Datasets:

Languages:
English
ArXiv:
License:
File size: 17,249 Bytes
dd486cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
---
annotations_creators:
- found
language_creators:
- found
languages:
- en
licenses:
- cc-by-nc-sa-3-0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- extended|other-Switchboard-1 Telephone Speech Corpus, Release 2
task_categories:
- text-classification
task_ids:
- multi-label-classification
---

# Dataset Card for swda

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage: [The Switchboard Dialog Act Corpus](http://compprag.christopherpotts.net/swda.html)**
- **Repository: [NathanDuran/Switchboard-Corpus](https://github.com/NathanDuran/Switchboard-Corpus)**
- **Paper:[The Switchboard Dialog Act Corpus](http://compprag.christopherpotts.net/swda.html)**
= **Leaderboard: [Dialogue act classification](https://github.com/sebastianruder/NLP-progress/blob/master/english/dialogue.md#dialogue-act-classification)**
- **Point of Contact: [Christopher Potts](https://web.stanford.edu/~cgpotts/)**

### Dataset Summary

The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2 with 
turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information about the 
associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s.
The SwDA is not inherently linked to the Penn Treebank 3 parses of Switchboard, and it is far from straightforward to 
align the two resources. In addition, the SwDA is not distributed with the Switchboard's tables of metadata about the 
conversations and their participants.


### Supported Tasks and Leaderboards

| Model           | Accuracy  |  Paper / Source | Code |
| ------------- | :-----:| --- | --- |
| SGNN (Ravi et al., 2018) | 83.1 | [Self-Governing Neural Networks for On-Device Short Text Classification](https://www.aclweb.org/anthology/D18-1105.pdf)
| CASA (Raheja et al., 2019) | 82.9 | [Dialogue Act Classification with Context-Aware Self-Attention](https://www.aclweb.org/anthology/N19-1373.pdf)
| DAH-CRF (Li et al., 2019) | 82.3 | [A Dual-Attention Hierarchical Recurrent Neural Network for Dialogue Act Classification](https://www.aclweb.org/anthology/K19-1036.pdf)
| ALDMN (Wan et al., 2018) | 81.5 | [Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training](https://arxiv.org/pdf/1811.05021.pdf)
| CRF-ASN (Chen et al., 2018) | 81.3 | [Dialogue Act Recognition via CRF-Attentive Structured Network](https://arxiv.org/abs/1711.05568) | |
| Bi-LSTM-CRF (Kumar et al., 2017) | 79.2 | [Dialogue Act Sequence Labeling using Hierarchical encoder with CRF](https://arxiv.org/abs/1709.04250) | [Link](https://github.com/YanWenqiang/HBLSTM-CRF) |
| RNN with 3 utterances in context (Bothe et al., 2018) | 77.34 | [A Context-based Approach for Dialogue Act Recognition using Simple Recurrent Neural Networks](https://arxiv.org/abs/1805.06280) | |

### Languages

The language supported is English.

## Dataset Structure

Utterance are tagged with the [SWBD-DAMSL](https://web.stanford.edu/~jurafsky/ws97/manual.august1.html) DA.

### Data Instances


An example from the dataset is:

`{'dialogue_act_tag': 17, 'speaker': 0, 'utterance_text': 'Okay.'}`

where 17 correspond to `fo_o_fw_"_by_bc` (Other)

### Data Fields
`speaker` - Refers to the current speaker talking. It is used to detect when a speaker change occurs.
There are two values for speaker: `A` and `B`. This does not mean we only have tow speakers in the whole datasets. 
It's only used to signal if next utterance is from same speaker or from next speaker. Since we encoded all labels 
`A=0` and `B=1`.

`utterance_text` - Text that a speaker says.

`dialogue_act_tag` - Dialogue act label associated with the `utterance_text`. There are 41 dialogue act labels for this
dataset. Each dialogue act label has a specific meaning:

