File size: 13,227 Bytes
94f3afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b266476
94f3afd
 
 
 
 
 
 
 
 
 
7d55b4e
94f3afd
 
 
 
 
 
 
b266476
 
 
 
 
 
 
 
94f3afd
7d55b4e
 
94f3afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b266476
 
 
 
 
 
 
 
 
 
 
 
 
94f3afd
 
 
 
 
 
 
 
 
 
 
 
7d55b4e
94f3afd
 
 
 
7d55b4e
94f3afd
 
b266476
 
 
 
 
94f3afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d55b4e
94f3afd
 
 
 
7d55b4e
 
 
 
b266476
 
 
 
 
94f3afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WikiAuto dataset for Text Simplification"""


import json

import datasets


_CITATION = """\
@inproceedings{acl/JiangMLZX20,
  author    = {Chao Jiang and
               Mounica Maddela and
               Wuwei Lan and
               Yang Zhong and
               Wei Xu},
  editor    = {Dan Jurafsky and
               Joyce Chai and
               Natalie Schluter and
               Joel R. Tetreault},
  title     = {Neural {CRF} Model for Sentence Alignment in Text Simplification},
  booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational
               Linguistics, {ACL} 2020, Online, July 5-10, 2020},
  pages     = {7943--7960},
  publisher = {Association for Computational Linguistics},
  year      = {2020},
  url       = {https://www.aclweb.org/anthology/2020.acl-main.709/}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple English Wikipedia
as a resource to train sentence simplification systems. The authors first crowd-sourced a set of manual alignments
between sentences in a subset of the Simple English Wikipedia and their corresponding versions in English Wikipedia
(this corresponds to the `manual` config), then trained a neural CRF system to predict these alignments.
The trained model was then applied to the other articles in Simple English Wikipedia with an English counterpart to
create a larger corpus of aligned sentences (corresponding to the `auto`, `auto_acl`, `auto_full_no_split`, and `auto_full_with_split`  configs here).
"""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC-BY-SA 3.0"

# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
    "manual": {
        "train": "https://www.dropbox.com/sh/ohqaw41v48c7e5p/AACdl4UPKtu7CMMa-CJhz4G7a/wiki-manual/train.tsv?dl=1",
        "dev": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-manual/dev.tsv",
        "test": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-manual/test.tsv",
    },
    "auto_acl": {
        "normal": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/ACL2020/train.src",
        "simple": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/ACL2020/train.dst",
    },
    "auto_full_no_split": {
        "normal": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_no_split/train.src",
        "simple": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_no_split/train.dst",
    },
    "auto_full_with_split": {
        "normal": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/train.src",
        "simple": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/train.dst",
    },
    "auto": {
        "part_1": "https://www.dropbox.com/sh/ohqaw41v48c7e5p/AAATBDhU1zpdcT5x5WgO8DMaa/wiki-auto-all-data/wiki-auto-part-1-data.json?dl=1",
        "part_2": "https://www.dropbox.com/sh/ohqaw41v48c7e5p/AAATgPkjo_tPt9z12vZxJ3MRa/wiki-auto-all-data/wiki-auto-part-2-data.json?dl=1",
    },
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class WikiAuto(datasets.GeneratorBasedBuilder):
    """WikiAuto dataset for sentence simplification"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="manual",
            version=VERSION,
            description="A set of 10K Wikipedia sentence pairs aligned by crowd workers.",
        ),
        datasets.BuilderConfig(
            name="auto_acl",
            version=VERSION,
            description="Automatically aligned and filtered sentence pairs used to train the ACL2020 system.",
        ),
        datasets.BuilderConfig(
            name="auto_full_no_split",
            version=VERSION,
            description="All automatically aligned sentence pairs without sentence splitting.",
        ),
        datasets.BuilderConfig(
            name="auto_full_with_split",
            version=VERSION,
            description="All automatically aligned sentence pairs with sentence splitting.",
        ),
        datasets.BuilderConfig(
            name="auto", version=VERSION, description="A large set of automatically aligned sentence pairs."
        ),
    ]

    DEFAULT_CONFIG_NAME = "auto"

