\textbf{(\ub2e4)} $f(6) = f(5) + 6$\n\\end{quote}\n","answer":"673","score":4}
32
+
33
+ {"id":31,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":2}
34
+ {"id":32,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{4}{3}$\n \\item[2] $\\frac{13}{9}$\n \\item[3] $\\frac{14}{9}$\n \\item[4] $\\frac{5}{3}$\n \\item[5] $\\frac{16}{9}$\n\\end{itemize}\n","answer":"2","score":3}
35
+ {"id":33,"name":"25_calc","problem":"25. \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $\\lim_{n \\to \\infty} \\frac{a_{n+1}}{3^n + 2^{2n-1}} = 3$\uc77c \ub54c, $a_2$\uc758 \uac12\uc740? \\hspace{3mm}[3\uc810]\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":"4","score":3}
36
+ {"id":34,"name":"26_calc","problem":"26. \uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 $y=\\sqrt{\\sec^2x + \\tan x} \\ \\left( 0 \\leq x \\leq \\frac{\\pi}{3} \\right)$ \uc640 $x$\ucd95, $y$\ucd95 \ubc0f \uc9c1\uc120 $x=\\frac{\\pi}{3}$\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 $x$\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}$\n \\item[2] $\\frac{\\sqrt{3}}{2} + \\ln 2$\n \\item[3] $\\sqrt{3} + \\frac{\\ln 2}{2}$\n \\item[4] $\\sqrt{3} + \\ln 2$\n \\item[5] $\\frac{\\sqrt{3}}{2} + 2 \\ln 2$\n\\end{itemize}\n","answer":"3","score":3}
37
+ {"id":35,"name":"27_calc","problem":"27. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $1$\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_1B_1$\uc774 \uc788\ub2e4. \ud638 $A_1B_1$ \uc704\uc5d0 \uc810 $P_1$, \uc120\ubd84 $OA_1$ \uc704\uc5d0 \uc810 $C_1$, \uc120\ubd84 $OB_1$ \uc704\uc5d0 \uc810 $D_1$\uc744 \uc0ac\uac01\ud615 $OC_1P_1D_1$\uc774 $OC_1 : OD_1 = 3:4$\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\n\ubd80\ucc44\uaf34 $OA_1B_1$\uc758 \ub0b4\ubd80\uc5d0 \uc810 $Q_1$\uc744 $P_1Q_1 = A_1Q_1$, $\\angle P_1Q_1A_1 = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_1Q_1A_1$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_1$\uc774\ub77c \ud558\uc790.\n\uadf8\ub9bc $R_1$\uc5d0\uc11c \uc120\ubd84 $OA_1$ \uc704\uc758 \uc810 $A_2$\uc640 \uc120\ubd84 $OB_1$ \uc704\uc758 \uc810 $B_2$\ub97c $OQ_1 = OA_2 = OB_2$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $OQ_1$, \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_2B_2$\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9bc $R_1$\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 $P_2, C_2, D_2, Q_2$\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_2Q_2A_2$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_2$\ub77c \ud558\uc790.\n\uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec $n$\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc $R_n$\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c $S_n$\uc774\ub77c \ud560 \ub54c, $\\lim_{n \\to \\infty} S_n$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{9}{40}$\n \\item[2] $\\frac{1}{4}$\n \\item[3] $\\frac{11}{40}$\n \\item[4] $\\frac{3}{10}$\n \\item[5] $\\frac{13}{40}$\n\\end{itemize}\n","answer":"1","score":3}
38
+ {"id":36,"name":"28_calc","problem":"28. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 $AB$\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 $\\angle AOC = \\frac{\\pi}{2}$\uc778 \uc810 $C$\uac00 \uc788\ub2e4. \ud638 $BC$ \uc704\uc5d0 \uc810 $P$\uc640 \ud638 $CA$ \uc704\uc5d0 \uc810 $Q$\ub97c $PB = QC$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 $AP$ \uc704\uc5d0 \uc810 $R$\uc744 $\\angle CQR = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\\\\\n\uc120\ubd84 $AP$\uc640 \uc120\ubd84 $CO$\uc758 \uad50\uc810\uc744 $S$\ub77c \ud558\uc790. $\\angle PAB = \\theta$\uc77c \ub54c, \uc0bc\uac01\ud615 $POB$\uc758 \ub113\uc774\ub97c $f(\\theta)$, \uc0ac\uac01\ud615 $CQRS$\uc758 \ub113\uc774\ub97c $g(\\theta)$\ub77c \ud558\uc790. \\\\\n\\[\n\\lim_{\\theta \\to 0^{+}} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2}\n\\]\n\uc758 \uac12\uc740? (\ub2e8, $0 < \\theta < \\frac{\\pi}{4}$) [4\uc810] \n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"2","score":4}
39
