Datasets:
Tasks:
Text2Text Generation
Sub-tasks:
text-simplification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""WikiAuto dataset for Text Simplification""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import datasets | |
_CITATION = """\ | |
@inproceedings{acl/JiangMLZX20, | |
author = {Chao Jiang and | |
Mounica Maddela and | |
Wuwei Lan and | |
Yang Zhong and | |
Wei Xu}, | |
editor = {Dan Jurafsky and | |
Joyce Chai and | |
Natalie Schluter and | |
Joel R. Tetreault}, | |
title = {Neural {CRF} Model for Sentence Alignment in Text Simplification}, | |
booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational | |
Linguistics, {ACL} 2020, Online, July 5-10, 2020}, | |
pages = {7943--7960}, | |
publisher = {Association for Computational Linguistics}, | |
year = {2020}, | |
url = {https://www.aclweb.org/anthology/2020.acl-main.709/} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple English Wikipedia | |
as a resource to train sentence simplification systems. The authors first crowd-sourced a set of manual alignments | |
between sentences in a subset of the Simple English Wikipedia and their corresponding versions in English Wikipedia | |
(this corresponds to the `manual` config), then trained a neural CRF system to predict these alignments. | |
The trained model was then applied to the other articles in Simple English Wikipedia with an English counterpart to | |
create a larger corpus of aligned sentences (corresponding to the `auto`, `auto_acl`, `auto_full_no_split`, and `auto_full_with_split` configs here). | |
""" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "CC-BY-SA 3.0" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace dataset library don't host the datasets but only point to the original files | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLs = { | |
"manual": { | |
"train": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-manual/train.tsv", | |
"dev": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-manual/dev.tsv", | |
"test": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-manual/test.tsv", | |
}, | |
"auto_acl": { | |
"normal": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/ACL2020/train.src", | |
"simple": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/ACL2020/train.dst", | |
}, | |
"auto_full_no_split": { | |
"normal": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_no_split/train.src", | |
"simple": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_no_split/train.dst", | |
}, | |
"auto_full_with_split": { | |
"normal": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/train.src", | |
"simple": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/train.dst", | |
}, | |
"auto": { | |
"part_1": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/all_data/wiki-auto-part-1-data.json", | |
"part_2": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/all_data/wiki-auto-part-2-data.json", | |
}, | |
} | |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class WikiAuto(datasets.GeneratorBasedBuilder): | |
"""WikiAuto dataset for sentence simplification""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="manual", | |
version=VERSION, | |
description="A set of 10K Wikipedia sentence pairs aligned by crowd workers.", | |
), | |
datasets.BuilderConfig( | |
name="auto_acl", | |
version=VERSION, | |
description="Automatically aligned and filtered sentence pairs used to train the ACL2020 system.", | |
), | |
datasets.BuilderConfig( | |
name="auto_full_no_split", | |
version=VERSION, | |
description="All automatically aligned sentence pairs without sentence splitting.", | |
), | |
datasets.BuilderConfig( | |
name="auto_full_with_split", | |
version=VERSION, | |
description="All automatically aligned sentence pairs with sentence splitting.", | |
), | |
datasets.BuilderConfig( | |
name="auto", version=VERSION, description="A large set of automatically aligned sentence pairs." | |
), | |
] | |
DEFAULT_CONFIG_NAME = "auto" | |
def _info(self): | |
if self.config.name == "manual": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"alignment_label": datasets.ClassLabel(names=["notAligned", "aligned"]), | |
"normal_sentence_id": datasets.Value("string"), | |
"simple_sentence_id": datasets.Value("string"), | |
"normal_sentence": datasets.Value("string"), | |
"simple_sentence": datasets.Value("string"), | |
} | |
) | |
elif ( | |
self.config.name == "auto_acl" | |
or self.config.name == "auto_full_no_split" | |
