Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Switchboard Dialog Act Corpus | |
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2, | |
with turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information | |
about the associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s. | |
This script is a modified version of the original swda.py from https://github.com/cgpotts/swda/blob/master/swda.py from | |
the original corpus repo. Modifications are made to accommodate the HuggingFace Dataset project format. | |
""" | |
import csv | |
import datetime | |
import glob | |
import os | |
import re | |
import datasets | |
# Citation as described here: https://github.com/cgpotts/swda#citation. | |
_CITATION = """\ | |
@techreport{Jurafsky-etal:1997, | |
Address = {Boulder, CO}, | |
Author = {Jurafsky, Daniel and Shriberg, Elizabeth and Biasca, Debra}, | |
Institution = {University of Colorado, Boulder Institute of Cognitive Science}, | |
Number = {97-02}, | |
Title = {Switchboard {SWBD}-{DAMSL} Shallow-Discourse-Function Annotation Coders Manual, Draft 13}, | |
Year = {1997}} | |
@article{Shriberg-etal:1998, | |
Author = {Shriberg, Elizabeth and Bates, Rebecca and Taylor, Paul and Stolcke, Andreas and Jurafsky, Daniel and Ries, Klaus and Coccaro, Noah and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol}, | |
Journal = {Language and Speech}, | |
Number = {3--4}, | |
Pages = {439--487}, | |
Title = {Can Prosody Aid the Automatic Classification of Dialog Acts in Conversational Speech?}, | |
Volume = {41}, | |
Year = {1998}} | |
@article{Stolcke-etal:2000, | |
Author = {Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol}, | |
Journal = {Computational Linguistics}, | |
Number = {3}, | |
Pages = {339--371}, | |
Title = {Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech}, | |
Volume = {26}, | |
Year = {2000}} | |
""" | |
# Description of dataset gathered from: https://github.com/cgpotts/swda#overview. | |
_DESCRIPTION = """\ | |
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2 with | |
turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information about the | |
associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s. | |
The SwDA is not inherently linked to the Penn Treebank 3 parses of Switchboard, and it is far from straightforward to | |
align the two resources. In addition, the SwDA is not distributed with the Switchboard's tables of metadata about the | |
conversations and their participants. | |
""" | |
# Homepage gathered from: https://github.com/cgpotts/swda#overview. | |
_HOMEPAGE = "http://compprag.christopherpotts.net/swda.html" | |
# More details about the license: https://creativecommons.org/licenses/by-nc-sa/3.0/. | |
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License" | |
# Dataset main url. | |
_URL = "https://github.com/cgpotts/swda/raw/master/swda.zip" | |
# Dialogue act tags - long version 217 dialogue acts labels. | |
_ACT_TAGS = [ | |
"b^m^r", | |
"qw^r^t", | |
"aa^h", | |
"br^m", | |
"fa^r", | |
"aa,ar", | |
"sd^e(^q)^r", | |
"^2", | |
"sd;qy^d", | |
"oo", | |
"bk^m", | |
"aa^t", | |
"cc^t", | |
"qy^d^c", | |
"qo^t", | |
"ng^m", | |
"qw^h", | |
"qo^r", | |
"aa", | |
"qy^d^t", | |
"qrr^d", | |
"br^r", | |
"fx", | |
"sd,qy^g", | |
"ny^e", | |
"^h^t", | |
"fc^m", | |
"qw(^q)", | |
"co", | |
"o^t", | |
"b^m^t", | |
"qr^d", | |
"qw^g", | |
"ad(^q)", | |
"qy(^q)", | |
"na^r", | |
"am^r", | |
"qr^t", | |
"ad^c", | |
"qw^c", | |
"bh^r", | |
"h^t", | |
"ft^m", | |
"ba^r", | |
"qw^d^t", | |
"%", | |
"t3", | |
"nn", | |
"bd", | |
"h^m", | |
"h^r", | |
"sd^r", | |
"qh^m", | |
"^q^t", | |
"sv^2", | |
"ft", | |
"ar^m", | |
"qy^h", | |
"sd^e^m", | |
"qh^r", | |
"cc", | |
"fp^m", | |
"ad", | |
"qo", | |
"na^m^t", | |
"fo^c", | |
"qy", | |
"sv^e^r", | |
"aap", | |
"no", | |
"aa^2", | |
"sv(^q)", | |
"sv^e", | |
"nd", | |
'"', | |
"bf^2", | |
"bk", | |
"fp", | |
"nn^r^t", | |
"fa^c", | |
"ny^t", | |
"ny^c^r", | |
"qw", | |
"qy^t", | |
"b", | |
"fo", | |
"qw^r", | |
"am", | |
"bf^t", | |
"^2^t", | |
