Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 17,249 Bytes
dd486cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
---
annotations_creators:
- found
language_creators:
- found
languages:
- en
licenses:
- cc-by-nc-sa-3-0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- extended|other-Switchboard-1 Telephone Speech Corpus, Release 2
task_categories:
- text-classification
task_ids:
- multi-label-classification
---
# Dataset Card for swda
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage: [The Switchboard Dialog Act Corpus](http://compprag.christopherpotts.net/swda.html)**
- **Repository: [NathanDuran/Switchboard-Corpus](https://github.com/NathanDuran/Switchboard-Corpus)**
- **Paper:[The Switchboard Dialog Act Corpus](http://compprag.christopherpotts.net/swda.html)**
= **Leaderboard: [Dialogue act classification](https://github.com/sebastianruder/NLP-progress/blob/master/english/dialogue.md#dialogue-act-classification)**
- **Point of Contact: [Christopher Potts](https://web.stanford.edu/~cgpotts/)**
### Dataset Summary
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2 with
turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information about the
associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s.
The SwDA is not inherently linked to the Penn Treebank 3 parses of Switchboard, and it is far from straightforward to
align the two resources. In addition, the SwDA is not distributed with the Switchboard's tables of metadata about the
conversations and their participants.
### Supported Tasks and Leaderboards
| Model | Accuracy | Paper / Source | Code |
| ------------- | :-----:| --- | --- |
| SGNN (Ravi et al., 2018) | 83.1 | [Self-Governing Neural Networks for On-Device Short Text Classification](https://www.aclweb.org/anthology/D18-1105.pdf)
| CASA (Raheja et al., 2019) | 82.9 | [Dialogue Act Classification with Context-Aware Self-Attention](https://www.aclweb.org/anthology/N19-1373.pdf)
| DAH-CRF (Li et al., 2019) | 82.3 | [A Dual-Attention Hierarchical Recurrent Neural Network for Dialogue Act Classification](https://www.aclweb.org/anthology/K19-1036.pdf)
| ALDMN (Wan et al., 2018) | 81.5 | [Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training](https://arxiv.org/pdf/1811.05021.pdf)
| CRF-ASN (Chen et al., 2018) | 81.3 | [Dialogue Act Recognition via CRF-Attentive Structured Network](https://arxiv.org/abs/1711.05568) | |
| Bi-LSTM-CRF (Kumar et al., 2017) | 79.2 | [Dialogue Act Sequence Labeling using Hierarchical encoder with CRF](https://arxiv.org/abs/1709.04250) | [Link](https://github.com/YanWenqiang/HBLSTM-CRF) |
| RNN with 3 utterances in context (Bothe et al., 2018) | 77.34 | [A Context-based Approach for Dialogue Act Recognition using Simple Recurrent Neural Networks](https://arxiv.org/abs/1805.06280) | |
### Languages
The language supported is English.
## Dataset Structure
Utterance are tagged with the [SWBD-DAMSL](https://web.stanford.edu/~jurafsky/ws97/manual.august1.html) DA.
### Data Instances
An example from the dataset is:
`{'dialogue_act_tag': 17, 'speaker': 0, 'utterance_text': 'Okay.'}`
where 17 correspond to `fo_o_fw_"_by_bc` (Other)
### Data Fields
`speaker` - Refers to the current speaker talking. It is used to detect when a speaker change occurs.
There are two values for speaker: `A` and `B`. This does not mean we only have tow speakers in the whole datasets.
It's only used to signal if next utterance is from same speaker or from next speaker. Since we encoded all labels
`A=0` and `B=1`.
`utterance_text` - Text that a speaker says.