+ {"id":37,"name":"29_calc","problem":"29. \uc138 \uc0c1\uc218 \\(a, b, c\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x) = ae^{2x} + be^x + c\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n(\uac00)\\ \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\]\n\\[\n(\ub098)\\ f(\\ln 2) = 0\n\\]\n\ud568\uc218 \\(f(x)\\)\uc758 \uc5ed\ud568\uc218\ub97c \\(g(x)\\)\ub77c \ud560 \ub54c,\n\\[\n\\int_0^{14} g(x) dx = p + q \\ln 2 \uc774\ub2e4. \\ p+q\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.\n\\]\n(\ub2e8, \\(p, q\\)\ub294 \uc720\ub9ac\uc218\uc774\uace0, \\(\\ln 2\\)\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"162","score":4}
40
+ {"id":38,"name":"30_calc","problem":"30. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 $f(x)$\uc640\\\\\n\ud568\uc218 $g(x) = e^{\\sin \\pi x} - 1$\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 $h(x) = g(f(x))$\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\begin{itemize}\n \\item[(\uac00)] \ud568\uc218 $h(x)$\ub294 $x = 0$\uc5d0\uc11c \uadf9\ub313\uac12 $0$\uc744 \uac16\ub294\ub2e4.\n \\item[(\ub098)] \uc5f4\ub9b0\uad6c\uac04 $(0, 3)$\uc5d0\uc11c \ubc29\uc815\uc2dd $h(x) = 1$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.\n\\end{itemize}\n$f(3) = \\frac{1}{2}, f'(3) = 0$\uc77c \ub54c, $f(2) = \\frac{q}{p}$\uc774\ub2e4. $p + q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"125","score":4}
41
+
42
+ {"id":39,"name":"23_geom","problem":"23. \uc88c\ud45c\uacf5\uac04\uc758 \uc810 A(2, 2, -1)\uc744 \\(x\\)\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 B\ub77c \ud558\uc790. \uc810 C(-2, 1, 1)\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? \\hfill [2\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
43
+ {"id":40,"name":"24_geom","problem":"24. \ucd08\uc810\uc774 $F\\left(\\frac{1}{3}, 0\\right)$\uc774\uace0 \uc900\uc120\uc774 $x = -\\frac{1}{3}$\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 $(a, 2)$\ub97c \uc9c0\ub0a0 \ub54c, $a$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":3}
44
+ {"id":41,"name":"25_geom","problem":"25. \ud0c0\uc6d0 $\\dfrac{x^2}{a^2} + \\dfrac{y^2}{b^2} = 1$ \uc704\uc758 \uc810 $(2, 1)$\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 $-\\dfrac{1}{2}$\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294?\\\\\n(\ub2e8, $a$, $b$\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] $2 \\sqrt{3}$\n \\item[2] $4$\n \\item[3] $2 \\sqrt{5}$\n \\item[4] $2 \\sqrt{6}$\n \\item[5] $2 \\sqrt{7}$\n\\end{itemize}\n","answer":"2","score":3}
45
+ {"id":42,"name":"26_geom","problem":"26. \uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130\n\\[\n\\vec{a} = (2, 4), \\quad \\vec{b} = (2, 8), \\quad \\vec{c} = (1, 0)\n\\]\n\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 \\(\\vec{p}, \\vec{q}\\)\uac00\n\\[\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t\ub294 \\, \uc2e4\uc218)\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\(\\left| \\vec{p} - \\vec{q} \\right|\\)\uc758 \ucd5c\uc18c\uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{3}{2}\\)\n \\item[2] 2\n \\item[3] \\(\\frac{5}{2}\\)\n \\item[4] 3\n \\item[5] \\(\\frac{7}{2}\\)\n\\end{itemize}\n","answer":"5","score":3}
46
+ {"id":43,"name":"27_geom","problem":"27. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 $\\alpha$\uac00 \uc788\ub2e4. \ud3c9\uba74 $\\alpha$ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_1$\uc774\ub77c \ud560 \ub54c $\\sin \\theta_1 = \\frac{4}{5}$\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 $\\frac{\\pi}{2} - \\theta_1$\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_2$\ub77c \ud560 \ub54c, $\\cos \\theta_2$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{7}}{4}$\n \\item[2] $\\frac{\\sqrt{7}}{5}$\n \\item[3] $\\frac{\\sqrt{7}}{6}$\n \\item[4] $\\frac{\\sqrt{7}}{7}$\n \\item[5] $\\frac{\\sqrt{7}}{8}$\n\\end{itemize}\n","answer":"3","score":3}
47