"b^2", | |
"x", | |
"fc", | |
"qr", | |
"no^t", | |
"bk^t", | |
"bd^r", | |
"bf", | |
"^2^g", | |
"qh^c", | |
"ny^c", | |
"sd^e^r", | |
"br", | |
"fe", | |
"by", | |
"^2^r", | |
"fc^r", | |
"b^m", | |
"sd,sv", | |
"fa^t", | |
"sv^m", | |
"qrr", | |
"^h^r", | |
"na", | |
"fp^r", | |
"o", | |
"h,sd", | |
"t1^t", | |
"nn^r", | |
"cc^r", | |
"sv^c", | |
"co^t", | |
"qy^r", | |
"sv^r", | |
"qy^d^h", | |
"sd", | |
"nn^e", | |
"ny^r", | |
"b^t", | |
"ba^m", | |
"ar", | |
"bf^r", | |
"sv", | |
"bh^m", | |
"qy^g^t", | |
"qo^d^c", | |
"qo^d", | |
"nd^t", | |
"aa^r", | |
"sd^2", | |
"sv;sd", | |
"qy^c^r", | |
"qw^m", | |
"qy^g^r", | |
"no^r", | |
"qh(^q)", | |
"sd;sv", | |
"bf(^q)", | |
"+", | |
"qy^2", | |
"qw^d", | |
"qy^g", | |
"qh^g", | |
"nn^t", | |
"ad^r", | |
"oo^t", | |
"co^c", | |
"ng", | |
"^q", | |
"qw^d^c", | |
"qrr^t", | |
"^h", | |
"aap^r", | |
"bc^r", | |
"sd^m", | |
"bk^r", | |
"qy^g^c", | |
"qr(^q)", | |
"ng^t", | |
"arp", | |
"h", | |
"bh", | |
"sd^c", | |
"^g", | |
"o^r", | |
"qy^c", | |
"sd^e", | |
"fw", | |
"ar^r", | |
"qy^m", | |
"bc", | |
"sv^t", | |
"aap^m", | |
"sd;no", | |
"ng^r", | |
"bf^g", | |
"sd^e^t", | |
"o^c", | |
"b^r", | |
"b^m^g", | |
"ba", | |
"t1", | |
"qy^d(^q)", | |
"nn^m", | |
"ny", | |
"ba,fe", | |
"aa^m", | |
"qh", | |
"na^m", | |
"oo(^q)", | |
"qw^t", | |
"na^t", | |
"qh^h", | |
"qy^d^m", | |
"ny^m", | |
"fa", | |
"qy^d", | |
"fc^t", | |
"sd(^q)", | |
"qy^d^r", | |
"bf^m", | |
"sd(^q)^t", | |
"ft^t", | |
"^q^r", | |
"sd^t", | |
"sd(^q)^r", | |
"ad^t", | |
] | |
# Damsl dialogue act tags version - short version 43 dialogue acts labels. | |
_DAMSL_ACT_TAGS = [ | |
"ad", | |
"qo", | |
"qy", | |
"arp_nd", | |
"sd", | |
"h", | |
"bh", | |
"no", | |
"^2", | |
"^g", | |
"ar", | |
"aa", | |
"sv", | |
"bk", | |
"fp", | |
"qw", | |
"b", | |
"ba", | |
"t1", | |
"oo_co_cc", | |
"+", | |
"ny", | |
"qw^d", | |
"x", | |
"qh", | |
"fc", | |
'fo_o_fw_"_by_bc', | |
"aap_am", | |
"%", | |
"bf", | |
"t3", | |
"nn", | |
"bd", | |
"ng", | |
"^q", | |
"br", | |
"qy^d", | |
"fa", | |
"^h", | |
"b^m", | |
"ft", | |
"qrr", | |
"na", | |
] | |
class Swda(datasets.GeneratorBasedBuilder): | |
""" | |
This is the HuggingFace Dataset class for swda. | |
Switchboard Dialog Act Corpus Hugging Face Dataset class. | |
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2, | |
with turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information | |
about the associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s. | |
""" | |
# Urls for each split train-dev-test. | |
_URLS = { | |
"train": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/train_split.txt", | |
"dev": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/dev_split.txt", | |
"test": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/test_split.txt", | |
} | |
def _info(self): | |
""" | |
Specify the datasets.DatasetInfo object which contains information and typings for the dataset. | |
""" | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types. | |
features=datasets.Features( | |
{ | |
"swda_filename": datasets.Value("string"), | |
"ptb_basename": datasets.Value("string"), | |
"conversation_no": datasets.Value("int64"), | |
"transcript_index": datasets.Value("int64"), | |
"act_tag": datasets.ClassLabel(num_classes=217, names=_ACT_TAGS), | |
"damsl_act_tag": datasets.ClassLabel(num_classes=43, names=_DAMSL_ACT_TAGS), | |
"caller": datasets.Value("string"), | |
"utterance_index": datasets.Value("int64"), | |
"subutterance_index": datasets.Value("int64"), | |
"text": datasets.Value("string"), | |
"pos": datasets.Value("string"), | |
"trees": datasets.Value("string"), | |
"ptb_treenumbers": datasets.Value("string"), | |
"talk_day": datasets.Value("string"), | |
"length": datasets.Value("int64"), | |
"topic_description": datasets.Value("string"), | |
"prompt": datasets.Value("string"), | |
"from_caller": datasets.Value("int64"), | |
"from_caller_sex": datasets.Value("string"), | |
"from_caller_education": datasets.Value("int64"), | |
"from_caller_birth_year": datasets.Value("int64"), | |