| Int | Dialogue Act                 	| Labels          	|
|--	|------------------------------	|-----------------	|
| 0 	| Statement-non-opinion        	| sd              	|
| 1 	| Acknowledge (Backchannel)    	| b               	|
| 2 	| Statement-opinion            	| sv              	|
| 3 	| Uninterpretable              	| %               	|
| 4 	| Agree/Accept                 	| aa              	|
| 5 	| Appreciation                 	| ba              	|
| 6 	| Yes-No-Question              	| qy              	|
| 7 	| Yes Answers                  	| ny              	|
| 8 	| Conventional-closing         	| fc              	|
| 9 	| Wh-Question                  	| qw              	|
| 10 	| No Answers                   	| nn              	|
| 11 	| Response Acknowledgement     	| bk              	|
| 12	| Hedge                        	| h               	|
| 13	| Declarative Yes-No-Question  	| qy^d            	|
| 14	| Backchannel in Question Form 	| bh              	|
| 15	| Quotation                    	| ^q              	|
| 16	| Summarize/Reformulate        	| bf              	|
| 17	| Other                        	| fo_o_fw_"_by_bc 	|
| 18	| Affirmative Non-yes Answers  	| na              	|
| 19	| Action-directive             	| ad              	|
| 20	| Collaborative Completion     	| ^2              	|
| 21	| Repeat-phrase                	| b^m             	|
| 22	| Open-Question                	| qo              	|
| 23	| Rhetorical-Question          	| qh              	|
| 24	| Hold Before Answer/Agreement 	| ^h              	|
| 25	| Reject                       	| ar              	|
| 26	| Negative Non-no Answers      	| ng              	|
| 27	| Signal-non-understanding     	| br              	|
| 28	| Other Answers                	| no              	|
| 29	| Conventional-opening         	| fp              	|
| 30	| Or-Clause                    	| qrr             	|
| 31	| Dispreferred Answers         	| arp_nd          	|
| 32	| 3rd-party-talk               	| t3              	|
| 33	| Offers, Options Commits      	| oo_co_cc        	|
| 34	| Maybe/Accept-part            	| aap_am          	|
| 35	| Downplayer                   	| t1              	|
| 36	| Self-talk                    	| bd              	|
| 37	| Tag-Question                 	| ^g              	|
| 38	| Declarative Wh-Question      	| qw^d            	|
| 39	| Apology                      	| fa              	|
| 40	| Thanking                     	| ft              	|


## Data Stats

|Dialogue Act                   |        Labels        |  Count   |    %     |   Train Count   | Train %  |   Test Count    |  Test %  |    Val Count    |  Val %  
--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---:
Statement-non-opinion          |          sd          |  75136   |  37.62   |      72549      |  37.71   |      1317       |  32.30   |      1270       |  38.81  
Acknowledge (Backchannel)      |          b           |  38281   |  19.17   |      36950      |  19.21   |       764       |  18.73   |       567       |  17.33  
Statement-opinion              |          sv          |  26421   |  13.23   |      25087      |  13.04   |       718       |  17.61   |       616       |  18.83  
Uninterpretable                |          %           |  15195   |   7.61   |      14597      |   7.59   |       349       |   8.56   |       249       |   7.61  
Agree/Accept                   |          aa          |  11123   |   5.57   |      10770      |   5.60   |       207       |   5.08   |       146       |   4.46  
Appreciation                   |          ba          |   4757   |   2.38   |      4619       |   2.40   |       76        |   1.86   |       62        |   1.89  
Yes-No-Question                |          qy          |   4725   |   2.37   |      4594       |   2.39   |       84        |   2.06   |       47        |   1.44  
Yes Answers                    |          ny          |   3030   |   1.52   |      2918       |   1.52   |       73        |   1.79   |       39        |   1.19  
Conventional-closing           |          fc          |   2581   |   1.29   |      2480       |   1.29   |       81        |   1.99   |       20        |   0.61  
Wh-Question                    |          qw          |   1976   |   0.99   |      1896       |   0.99   |       55        |   1.35   |       25        |   0.76  
No Answers                     |          nn          |   1374   |   0.69   |      1334       |   0.69   |       26        |   0.64   |       14        |   0.43  
Response Acknowledgement       |          bk          |   1306   |   0.65   |      1271       |   0.66   |       28        |   0.69   |        7        |   0.21  
Hedge                          |          h           |   1226   |   0.61   |      1181       |   0.61   |       23        |   0.56   |       22        |   0.67  
Declarative Yes-No-Question    |         qy^d         |   1218   |   0.61   |      1167       |   0.61   |       36        |   0.88   |       15        |   0.46  
Backchannel in Question Form   |          bh          |   1053   |   0.53   |      1015       |   0.53   |       21        |   0.51   |       17        |   0.52  
Quotation                      |          ^q          |   983    |   0.49   |       931       |   0.48   |       17        |   0.42   |       35        |   1.07  
Summarize/Reformulate          |          bf          |   952    |   0.48   |       905       |   0.47   |       23        |   0.56   |       24        |   0.73  
Other                          |   fo_o_fw_"_by_bc    |   879    |   0.44   |       857       |   0.45   |       15        |   0.37   |        7        |   0.21  
Affirmative Non-yes Answers    |          na          |   847    |   0.42   |       831       |   0.43   |       10        |   0.25   |        6        |   0.18  
Action-directive               |          ad          |   745    |   0.37   |       712       |   0.37   |       27        |   0.66   |        6        |   0.18  
Collaborative Completion       |          ^2          |   723    |   0.36   |       690       |   0.36   |       19        |   0.47   |       14        |   0.43  
Repeat-phrase                  |         b^m          |   687    |   0.34   |       655       |   0.34   |       21        |   0.51   |       11        |   0.34  
Open-Question                  |          qo          |   656    |   0.33   |       631       |   0.33   |       16        |   0.39   |        9        |   0.28  
Rhetorical-Question            |          qh          |   575    |   0.29   |       554       |   0.29   |       12        |   0.29   |        9        |   0.28  
Hold Before Answer/Agreement   |          ^h          |   556    |   0.28   |       539       |   0.28   |        7        |   0.17   |       10        |   0.31  
Reject                         |          ar          |   344    |   0.17   |       337       |   0.18   |        3        |   0.07   |        4        |   0.12  
Negative Non-no Answers        |          ng          |   302    |   0.15   |       290       |   0.15   |        6        |   0.15   |        6        |   0.18  
Signal-non-understanding       |          br          |   298    |   0.15   |       286       |   0.15   |        9        |   0.22   |        3        |   0.09  
Other Answers                  |          no          |   284    |   0.14   |       277       |   0.14   |        6        |   0.15   |        1        |   0.03  
Conventional-opening           |          fp          |   225    |   0.11   |       220       |   0.11   |        5        |   0.12   |        0        |   0.00  
Or-Clause                      |         qrr          |   209    |   0.10   |       206       |   0.11   |        2        |   0.05   |        1        |   0.03  
Dispreferred Answers           |        arp_nd        |   207    |   0.10   |       204       |   0.11   |        3        |   0.07   |        0        |   0.00  
3rd-party-talk                 |          t3          |   117    |   0.06   |       115       |   0.06   |        0        |   0.00   |        2        |   0.06  
Offers, Options Commits        |       oo_co_cc       |   110    |   0.06   |       109       |   0.06   |        0        |   0.00   |        1        |   0.03  
Maybe/Accept-part              |        aap_am        |   104    |   0.05   |       97        |   0.05   |        7        |   0.17   |        0        |   0.00  
Downplayer                     |          t1          |   103    |   0.05   |       102       |   0.05   |        1        |   0.02   |        0        |   0.00  
Self-talk                      |          bd          |   103    |   0.05   |       100       |   0.05   |        1        |   0.02   |        2        |   0.06  
Tag-Question                   |          ^g          |    92    |   0.05   |       92        |   0.05   |        0        |   0.00   |        0        |   0.00  
Declarative Wh-Question        |         qw^d         |    80    |   0.04   |       79        |   0.04   |        1        |   0.02   |        0        |   0.00  
Apology                        |          fa          |    79    |   0.04   |       76        |   0.04   |        2        |   0.05   |        1        |   0.03  
Thanking                       |          ft          |    78    |   0.04   |       67        |   0.03   |        7        |   0.17   |        4        |   0.12  