+ {"id":44,"name":"28_geom","problem":"28. \ub450 \ucd08\uc810\uc774 $F(c,0), F'(-c,0)(c>0)$\uc778 \uc30d\uace1\uc120 $C$\uc640 y\ucd95 \uc704\uc758 \uc810 $A$\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 $C$\uac00 \uc120\ubd84 $AF$\uc640 \ub9cc\ub098\ub294 \uc810\uc744 $P$, \uc120\ubd84 $AF'$\uacfc \ub9cc\ub098\ub294 \uc810\uc744 $P'$\uc774\ub77c \ud558\uc790. \\\\\n\uc9c1\uc120 $AF$\ub294 \uc30d\uace1\uc120 $C$\uc758 \ud55c \uc810\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 \\\\\n\\[\n\\frac{AP}{PP'} = \\frac{5}{6}, \\quad PF = 1\n\\]\n\uc77c \ub54c, \uc30d\uace1\uc120 $C$\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]} \\\\\n\\begin{itemize}\n \\item[1] $\\frac{13}{6}$\n \\item[2] $9\/4$\n \\item[3] $7\/3$\n \\item[4] $\\frac{29}{12}$\n \\item[5] $\\frac{5}{2}$\n\\end{itemize}\n","answer":"5","score":4}
48
+ {"id":45,"name":"29_geom","problem":"29.\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc5d0\\ \\(\\overline{AB} = \\overline{CD} = \\overline{AD} = 2\\),\\ \\(\\angle ABC = \\angle BCD = \\frac{\\pi}{3}\\)\\ \uc778\\ \uc0ac\ub2e4\ub9ac\uaf34\\ \\(ABCD\\)\\ \uac00\\ \uc788\ub2e4.\\ \ub2e4\uc74c\\ \uc870\uac74\uc744\\ \ub9cc\uc871\uc2dc\ud0a4\ub294\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc758\\ \ub450\\ \uc810\\ \\(P, Q\\)\uc5d0\\ \ub300\ud558\uc5ec\\ \\(CP \\cdot DQ\\)\uc758\\ \uac12\uc744\\ \uad6c\ud558\uc2dc\uc624.\\ [4\uc810]\n\\begin{itemize}\n \\item[(\uac00)] \\(\\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\\)\n \\item[(\ub098)] \\(\\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\\)\n \\item[(\ub2e4)] \\(2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\\)\n\\end{itemize}\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) -- (2,0) -- (2.5,1.5) -- (-0.5,1.5) -- cycle;\n \\node[below] at (0,0) {B};\n \\node[below] at (2,0) {C};\n \\node[above] at (2.5,1.5) {D};\n \\node[above] at (-0.5,1.5) {A};\n\\end{tikzpicture}\n\\end{center}\n","answer":"11","score":4}
49
  {"id":46,"name":"30_geom","problem":"30. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 $ABCD$ \uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 $BCD$ \uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 $B$\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c $S$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AB$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $B$\uac00 \uc544\ub2cc \uc810\uc744 $P$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AC$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $C$\uac00 \uc544\ub2cc \uc810\uc744 $Q$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AD$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $D$\uac00 \uc544\ub2cc \uc810\uc744 $R$ \ud558\uace0, \\\\\n\uc810 $P$\uc5d0\uc11c \uad6c $S$\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 $\\alpha$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 $PQR$\uc758 \ud3c9\uba74 $\\alpha$ \uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 $k$\uc774\ub2e4. $k^2$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"147","score":4}
test_dataset.ipynb ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 8,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "data": {
10
+ "application/vnd.jupyter.widget-view+json": {
11
+ "model_id": "200e6aa0e51e40f4bb9b226a9c2743d5",
12
+ "version_major": 2,
13
+ "version_minor": 0
14
+ },
15
+ "text/plain": [
16
+ "README.md: 0%| | 0.00/1.21k [00:00<?, ?B/s]"
17
+ ]
18
+ },
19
+ "metadata": {},
20
+ "output_type": "display_data"
21
+ },
22
+ {
23
+ "data": {
24
+ "application/vnd.jupyter.widget-view+json": {
25
+ "model_id": "d0a3126bae1841ebaad270538537a05b",
26
+ "version_major": 2,
27
+ "version_minor": 0
28
+ },
29
+ "text/plain": [
30
+ "2023_math-00000-of-00001.parquet: 0%| | 0.00/14.5k [00:00<?, ?B/s]"
31
+ ]
32
+ },
33
+ "metadata": {},
34
+ "output_type": "display_data"
35
+ },
36
+ {
37
+ "data": {
38
+ "application/vnd.jupyter.widget-view+json": {
39
+ "model_id": "c35de5d0d6004fe5ad6ed253ce1fa5c1",
40
+ "version_major": 2,
41
+ "version_minor": 0
42
+ },
43
+ "text/plain": [
44
+ "2024_math-00000-of-00001.parquet: 0%| | 0.00/15.7k [00:00<?, ?B/s]"
45
+ ]
46
+ },
47
+ "metadata": {},
48
+ "output_type": "display_data"
49
+ },
50
+ {
51
+ "data": {
52
+ "application/vnd.jupyter.widget-view+json": {
53
+ "model_id": "9bd4552a43804c5b8083377b8aa82b67",
