Datasets:

ArXiv:
License:
chcorbi commited on
Commit
d9f6ccc
1 Parent(s): f154389

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -1
README.md CHANGED
@@ -10,4 +10,87 @@ tags:
10
  pretty_name: Helvipad
11
  size_categories:
12
  - 10K<n<100K
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  pretty_name: Helvipad
11
  size_categories:
12
  - 10K<n<100K
13
+ ---
14
+
15
+ # <span style="font-variant: small-caps;">Helvipad</span>: A Real-World Dataset for Omnidirectional Stereo Depth Estimation
16
+
17
+
18
+ ## Abstract
19
+
20
+ Despite considerable progress in stereo depth estimation, omnidirectional imaging remains underexplored,
21
+ mainly due to the lack of appropriate data.
22
+ We introduce <span style="font-variant: small-caps;">Helvipad</span>,
23
+ a real-world dataset for omnidirectional stereo depth estimation, consisting of 40K frames from video sequences
24
+ across diverse environments, including crowded indoor and outdoor scenes with diverse lighting conditions.
25
+ Collected using two 360° cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate
26
+ depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we
27
+ provide an augmented training set with a significantly increased label density by using depth completion.
28
+ We benchmark leading stereo depth estimation models for both standard and omnidirectional images.
29
+ The results show that while recent stereo methods perform decently, a significant challenge persists in accurately
30
+ estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models,
31
+ achieving improved performance.
32
+
33
+ ## Dataset Structure
34
+
35
+ The dataset is organized into training and testing subsets with the following structure:
36
+
37
+ ```
38
+ helvipad/
39
+ ├── train/
40
+ │ ├── depth_maps # Depth maps generated from LiDAR data
41
+ │ ├── depth_maps_augmented # Augmented depth maps using depth completion
42
+ │ ├── disparity_maps # Disparity maps computed from depth maps
43
+ │ ├── disparity_maps_augmented # Augmented disparity maps using depth completion
44
+ │ ├── images_top # Top-camera RGB images
45
+ │ ├── images_bottom # Bottom-camera RGB images
46
+ │ ├── LiDAR_pcd # Original LiDAR point cloud data
47
+ ├── test/
48
+ │ ├── depth_maps # Depth maps generated from LiDAR data
49
+ │ ├── disparity_maps # Disparity maps computed from depth maps
50
+ │ ├── images_top # Top-camera RGB images
51
+ │ ├── images_bottom # Bottom-camera RGB images
52
+ │ ├── LiDAR_pcd # Original LiDAR point cloud data
53
+ ```
54
+
55
+
56
+ ## Benchmark
57
+
58
+ We evaluate the performance of multiple state-of-the-art and popular stereo matching methods, both for standard and 360° images. All models are trained on a single NVIDIA A100 GPU with
59
+ the largest possible batch size to ensure comparable use of computational resources.
60
+
61
+ | Method | Type | Disp-MAE (°) | Disp-RMSE (°) | Disp-MARE | Depth-MAE (m) | Depth-RMSE (m) | Depth-MARE (m) |
62
+ |--------------------|----------------|--------------|---------------|-----------|---------------|----------------|----------------|
63
+ | [PSMNet](https://arxiv.org/abs/1803.08669) | Stereo | 0.33 | 0.54 | 0.20 | 2.79 | 6.17 | 0.29 |
64
+ | [360SD-Net](https://arxiv.org/abs/1911.04460) | 360° Stereo | 0.21 | 0.42 | 0.18 | 2.14 | 5.12 | 0.15 |
65
+ | [IGEV-Stereo](https://arxiv.org/abs/2303.06615) | Stereo | 0.22 | 0.41 | 0.17 | 1.85 | 4.44 | 0.15 |
66
+ | 360-IGEV-Stereo | 360° Stereo | **0.18** | **0.39** | **0.15** | **1.77** | **4.36** | **0.14** |
67
+
68
+
69
+ ## Project Page
70
+
71
+ For more information, visualizations, and updates, visit the **[project page](https://vita-epfl.github.io/Helvipad/)**.
72
+
73
+ ## Citation
74
+
75
+ If you use the Helvipad dataset in your research, please cite our paper:
76
+
77
+ ```bibtex
78
+ @misc{zayene2024helvipad,
79
+ author = {Zayene, Mehdi and Endres, Jannik and Havolli, Albias and Corbière, Charles and Cherkaoui, Salim and Ben Ahmed Kontouli, Alexandre and Alahi, Alexandre},
80
+ title = {Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation},
81
+ year = {2024},
82
+ eprint = {2403.16999},
83
+ archivePrefix = {arXiv},
84
+ primaryClass = {cs.CV}
85
+ }
86
+ ```
87
+
88
+ ## License
89
+
90
+ This dataset is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/).
91
+
92
+ ## Acknowledgments
93
+
94
+ This work was supported by the [EPFL Center for Imaging](https://imaging.epfl.ch/) through a Collaborative Imaging Grant.
95
+ We thank the VITA lab members for their valuable feedback, which helped to enhance the quality of this manuscript.
96
+ We also express our gratitude to Dr. Simone Schaub-Meyer and Oliver Hahn for their insightful advice during the project's final stages.