File size: 3,188 Bytes
cfd6bab
ea9cf70
b603fd7
 
a2fb6f4
 
 
b603fd7
 
 
 
 
 
 
 
 
58bb1c5
b603fd7
58bb1c5
b603fd7
 
ceec0e5
 
b603fd7
 
ea9cf70
bf86a3c
b603fd7
ea9cf70
bf86a3c
b603fd7
ea9cf70
b603fd7
ea9cf70
 
016dcc9
 
 
 
 
 
b603fd7
00529a3
 
8fdae8a
 
00529a3
 
 
96f0bd1
00529a3
 
96f0bd1
00529a3
 
 
 
 
cff5f1b
 
00529a3
 
 
 
 
 
 
 
e4d2734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81550b2
 
 
5ab65f0
81550b2
 
 
 
 
 
 
e4d2734
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: mit
size_categories:
- 10K<n<100K
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: test_dense
    path: data/test_dense-*
dataset_info:
  features:
  - name: image
    dtype: image
  - name: mask
    dtype: image
  - name: label
    dtype: string
  - name: scene_type
    dtype: string
  splits:
  - name: train
    num_bytes: 27536486.0
    num_examples: 300
  - name: test
    num_bytes: 1057988392.0
    num_examples: 10888
  - name: test_dense
    num_bytes: 142893072.0
    num_examples: 1200
  download_size: 1168238221
  dataset_size: 1228417950.0
tags:
- personalization
- instance_detection
- instance_classification
- instance_segmentation
- instance_retrieval
---
# PODS: Personal Object Discrimination Suite
<h3 align="center"><a href="https://personalized-rep.github.io" style="color: #2088FF;">🌐Project page</a>&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp
  <a href="https://arxiv.org/abs/2412.16156" style="color: #2088FF;">📖Paper</a>&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp
<a href="https://github.com/ssundaram21/personalized-rep" style="color: #2088FF;">GitHub</a><br></h3>

We introduce the PODS (Personal Object Discrimination Suite) dataset, a new benchmark for personalized vision tasks. 
<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/65f9d4100f717eb3e67556df/uMgazSWsxjqEa4wXSmkVi.jpeg" alt="pods.jpg" />
</p>


## PODS
The PODS dataset is new a benchmark for personalized vision tasks. It includes:
* 100 common household objects from 5 semantic categories
* 4 tasks (classification, retrieval, segmentation, detection)
* 4 test splits with different distribution shifts.
* 71-201 test images per instance with classification label annotations.
* 12 test images per instance (3 per split) with segmentation annotations.

Metadata is stored in two files:
* `pods_info.json`:
  * `classes`: A list of class names
  * `class_to_idx`: Mapping of each class to an integer id
  * `class_to_sc`: Mapping of each class to a broad, single-word semantic category
  * `class_to_split`: Mapping of each class to the `val` or `test` split.
* `pods_image_annos.json`: Maps every image ID to its class and test split (one of `[train, objects, pose, all]`)    

## Using PODS

### Loading the dataset using HuggingFace

To load the dataset using HuggingFace `datasets`, install the library by `pip install datasets`

```
from datasets import load_dataset

pods_dataset = load_dataset("chaenayo/PODS") 
```
You can also specify a split by:
```
pods_dataset = load_dataset("chaenayo/PODS", split="train") # or "test" or "test_dense"
```

### Loading the dataset directly

PODS can also be directly downloaded via command:
```
wget https://data.csail.mit.edu/personal_rep/pods.zip
```

## Citation
If you find our dataset useful, please cite our paper:
```
@article{sundaram2024personalized,
  title   = {Personalized Representation from Personalized Generation}
  author  = {Sundaram, Shobhita and Chae, Julia and Tian, Yonglong and Beery, Sara and Isola, Phillip},
  journal = {Arxiv},
  year    = {2024},
}
```