    def _info(self):
        if self.config.name == "manual":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "alignment_label": datasets.ClassLabel(names=["notAligned", "aligned", "partialAligned"]),
                    "normal_sentence_id": datasets.Value("string"),
                    "simple_sentence_id": datasets.Value("string"),
                    "normal_sentence": datasets.Value("string"),
                    "simple_sentence": datasets.Value("string"),
                    "gleu_score": datasets.Value("float32"),
                }
            )
        elif (
            self.config.name == "auto_acl"
            or self.config.name == "auto_full_no_split"
            or self.config.name == "auto_full_with_split"
        ):
            features = datasets.Features(
                {
                    "normal_sentence": datasets.Value("string"),
                    "simple_sentence": datasets.Value("string"),
                }
            )
        else:
            features = datasets.Features(
                {
                    "example_id": datasets.Value("string"),
                    "normal": {
                        "normal_article_id": datasets.Value("int32"),
                        "normal_article_title": datasets.Value("string"),
                        "normal_article_url": datasets.Value("string"),
                        "normal_article_content": datasets.Sequence(
                            {
                                "normal_sentence_id": datasets.Value("string"),
                                "normal_sentence": datasets.Value("string"),
                            }
                        ),
                    },
                    "simple": {
                        "simple_article_id": datasets.Value("int32"),
                        "simple_article_title": datasets.Value("string"),
                        "simple_article_url": datasets.Value("string"),
                        "simple_article_content": datasets.Sequence(
                            {
                                "simple_sentence_id": datasets.Value("string"),
                                "simple_sentence": datasets.Value("string"),
                            }
                        ),
                    },
                    "paragraph_alignment": datasets.Sequence(
                        {
                            "normal_paragraph_id": datasets.Value("string"),
                            "simple_paragraph_id": datasets.Value("string"),
                        }
                    ),
                    "sentence_alignment": datasets.Sequence(
                        {
                            "normal_sentence_id": datasets.Value("string"),
                            "simple_sentence_id": datasets.Value("string"),
                        }
                    ),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage="https://github.com/chaojiang06/wiki-auto",
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        my_urls = _URLs[self.config.name]
        data_dir = dl_manager.download_and_extract(my_urls)
        if self.config.name in ["manual", "auto"]:
            return [
                datasets.SplitGenerator(
                    name=spl,
                    gen_kwargs={
                        "filepaths": data_dir,
                        "split": spl,
                    },
                )
                for spl in data_dir
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name="full",
                    gen_kwargs={"filepaths": data_dir, "split": "full"},
                )
            ]

    def _generate_examples(self, filepaths, split):
        if self.config.name == "manual":
            keys = [
                "alignment_label",
                "simple_sentence_id",
                "normal_sentence_id",
                "simple_sentence",
                "normal_sentence",
                "gleu_score",
            ]
            with open(filepaths[split], encoding="utf-8") as f:
                for id_, line in enumerate(f):
                    values = line.strip().split("\t")
                    assert len(values) == 6, f"Not enough fields in ---- {line} --- {values}"
                    yield id_, dict(
                        [(k, val) if k != "gleu_score" else (k, float(val)) for k, val in zip(keys, values)]
                    )
        elif (
            self.config.name == "auto_acl"
            or self.config.name == "auto_full_no_split"
            or self.config.name == "auto_full_with_split"
        ):
            with open(filepaths["normal"], encoding="utf-8") as fi:
                with open(filepaths["simple"], encoding="utf-8") as fo:
                    for id_, (norm_se, simp_se) in enumerate(zip(fi, fo)):
                        yield id_, {
                            "normal_sentence": norm_se,
                            "simple_sentence": simp_se,
                        }
        else:
            dataset_dict = json.load(open(filepaths[split], encoding="utf-8"))
            for id_, (eid, example_dict) in enumerate(dataset_dict.items()):
                res = {
                    "example_id": eid,
                    "normal": {
                        "normal_article_id": example_dict["normal"]["id"],
                        "normal_article_title": example_dict["normal"]["title"],
                        "normal_article_url": example_dict["normal"]["url"],
                        "normal_article_content": {
                            "normal_sentence_id": [
                                sen_id for sen_id, sen_txt in example_dict["normal"]["content"].items()
                            ],
                            "normal_sentence": [
                                sen_txt for sen_id, sen_txt in example_dict["normal"]["content"].items()
                            ],
                        },
                    },
                    "simple": {
                        "simple_article_id": example_dict["simple"]["id"],
                        "simple_article_title": example_dict["simple"]["title"],
                        "simple_article_url": example_dict["simple"]["url"],
                        "simple_article_content": {
                            "simple_sentence_id": [
                                sen_id for sen_id, sen_txt in example_dict["simple"]["content"].items()
                            ],
                            "simple_sentence": [
                                sen_txt for sen_id, sen_txt in example_dict["simple"]["content"].items()
                            ],
                        },
                    },
                    "paragraph_alignment": {
                        "normal_paragraph_id": [
                            norm_id for simp_id, norm_id in example_dict.get("paragraph_alignment", [])
                        ],
                        "simple_paragraph_id": [
                            simp_id for simp_id, norm_id in example_dict.get("paragraph_alignment", [])
                        ],
                    },
                    "sentence_alignment": {
                        "normal_sentence_id": [
                            norm_id for simp_id, norm_id in example_dict.get("sentence_alignment", [])
                        ],
                        "simple_sentence_id": [
                            simp_id for simp_id, norm_id in example_dict.get("sentence_alignment", [])
                        ],
                    },
                }
                yield id_, res