"from_caller_dialect_area": datasets.Value("string"), | |
"to_caller": datasets.Value("int64"), | |
"to_caller_sex": datasets.Value("string"), | |
"to_caller_education": datasets.Value("int64"), | |
"to_caller_birth_year": datasets.Value("int64"), | |
"to_caller_dialect_area": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
""" | |
Returns SplitGenerators. | |
This method is tasked with downloading/extracting the data and defining the splits. | |
Args: | |
dl_manager (:obj:`datasets.utils.download_manager.DownloadManager`): | |
Download manager to download and extract data files from urls. | |
Returns: | |
:obj:`list[str]`: | |
List of paths to data. | |
""" | |
# Download extract and return path of data file. | |
dl_dir = dl_manager.download_and_extract(_URL) | |
# Use swda/ folder. | |
data_dir = os.path.join(dl_dir, "swda") | |
# Handle partitions files: download extract and return paths of split files. | |
downloaded_files = dl_manager.download(self._URLS) | |
return [ | |
# Return whole data path and train splits file downloaded path. | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["train"]} | |
), | |
# Return whole data path and dev splits file downloaded path. | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["dev"]}, | |
), | |
# Return whole data path and train splits file downloaded path. | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["test"]} | |
), | |
] | |
def _generate_examples(self, data_dir, split_file): | |
""" | |
Yields examples. | |
This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. | |
It is in charge of opening the given file and yielding (key, example) tuples from the dataset | |
The key is not important, it's more here for legacy reason (legacy from tfds). | |
Args: | |
data_dir (:obj:`str`): | |
Path where is downloaded dataset. | |
split_file (:obj:`str`): | |
Path of split file used for train-dev-test. | |
Returns: | |
:obj:`list[str]`: | |
List of paths to data. | |
""" | |
# Read in the split file. | |
with open(file=split_file, mode="r", encoding="utf-8") as f: | |
split_file = f.read().splitlines() | |
# Read in corpus data using split files. | |
corpus = CorpusReader(src_dirname=data_dir, split_file=split_file) | |
# Generate examples. | |
for i_trans, trans in enumerate(corpus.iter_transcripts()): | |
for i_utt, utt in enumerate(trans.utterances): | |
id_ = str(i_trans) + ":" + str(i_utt) | |
yield id_, {feature: utt[feature] for feature in self.info.features.keys()} | |
class CorpusReader: | |
"""Class for reading in the corpus and iterating through its values.""" | |
def __init__(self, src_dirname, split_file=None): | |
""" | |
Reads in the data from `src_dirname` (should be the root of the | |
corpus). Assumes that the metadata file `swda-metadata.csv` is | |
in the main directory of the corpus, using that file to build | |
the `Metadata` object used throughout. | |
Args: | |
src_dirname (:obj:`str`): | |
Path where swda folder with all data. | |
split_file (:obj:`list[str`, `optional`): | |
List of file names used in a split (train, dev or test). This argument is optional and it will have a None value attributed inside the function. | |
""" | |
self.src_dirname = src_dirname | |
metadata_filename = os.path.join(src_dirname, "swda-metadata.csv") | |
self.metadata = Metadata(metadata_filename) | |
self.split_file = split_file | |
def iter_transcripts( | |
self, | |
): | |
""" | |
Iterate through the transcripts. | |
Returns: | |
:obj:`Transcript`: | |
Transcript instance. | |
""" | |
# All files names. | |
filenames = glob.glob(os.path.join(self.src_dirname, "sw*", "*.csv")) | |
# If no split files are mentioned just use all files. | |
self.split_file = filenames if self.split_file is None else self.split_file | |
# Filter out desired file names | |
filenames = [ | |
file for file in filenames if os.path.basename(file).split("_")[-1].split(".")[0] in self.split_file | |
] | |
for filename in sorted(filenames): | |
# Yield the Transcript instance: | |
yield Transcript(filename, self.metadata) | |