`dialogue_act_tag` - Dialogue act label associated with the `utterance_text`. There are 41 dialogue act labels for this
dataset. Each dialogue act label has a specific meaning:
| Int | Dialogue Act | Labels |
|-- |------------------------------ |----------------- |
| 0 | Statement-non-opinion | sd |
| 1 | Acknowledge (Backchannel) | b |
| 2 | Statement-opinion | sv |
| 3 | Uninterpretable | % |
| 4 | Agree/Accept | aa |
| 5 | Appreciation | ba |
| 6 | Yes-No-Question | qy |
| 7 | Yes Answers | ny |
| 8 | Conventional-closing | fc |
| 9 | Wh-Question | qw |
| 10 | No Answers | nn |
| 11 | Response Acknowledgement | bk |
| 12 | Hedge | h |
| 13 | Declarative Yes-No-Question | qy^d |
| 14 | Backchannel in Question Form | bh |
| 15 | Quotation | ^q |
| 16 | Summarize/Reformulate | bf |
| 17 | Other | fo_o_fw_"_by_bc |
| 18 | Affirmative Non-yes Answers | na |
| 19 | Action-directive | ad |
| 20 | Collaborative Completion | ^2 |
| 21 | Repeat-phrase | b^m |
| 22 | Open-Question | qo |
| 23 | Rhetorical-Question | qh |
| 24 | Hold Before Answer/Agreement | ^h |
| 25 | Reject | ar |
| 26 | Negative Non-no Answers | ng |
| 27 | Signal-non-understanding | br |
| 28 | Other Answers | no |
| 29 | Conventional-opening | fp |
| 30 | Or-Clause | qrr |
| 31 | Dispreferred Answers | arp_nd |
| 32 | 3rd-party-talk | t3 |
| 33 | Offers, Options Commits | oo_co_cc |
| 34 | Maybe/Accept-part | aap_am |
| 35 | Downplayer | t1 |
| 36 | Self-talk | bd |
| 37 | Tag-Question | ^g |
| 38 | Declarative Wh-Question | qw^d |
| 39 | Apology | fa |
| 40 | Thanking | ft |
## Data Stats
|Dialogue Act | Labels | Count | % | Train Count | Train % | Test Count | Test % | Val Count | Val %
--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---:
Statement-non-opinion | sd | 75136 | 37.62 | 72549 | 37.71 | 1317 | 32.30 | 1270 | 38.81
Acknowledge (Backchannel) | b | 38281 | 19.17 | 36950 | 19.21 | 764 | 18.73 | 567 | 17.33
Statement-opinion | sv | 26421 | 13.23 | 25087 | 13.04 | 718 | 17.61 | 616 | 18.83
Uninterpretable | % | 15195 | 7.61 | 14597 | 7.59 | 349 | 8.56 | 249 | 7.61
Agree/Accept | aa | 11123 | 5.57 | 10770 | 5.60 | 207 | 5.08 | 146 | 4.46
Appreciation | ba | 4757 | 2.38 | 4619 | 2.40 | 76 | 1.86 | 62 | 1.89
Yes-No-Question | qy | 4725 | 2.37 | 4594 | 2.39 | 84 | 2.06 | 47 | 1.44
Yes Answers | ny | 3030 | 1.52 | 2918 | 1.52 | 73 | 1.79 | 39 | 1.19
Conventional-closing | fc | 2581 | 1.29 | 2480 | 1.29 | 81 | 1.99 | 20 | 0.61
Wh-Question | qw | 1976 | 0.99 | 1896 | 0.99 | 55 | 1.35 | 25 | 0.76
No Answers | nn | 1374 | 0.69 | 1334 | 0.69 | 26 | 0.64 | 14 | 0.43
Response Acknowledgement | bk | 1306 | 0.65 | 1271 | 0.66 | 28 | 0.69 | 7 | 0.21
Hedge | h | 1226 | 0.61 | 1181 | 0.61 | 23 | 0.56 | 22 | 0.67
Declarative Yes-No-Question | qy^d | 1218 | 0.61 | 1167 | 0.61 | 36 | 0.88 | 15 | 0.46
Backchannel in Question Form | bh | 1053 | 0.53 | 1015 | 0.53 | 21 | 0.51 | 17 | 0.52
Quotation | ^q | 983 | 0.49 | 931 | 0.48 | 17 | 0.42 | 35 | 1.07
Summarize/Reformulate | bf | 952 | 0.48 | 905 | 0.47 | 23 | 0.56 | 24 | 0.73
Other | fo_o_fw_"_by_bc | 879 | 0.44 | 857 | 0.45 | 15 | 0.37 | 7 | 0.21
Affirmative Non-yes Answers | na | 847 | 0.42 | 831 | 0.43 | 10 | 0.25 | 6 | 0.18
Action-directive | ad | 745 | 0.37 | 712 | 0.37 | 27 | 0.66 | 6 | 0.18
Collaborative Completion | ^2 | 723 | 0.36 | 690 | 0.36 | 19 | 0.47 | 14 | 0.43
Repeat-phrase | b^m | 687 | 0.34 | 655 | 0.34 | 21 | 0.51 | 11 | 0.34
Open-Question | qo | 656 | 0.33 | 631 | 0.33 | 16 | 0.39 | 9 | 0.28