![Label Frequencies](https://raw.githubusercontent.com/NathanDuran/Switchboard-Corpus/master/swda_data/metadata/Swda%20Label%20Frequency%20Distributions.png)

### Data Splits

he data is split into the original training and test sets suggested by the authors (1115 training and 19 test). The remaining 21 dialogues have been used as a validation set.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

- Total number of utterances: 199740
- Maximum utterance length: 133
- Mean utterance length: 9.6
- Total number of dialogues: 1155
- Maximum dialogue length: 457
- Mean dialogue length: 172.9
- Vocabulary size: 22301
- Number of labels: 41
- Number of dialogue in train set: 1115
- Maximum length of dialogue in train set: 457
- Number of dialogue in test set: 19
- Maximum length of dialogue in test set: 330
- Number of dialogue in val set: 21
- Maximum length of dialogue in val set: 299

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[Christopher Potts](https://web.stanford.edu/~cgpotts/), Stanford Linguistics.

### Licensing Information

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.](http://creativecommons.org/licenses/by-nc-sa/3.0/)

### Citation Information

```
@techreport{Jurafsky-etal:1997,
	Address = {Boulder, CO},
	Author = {Jurafsky, Daniel and Shriberg, Elizabeth and Biasca, Debra},
	Institution = {University of Colorado, Boulder Institute of Cognitive Science},
	Number = {97-02},
	Title = {Switchboard {SWBD}-{DAMSL} Shallow-Discourse-Function Annotation Coders Manual, Draft 13},
	Year = {1997}}

@article{Shriberg-etal:1998,
	Author = {Shriberg, Elizabeth and Bates, Rebecca and Taylor, Paul and Stolcke, Andreas and Jurafsky, Daniel and Ries, Klaus and Coccaro, Noah and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
	Journal = {Language and Speech},
	Number = {3--4},
	Pages = {439--487},
	Title = {Can Prosody Aid the Automatic Classification of Dialog Acts in Conversational Speech?},
	Volume = {41},
	Year = {1998}}

@article{Stolcke-etal:2000,
	Author = {Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
	Journal = {Computational Linguistics},
	Number = {3},
	Pages = {339--371},
	Title = {Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech},
	Volume = {26},
	Year = {2000}}
```