54
+ "version_major": 2,
55
+ "version_minor": 0
56
+ },
57
+ "text/plain": [
58
+ "Generating 2023_math split: 0%| | 0/46 [00:00<?, ? examples/s]"
59
+ ]
60
+ },
61
+ "metadata": {},
62
+ "output_type": "display_data"
63
+ },
64
+ {
65
+ "data": {
66
+ "application/vnd.jupyter.widget-view+json": {
67
+ "model_id": "36a17f59853646aabfd573d79d1b426e",
68
+ "version_major": 2,
69
+ "version_minor": 0
70
+ },
71
+ "text/plain": [
72
+ "Generating 2024_math split: 0%| | 0/46 [00:00<?, ? examples/s]"
73
+ ]
74
+ },
75
+ "metadata": {},
76
+ "output_type": "display_data"
77
+ }
78
+ ],
79
+ "source": [
80
+ "from datasets import load_dataset\n",
81
+ "\n",
82
+ "ds = load_dataset(\"cfpark00/KoreanSAT\")"
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": 9,
88
+ "metadata": {},
89
+ "outputs": [
90
+ {
91
+ "data": {
92
+ "text/plain": [
93
+ "DatasetDict({\n",
94
+ " 2023_math: Dataset({\n",
95
+ " features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
96
+ " num_rows: 46\n",
97
+ " })\n",
98
+ " 2024_math: Dataset({\n",
99
+ " features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
100
+ " num_rows: 46\n",
101
+ " })\n",
102
+ "})"
103
+ ]
104
+ },
105
+ "execution_count": 9,
106
+ "metadata": {},
107
+ "output_type": "execute_result"
108
+ }
109
+ ],
110
+ "source": [
111
+ "ds"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": 13,
117
+ "metadata": {},
118
+ "outputs": [
119
+ {
120
+ "data": {
121
+ "text/plain": [
122
+ "{'id': 31,\n",
123
+ " 'name': '23_calc',\n",
124
+ " 'problem': '23. \\\\lim_{x \\\\to 0} \\\\frac{\\\\ln(x+1)}{\\\\sqrt{x+4} - 2} \\\\text{의 값은? [2점]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] 1\\n \\\\item[2] 2\\n \\\\item[3] 3\\n \\\\item[4] 4\\n \\\\item[5] 5\\n\\\\end{itemize}\\n',\n",
125
+ " 'answer': 3,\n",
126
+ " 'score': 2,\n",
127
+ " 'review': None}"
128
+ ]
129
+ },
130
+ "execution_count": 13,
131
+ "metadata": {},
132
+ "output_type": "execute_result"
133
+ }
134
+ ],
135
+ "source": [
136
+ "ds[\"2024_math\"][30]"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": null,
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": []
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": null,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": []
152
+ }
153
+ ],
154
+ "metadata": {
155
+ "kernelspec": {
156
+ "display_name": "venv1",
157
+ "language": "python",
158
+ "name": "python3"
159
+ },
160
+ "language_info": {
161
+ "codemirror_mode": {
162
+ "name": "ipython",
163
+ "version": 3
164
+ },
165
+ "file_extension": ".py",
166
+ "mimetype": "text/x-python",
167
+ "name": "python",
168
+ "nbconvert_exporter": "python",
169
+ "pygments_lexer": "ipython3",
170
+ "version": "3.8.9"
171
+ }
172
+ },
173
+ "nbformat": 4,
174
+ "nbformat_minor": 2
175
+ }
to_json.ipynb → to_parquet.ipynb RENAMED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 38,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -11,18 +11,18 @@
11
  },
12
  {
13
  "cell_type": "code",
14
- "execution_count": 39,
15
  "metadata": {},
16
  "outputs": [
17
  {
18
  "data": {
19
  "application/vnd.jupyter.widget-view+json": {
20
- "model_id": "3a8b3dffa1b948aaa0733e2ab086920d",
21
  "version_major": 2,
22
  "version_minor": 0
23
  },
24
  "text/plain": [
25
- "Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
26
  ]
27
  },
28
  "metadata": {},
@@ -31,21 +31,7 @@
31
  {
32
  "data": {
33
  "application/vnd.jupyter.widget-view+json": {
34
- "model_id": "1f11b1625c5d488a87faa0159fa7dcb4",
35
- "version_major": 2,
36
- "version_minor": 0
37
- },
38
- "text/plain": [
39
- "Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
40
- ]
41
- },
42
- "metadata": {},
43
- "output_type": "display_data"
44
- },
45
- {
46
- "data": {
47
- "application/vnd.jupyter.widget-view+json": {
48
- "model_id": "e9c7863b49734ed2b44438e8312d7d5c",
49
  "version_major": 2,
50
  "version_minor": 0
51
  },
@@ -58,48 +44,38 @@
58
  }
59
  ],
60
  "source": [
61
- "dataset=load_dataset(\"json\",data_files={\"2024_math\":\"./data/json/2024/math.json\"})"
 