def iter_utterances( | |
self, | |
): | |
""" | |
Iterate through the utterances. | |
Returns: | |
:obj:`Transcript.utterances`: | |
Utterance instance object. | |
""" | |
for trans in self.iter_transcripts(): | |
for utt in trans.utterances: | |
# Yield the Utterance instance: | |
yield utt | |
class Metadata: | |
""" | |
Basically an internal method for organizing the tables of metadata | |
from the original Switchboard transcripts and linking them with | |
the dialog acts. | |
""" | |
def __init__(self, metadata_filename): | |
""" | |
Turns the CSV file into a dictionary mapping Switchboard | |
conversation_no integers values to dictionaries of values. All | |
the keys correspond to the column names in the original | |
tables. | |
Args: | |
metadata_filename (:obj:`str`): | |
The CSV file swda-metadata.csv (should be in the main | |
folder of the swda directory). | |
""" | |
self.metadata_filename = metadata_filename | |
self.metadata = {} | |
self.get_metadata() | |
def get_metadata(self): | |
""" | |
Build the dictionary self.metadata mapping conversation_no to | |
dictionaries of values (str, int, or datatime, as | |
appropriate). | |
""" | |
csvreader = csv.reader(open(self.metadata_filename)) | |
header = next(csvreader) | |
for row in csvreader: | |
d = dict(list(zip(header, row))) | |
# Add integer number features to metadata. | |
for key in ( | |
"conversation_no", | |
"length", | |
"from_caller", | |
"to_caller", | |
"from_caller_education", | |
"to_caller_education", | |
): | |
d[key] = int(d[key]) | |
talk_day = d["talk_day"] | |
talk_year = int("19" + talk_day[:2]) | |
talk_month = int(talk_day[2:4]) | |
talk_day = int(talk_day[4:]) | |
# Make sure to convert date time to string to match PyArrow data formats. | |
d["talk_day"] = datetime.datetime(year=talk_year, month=talk_month, day=talk_day).strftime("%m/%d/%Y") | |
d["from_caller_birth_year"] = int(d["from_caller_birth_year"]) | |
d["to_caller_birth_year"] = int(d["to_caller_birth_year"]) | |
self.metadata[d["conversation_no"]] = d | |
def __getitem__(self, val): | |
""" | |
Val should be a key in self.metadata; returns the | |
corresponding value. | |
Args: | |
val (:obj:`str`): | |
Key in self.metadata. | |
Returns: | |
:obj:: | |
Corresponding value. | |
""" | |
return self.metadata[val] | |
class Utterance: | |
""" | |
The central object of interest. The attributes correspond to the | |
values of the class variable header: | |
""" | |
# Metadata header file. | |
header = [ | |
"swda_filename", | |
"ptb_basename", | |
"conversation_no", | |
"transcript_index", | |
"act_tag", | |
"caller", | |
"utterance_index", | |
"subutterance_index", | |
"text", | |
"pos", | |
"trees", | |
"ptb_treenumbers", | |
] | |
def __init__(self, row, transcript_metadata): | |
""" | |
Args: | |
row (:obj:`list`): | |
A row from one of the corpus CSV files. | |
transcript_metadata (:obj:`dict`): | |
A Metadata value based on the current `conversation_no`. | |
""" | |
# Utterance data: | |
for i in range(len(Utterance.header)): | |
att_name = Utterance.header[i] | |
row_value = None | |
if i < len(row): | |
row_value = row[i].strip() | |
# Special handling of non-string values. | |
if att_name == "trees": | |
if row_value: | |
# Origianl code returned list of nltk.tree and used `[Tree.fromstring(t) for t in row_value.split("|||")]`. | |
# Since we're returning str we don't need to make any mondifications to row_value. | |
row_value = row_value | |
else: | |
row_value = "" # [] | |
elif att_name == "ptb_treenumbers": | |
if row_value: | |
row_value = row_value # list(map(int, row_value.split("|||"))) | |
else: | |
row_value = "" # [] | |
elif att_name == "act_tag": | |
# I thought these conjoined tags were meant to be split. | |
# The docs suggest that they are single tags, thought, | |
# so skip this conditional and let it be treated as a str. | |
# row_value = re.split(r"\s*[,;]\s*", row_value) | |
# `` Transcription errors (typos, obvious mistranscriptions) are | |
# marked with a "*" after the discourse tag.'' | |
# These are removed for this version. | |
row_value = row_value.replace("*", "") | |