or self.config.name == "auto_full_with_split" | |
): | |
features = datasets.Features( | |
{ | |
"normal_sentence": datasets.Value("string"), | |
"simple_sentence": datasets.Value("string"), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"example_id": datasets.Value("string"), | |
"normal": { | |
"normal_article_id": datasets.Value("int32"), | |
"normal_article_title": datasets.Value("string"), | |
"normal_article_url": datasets.Value("string"), | |
"normal_article_content": datasets.Sequence( | |
{ | |
"normal_sentence_id": datasets.Value("string"), | |
"normal_sentence": datasets.Value("string"), | |
} | |
), | |
}, | |
"simple": { | |
"simple_article_id": datasets.Value("int32"), | |
"simple_article_title": datasets.Value("string"), | |
"simple_article_url": datasets.Value("string"), | |
"simple_article_content": datasets.Sequence( | |
{ | |
"simple_sentence_id": datasets.Value("string"), | |
"simple_sentence": datasets.Value("string"), | |
} | |
), | |
}, | |
"paragraph_alignment": datasets.Sequence( | |
{ | |
"normal_paragraph_id": datasets.Value("string"), | |
"simple_paragraph_id": datasets.Value("string"), | |
} | |
), | |
"sentence_alignment": datasets.Sequence( | |
{ | |
"normal_sentence_id": datasets.Value("string"), | |
"simple_sentence_id": datasets.Value("string"), | |
} | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage="https://github.com/chaojiang06/wiki-auto", | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
my_urls = _URLs[self.config.name] | |
data_dir = dl_manager.download_and_extract(my_urls) | |
if self.config.name in ["manual", "auto"]: | |
return [ | |
datasets.SplitGenerator( | |
name=spl, | |
gen_kwargs={ | |
"filepaths": data_dir, | |
"split": spl, | |
}, | |
) | |
for spl in data_dir | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name="full", | |
gen_kwargs={"filepaths": data_dir, "split": "full"}, | |
) | |
] | |
def _generate_examples(self, filepaths, split): | |
if self.config.name == "manual": | |
keys = [ | |
"alignment_label", | |
"simple_sentence_id", | |
"normal_sentence_id", | |
"simple_sentence", | |
"normal_sentence", | |
] | |
with open(filepaths[split], encoding="utf-8") as f: | |
for id_, line in enumerate(f): | |
values = line.strip().split("\t") | |
assert len(values) == 5, f"Not enough fields in ---- {line} --- {values}" | |
yield id_, dict([(k, val) for k, val in zip(keys, values)]) | |
elif ( | |
self.config.name == "auto_acl" | |
or self.config.name == "auto_full_no_split" | |
or self.config.name == "auto_full_with_split" | |
): | |
with open(filepaths["normal"], encoding="utf-8") as fi: | |
with open(filepaths["simple"], encoding="utf-8") as fo: | |
for id_, (norm_se, simp_se) in enumerate(zip(fi, fo)): | |
yield id_, { | |
"normal_sentence": norm_se, | |
"simple_sentence": simp_se, | |
} | |
else: | |
dataset_dict = json.load(open(filepaths[split], encoding="utf-8")) | |
for id_, (eid, example_dict) in enumerate(dataset_dict.items()): | |
res = { | |
"example_id": eid, | |
"normal": { | |
"normal_article_id": example_dict["normal"]["id"], | |
"normal_article_title": example_dict["normal"]["title"], | |
"normal_article_url": example_dict["normal"]["url"], | |
"normal_article_content": { | |
"normal_sentence_id": [ | |
sen_id for sen_id, sen_txt in example_dict["normal"]["content"].items() | |
], | |
"normal_sentence": [ | |
sen_txt for sen_id, sen_txt in example_dict["normal"]["content"].items() | |
], | |
}, | |
}, | |
"simple": { | |
"simple_article_id": example_dict["simple"]["id"], | |
"simple_article_title": example_dict["simple"]["title"], | |
"simple_article_url": example_dict["simple"]["url"], | |
"simple_article_content": { | |
"simple_sentence_id": [ | |
sen_id for sen_id, sen_txt in example_dict["simple"]["content"].items() | |
], | |
"simple_sentence": [ | |
sen_txt for sen_id, sen_txt in example_dict["simple"]["content"].items() | |
], | |
}, | |
}, | |
"paragraph_alignment": { | |
"normal_paragraph_id": [ | |
norm_id for simp_id, norm_id in example_dict.get("paragraph_alignment", []) | |
], | |
"simple_paragraph_id": [ | |
simp_id for simp_id, norm_id in example_dict.get("paragraph_alignment", []) | |
], | |
}, | |
"sentence_alignment": { | |
"normal_sentence_id": [ | |
norm_id for simp_id, norm_id in example_dict.get("sentence_alignment", []) | |
], | |
"simple_sentence_id": [ | |
simp_id for simp_id, norm_id in example_dict.get("sentence_alignment", []) | |
], | |
}, | |
} | |
yield id_, res | |