Rhetorical-Question | qh | 575 | 0.29 | 554 | 0.29 | 12 | 0.29 | 9 | 0.28
Hold Before Answer/Agreement | ^h | 556 | 0.28 | 539 | 0.28 | 7 | 0.17 | 10 | 0.31
Reject | ar | 344 | 0.17 | 337 | 0.18 | 3 | 0.07 | 4 | 0.12
Negative Non-no Answers | ng | 302 | 0.15 | 290 | 0.15 | 6 | 0.15 | 6 | 0.18
Signal-non-understanding | br | 298 | 0.15 | 286 | 0.15 | 9 | 0.22 | 3 | 0.09
Other Answers | no | 284 | 0.14 | 277 | 0.14 | 6 | 0.15 | 1 | 0.03
Conventional-opening | fp | 225 | 0.11 | 220 | 0.11 | 5 | 0.12 | 0 | 0.00
Or-Clause | qrr | 209 | 0.10 | 206 | 0.11 | 2 | 0.05 | 1 | 0.03
Dispreferred Answers | arp_nd | 207 | 0.10 | 204 | 0.11 | 3 | 0.07 | 0 | 0.00
3rd-party-talk | t3 | 117 | 0.06 | 115 | 0.06 | 0 | 0.00 | 2 | 0.06
Offers, Options Commits | oo_co_cc | 110 | 0.06 | 109 | 0.06 | 0 | 0.00 | 1 | 0.03
Maybe/Accept-part | aap_am | 104 | 0.05 | 97 | 0.05 | 7 | 0.17 | 0 | 0.00
Downplayer | t1 | 103 | 0.05 | 102 | 0.05 | 1 | 0.02 | 0 | 0.00
Self-talk | bd | 103 | 0.05 | 100 | 0.05 | 1 | 0.02 | 2 | 0.06
Tag-Question | ^g | 92 | 0.05 | 92 | 0.05 | 0 | 0.00 | 0 | 0.00
Declarative Wh-Question | qw^d | 80 | 0.04 | 79 | 0.04 | 1 | 0.02 | 0 | 0.00
Apology | fa | 79 | 0.04 | 76 | 0.04 | 2 | 0.05 | 1 | 0.03
Thanking | ft | 78 | 0.04 | 67 | 0.03 | 7 | 0.17 | 4 | 0.12
![Label Frequencies](https://raw.githubusercontent.com/NathanDuran/Switchboard-Corpus/master/swda_data/metadata/Swda%20Label%20Frequency%20Distributions.png)
### Data Splits
he data is split into the original training and test sets suggested by the authors (1115 training and 19 test). The remaining 21 dialogues have been used as a validation set.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
- Total number of utterances: 199740
- Maximum utterance length: 133
- Mean utterance length: 9.6
- Total number of dialogues: 1155
- Maximum dialogue length: 457
- Mean dialogue length: 172.9
- Vocabulary size: 22301
- Number of labels: 41
- Number of dialogue in train set: 1115
- Maximum length of dialogue in train set: 457
- Number of dialogue in test set: 19
- Maximum length of dialogue in test set: 330
- Number of dialogue in val set: 21
- Maximum length of dialogue in val set: 299
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[Christopher Potts](https://web.stanford.edu/~cgpotts/), Stanford Linguistics.
### Licensing Information
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.](http://creativecommons.org/licenses/by-nc-sa/3.0/)
### Citation Information
```
@techreport{Jurafsky-etal:1997,
Address = {Boulder, CO},
Author = {Jurafsky, Daniel and Shriberg, Elizabeth and Biasca, Debra},
Institution = {University of Colorado, Boulder Institute of Cognitive Science},
Number = {97-02},
Title = {Switchboard {SWBD}-{DAMSL} Shallow-Discourse-Function Annotation Coders Manual, Draft 13},
Year = {1997}}
@article{Shriberg-etal:1998,
Author = {Shriberg, Elizabeth and Bates, Rebecca and Taylor, Paul and Stolcke, Andreas and Jurafsky, Daniel and Ries, Klaus and Coccaro, Noah and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
Journal = {Language and Speech},
Number = {3--4},
Pages = {439--487},
Title = {Can Prosody Aid the Automatic Classification of Dialog Acts in Conversational Speech?},
Volume = {41},
Year = {1998}}
@article{Stolcke-etal:2000,
Author = {Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol},
Journal = {Computational Linguistics},
Number = {3},
Pages = {339--371},
Title = {Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech},
Volume = {26},
Year = {2000}}
```
|