elif att_name in ("conversation_no", "transcript_index", "utterance_index", "subutterance_index"): | |
row_value = int(row_value) | |
# Add attribute. | |
setattr(self, att_name, row_value) | |
# Make sure conversation number matches. | |
assert self.conversation_no == transcript_metadata["conversation_no"] | |
# Add rest of missing metadata | |
[setattr(self, key, value) for key, value in transcript_metadata.items()] | |
# Add damsl tags. | |
setattr(self, "damsl_act_tag", self.damsl_act_tag()) | |
def __getitem__(self, feature): | |
""" | |
Return utterance features as dictionary. It allows us to call an utterance object as a dictionary. | |
It contains same keys as attributes. | |
Args: | |
feature (:obj:`str`): | |
Feature value of utterance that is part of attributes. | |
Returns: | |
:obj: | |
Value of feature from utterance. Value type can vary. | |
""" | |
return vars(self)[feature] | |
def damsl_act_tag( | |
self, | |
): | |
""" | |
Seeks to duplicate the tag simplification described at the | |
Coders' Manual: http://www.stanford.edu/~jurafsky/ws97/manual.august1.html | |
""" | |
d_tags = [] | |
tags = re.split(r"\s*[,;]\s*", self.act_tag) | |
for tag in tags: | |
if tag in ("qy^d", "qw^d", "b^m"): | |
pass | |
elif tag == "nn^e": | |
tag = "ng" | |
elif tag == "ny^e": | |
tag = "na" | |
else: | |
tag = re.sub(r"(.)\^.*", r"\1", tag) | |
tag = re.sub(r"[\(\)@*]", "", tag) | |
if tag in ("qr", "qy"): | |
tag = "qy" | |
elif tag in ("fe", "ba"): | |
tag = "ba" | |
elif tag in ("oo", "co", "cc"): | |
tag = "oo_co_cc" | |
elif tag in ("fx", "sv"): | |
tag = "sv" | |
elif tag in ("aap", "am"): | |
tag = "aap_am" | |
elif tag in ("arp", "nd"): | |
tag = "arp_nd" | |
elif tag in ("fo", "o", "fw", '"', "by", "bc"): | |
tag = 'fo_o_fw_"_by_bc' | |
d_tags.append(tag) | |
# Dan J says (p.c.) that it makes sense to take the first; | |
# there are only a handful of examples with 2 tags here. | |
return d_tags[0] | |
class Transcript: | |
""" | |
Transcript instances are basically just containers for lists of | |
utterances and transcript-level metadata, accessible via | |
attributes. | |
""" | |
def __init__(self, swda_filename, metadata): | |
""" | |
Sets up all the attribute values: | |
Args: | |
swda_filename (:obj:`str`): | |
The filename for this transcript. | |
metadata (:obj:`str` or `Metadata`): | |
If a string, then assumed to be the metadata filename, and | |
the metadata is created from that filename. If a `Metadata` | |
object, then used as the needed metadata directly. | |
""" | |
self.swda_filename = swda_filename | |
# If the supplied value is a filename: | |
if isinstance(metadata, str) or isinstance(metadata, str): | |
self.metadata = Metadata(metadata) | |
else: # Where the supplied value is already a Metadata object. | |
self.metadata = metadata | |
# Get the file rows: | |
rows = list(csv.reader(open(self.swda_filename, "rt"))) | |
# Ge the header and remove it from the rows: | |
self.header = rows[0] | |
rows.pop(0) | |
# Extract the conversation_no to get the meta-data. Use the | |
# header for this in case the column ordering is ever changed: | |
row0dict = dict(list(zip(self.header, rows[1]))) | |
self.conversation_no = int(row0dict["conversation_no"]) | |
# The ptd filename in the right format for the current OS: | |
self.ptd_basename = os.sep.join(row0dict["ptb_basename"].split("/")) | |
# The dictionary of metadata for this transcript: | |
transcript_metadata = self.metadata[self.conversation_no] | |
for key, val in transcript_metadata.items(): | |
setattr(self, key, transcript_metadata[key]) | |
# Create the utterance list: | |
self.utterances = [Utterance(x, transcript_metadata) for x in rows] | |
# Coder's Manual: ``We also removed any line with a "@" | |
# (since @ marked slash-units with bad segmentation).'' | |
self.utterances = [u for u in self.utterances if not re.search(r"[@]", u.act_tag)] | |