62
  ]
63
  },
64
  {
65
  "cell_type": "code",
66
- "execution_count": 40,
67
  "metadata": {},
68
  "outputs": [
69
  {
70
  "data": {
 
 
 
 
 
71
  "text/plain": [
72
- "DatasetDict({\n",
73
- " 2024_math: Dataset({\n",
74
- " features: ['id', 'name', 'problem', 'answer', 'score'],\n",
75
- " num_rows: 46\n",
76
- " })\n",
77
- "})"
78
  ]
79
  },
80
- "execution_count": 40,
81
  "metadata": {},
82
- "output_type": "execute_result"
83
- }
84
- ],
85
- "source": [
86
- "dataset"
87
- ]
88
- },
89
- {
90
- "cell_type": "code",
91
- "execution_count": 44,
92
- "metadata": {},
93
- "outputs": [
94
  {
95
  "data": {
96
  "application/vnd.jupyter.widget-view+json": {
97
- "model_id": "d7597eced7414d229ecff3c3d1bd2739",
98
  "version_major": 2,
99
  "version_minor": 0
100
  },
101
  "text/plain": [
102
- "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
103
  ]
104
  },
105
  "metadata": {},
@@ -108,12 +84,12 @@
108
  {
109
  "data": {
110
  "application/vnd.jupyter.widget-view+json": {
111
- "model_id": "751cbdf0381b4fea91ff4dc1f0697bd0",
112
  "version_major": 2,
113
  "version_minor": 0
114
  },
115
  "text/plain": [
116
- "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
117
  ]
118
  },
119
  "metadata": {},
@@ -122,16 +98,26 @@
122
  {
123
  "data": {
124
  "application/vnd.jupyter.widget-view+json": {
125
- "model_id": "f9e6119ff58243b28480d9659a390037",
126
  "version_major": 2,
127
  "version_minor": 0
128
  },
129
  "text/plain": [
130
- "Downloading metadata: 0%| | 0.00/1.05k [00:00<?, ?B/s]"
131
  ]
132
  },
133
  "metadata": {},
134
  "output_type": "display_data"
 
 
 
 
 
 
 
 
 
 
135
  }
136
  ],
137
  "source": [
@@ -155,60 +141,70 @@
155
  },
156
  {
157
  "cell_type": "code",
158
- "execution_count": 45,
 
 
 
 
 
 
 
159
  "metadata": {},
160
  "outputs": [
161
  {
162
  "data": {
163
- "application/vnd.jupyter.widget-view+json": {
164
- "model_id": "4008ff6d9bd347d9898bb7bde7df1ae3",
165
- "version_major": 2,
166
- "version_minor": 0
167
- },
168
  "text/plain": [
169
- "Downloading readme: 0%| | 0.00/1.06k [00:00<?, ?B/s]"
 
 
 
 
170
  ]
171
  },
 
172
  "metadata": {},
173
- "output_type": "display_data"
174
- },
175
- {
176
- "data": {
177
- "application/vnd.jupyter.widget-view+json": {
178
- "model_id": "c1404a18c0734c62abcbe89245a967dd",
179
- "version_major": 2,
180
- "version_minor": 0
181
- },
182
- "text/plain": [
183
- "Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
184
- ]
185
- },
186
- "metadata": {},
187
- "output_type": "display_data"
188
- },
189
- {
190
- "data": {
191
- "application/vnd.jupyter.widget-view+json": {
192
- "model_id": "c7022d40bfab4776a76b000df1179300",
193
- "version_major": 2,
194
- "version_minor": 0
195
- },
196
- "text/plain": [
197
- "Downloading data: 0%| | 0.00/15.2k [00:00<?, ?B/s]"
198
- ]
199
- },
200
- "metadata": {},
201
- "output_type": "display_data"
202
- },
 
 
 
203
  {
204
  "data": {
205
  "application/vnd.jupyter.widget-view+json": {
206
- "model_id": "ed08141788444f01994fff9580596bc5",
207
  "version_major": 2,
208
  "version_minor": 0
209
  },
210
  "text/plain": [
211
- "Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
212
  ]
213
  },
214
  "metadata": {},
@@ -216,23 +212,20 @@
216
  },
217
  {
218
  "data": {
219
- "application/vnd.jupyter.widget-view+json": {
220
- "model_id": "abbcfec95f544869bbce8682a7108610",
221
- "version_major": 2,
222
- "version_minor": 0
223
- },
224
  "text/plain": [
225
- "Generating 2024_math split: 0%| | 0/46 [00:00<?, ? examples/s]"
226
  ]
227
  },
 
228
  "metadata": {},
229
- "output_type": "display_data"
230
  }
231
  ],
232
  "source": [
233
  "from datasets import load_dataset\n",
234
  "\n",
235
- "ds = load_dataset(\"cfpark00/KoreanSAT\")"
 
236
  ]
237
  },
238
  {
@@ -397,7 +390,7 @@
397
  "name": "python",
398
  "nbconvert_exporter": "python",
399
  "pygments_lexer": "ipython3",
400
- "version": "3.10.9"
401
  }
402
  },
403
  "nbformat": 4,
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 2,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
11
  },
12
  {
13
  "cell_type": "code",
14
+ "execution_count": 4,
15
  "metadata": {},
16
  "outputs": [
17
  {
18
  "data": {
19
  "application/vnd.jupyter.widget-view+json": {
20
+ "model_id": "b5d51386a14e407ca2bdd18926ef997c",
21
  "version_major": 2,
22
  "version_minor": 0
23
  },
24
  "text/plain": [
25
+ "Generating 2023_math split: 0 examples [00:00, ? examples/s]"
26
  ]
27
  },
28
  "metadata": {},
 
31
  {
32
  "data": {
33
  "application/vnd.jupyter.widget-view+json": {
34
+ "model_id": "a3015bdd603e44c789b8347863bb94c8",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  "version_major": 2,
36
  "version_minor": 0
37
  },
 
44
  }
45
  ],
46
  "source": [
47
+ "dataset=load_dataset(\"json\",data_files={\"2023_math\":\"./data/json/2023/math.json\",\n",
48
+ " \"2024_math\":\"./data/json/2024/math.json\"})"
49
  ]
50
  },
51
  {
52
  "cell_type": "code",
53
+ "execution_count": 5,
54
  "metadata": {},
55
  "outputs": [
56
  {
57
  "data": {
58
+ "application/vnd.jupyter.widget-view+json": {
59
+ "model_id": "221c4bba0e78418b9686c1ba0a0fa668",
60
+ "version_major": 2,
61
+ "version_minor": 0
62
+ },
63
  "text/plain": [
64
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
 
 
 
 
 
65
  ]
66
  },
 
67
  "metadata": {},
68
+ "output_type": "display_data"
69
+ },
 
 
 
 
 
 
 
 
 
 
70
  {
71
  "data": {
72
  "application/vnd.jupyter.widget-view+json": {
73
+ "model_id": "1763d5a9fc5c4c8099d0deb716f06c73",
74
  "version_major": 2,
75
  "version_minor": 0
76
  },
77
  "text/plain": [
78
+ "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
79
  ]
80
  },
81
  "metadata": {},
 
84
  {
85
  "data": {
86
  "application/vnd.jupyter.widget-view+json": {
87
+ "model_id": "04f7bfc0e76c438ab84048301cb0e10e",
88
  "version_major": 2,
89
  "version_minor": 0
90
  },
91
  "text/plain": [
92
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
93
  ]
94
  },
95
  "metadata": {},
 
98
  {
99
  "data": {
100
  "application/vnd.jupyter.widget-view+json": {
101
+ "model_id": "8707c527afaf47d0928b5167c509d5f7",
102
  "version_major": 2,
103
  "version_minor": 0
104
  },
105
  "text/plain": [
106
+ "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
107
  ]
108
  },
109
  "metadata": {},
110
  "output_type": "display_data"
111
+ },
112
+ {
113
+ "data": {
114
+ "text/plain": [
115
+ "CommitInfo(commit_url='https://huggingface.co/datasets/cfpark00/KoreanSAT/commit/8fdf990d118abc5511f7fe828a4ae482e4b67d07', commit_message='Upload dataset', commit_description='', oid='8fdf990d118abc5511f7fe828a4ae482e4b67d07', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/cfpark00/KoreanSAT', endpoint='https://huggingface.co', repo_type='dataset', repo_id='cfpark00/KoreanSAT'), pr_revision=None, pr_num=None)"
116
+ ]
117
+ },
118
+ "execution_count": 5,
119
+ "metadata": {},
120
+ "output_type": "execute_result"
121
  }
122
  ],
123
  "source": [
 
141
  },
142
  {
143
  "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": []
148
+ },
149
+ {
150
+ "cell_type": "code",
151
+ "execution_count": 4,
152
  "metadata": {},
153
  "outputs": [
154
  {
155
  "data": {
 
 
 
 
 
156
  "text/plain": [
157
+ "{'id': 1,\n",
158
+ " 'name': '1',\n",
159
+ " 'problem': '1. \\\\left( \\\\frac{4}{2^{\\\\sqrt{2}}} \\\\right)^{2 + \\\\sqrt{2}} \\\\text{의 값은? [2점]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] $\\\\frac{1}{4}$\\n \\\\item[2] $\\\\frac{1}{2}$\\n \\\\item[3] $1$\\n \\\\item[4] $2$\\n \\\\item[5] $4$\\n\\\\end{itemize}\\n',\n",
160
+ " 'answer': -1,\n",
161
+ " 'score': -1}"
162
  ]
163
  },
164
+ "execution_count": 4,
165
  "metadata": {},
166
+ "output_type": "execute_result"
167
+ }
168
+ ],
169
+ "source": [
170
+ "dataset[\"2023_math\"][0]"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": []
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": null,
183
+ "metadata": {},
184
+ "outputs": [],
185
+ "source": []
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": []
193
+ },
194
+ {
195
+ "cell_type": "code",
196
+ "execution_count": 19,
197
+ "metadata": {},
198
+ "outputs": [
199
  {
200
  "data": {
201
  "application/vnd.jupyter.widget-view+json": {
202
+ "model_id": "ed6870fcaa5d4641ae911c05f8d5e1a3",
203
  "version_major": 2,
204
  "version_minor": 0
205
  },
206
  "text/plain": [
207
+ "Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
208
  ]
209
  },
210
  "metadata": {},
 
212
  },
213
  {
214
  "data": {
 
 
 
 
 
215
  "text/plain": [
216
+ "33057"
217
  ]
218
  },
219
+ "execution_count": 19,
220
  "metadata": {},
221
+ "output_type": "execute_result"
222
  }
223
  ],
224
  "source": [
225
  "from datasets import load_dataset\n",
226
  "\n",
227
+ "ds = load_dataset(\"cfpark00/KoreanSAT\")\n",
228
+ "ds[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
229
  ]
230
  },
231
  {
 
390
  "name": "python",
391
  "nbconvert_exporter": "python",
392
  "pygments_lexer": "ipython3",
393
+ "version": "3.8.9"
394
  }
395
  },
396
  "nbformat": 4,