import torch import cv2 import time # Dataset constants BASELINE = 0.191 # Baseline in meters HEIGHT_ORIGINAL = 1920 # Original image height HEIGHT_DOWNSCALED = 960 # Downscaled height for disparity def compute_depth_from_disparity(disparity_map: torch.Tensor) -> torch.Tensor: """ Convert a disparity map to a depth map based on dataset-specific calibration. The depth is computed using trigonometric projection: depth = B * (sin(theta) / tan(disparity_rad) + cos(theta)) where: - B is the baseline. - theta is the vertical angle corresponding to each pixel in the y-grid. - disparity_rad is the disparity map scaled to radians. Parameters: disparity_map (torch.Tensor): Input tensor of shape (bs, 1, h, w) or (bs, h, w). Returns: torch.Tensor: Depth map of shape (bs, h, w). """ # Ensure input is 3D (batch, height, width) has_channel_dim = disparity_map.dim() == 4 and disparity_map.shape[1] == 1 if has_channel_dim: disparity_map = disparity_map.squeeze(1) bs, height, width = disparity_map.shape # Compute y-grid values y_grid = ( torch.arange(512 + 2 * height - 1, 512, step=-2, device=disparity_map.device) .unsqueeze(0) .unsqueeze(-1) .expand(bs, -1, width) ) # Compute angle and disparity in radians theta_grid = y_grid * torch.pi / HEIGHT_ORIGINAL disparity_map_rad = (torch.pi / HEIGHT_DOWNSCALED) * disparity_map # Initialize depth map depth_map = torch.zeros_like(disparity_map, dtype=torch.float32) # Compute depth only where disparity is valid non_zero_disparity = disparity_map != 0 depth_map[non_zero_disparity] = ( (torch.sin(theta_grid[non_zero_disparity]) / torch.tan(disparity_map_rad[non_zero_disparity])) + torch.cos(theta_grid[non_zero_disparity]) ) * BASELINE # Restore channel dimension if input had it if has_channel_dim: depth_map = depth_map.unsqueeze(1) return depth_map def compute_disparity_from_depth(depth_map: torch.Tensor) -> torch.Tensor: """ Convert a depth map to a disparity map based on dataset-specific calibration. This function reverses the depth-to-disparity conversion, based on the relationship: tan(disparity_rad) = sin(theta) / (depth / B - cos(theta)) The final disparity in pixel units is then: disparity = (H / pi) * atan(tan(disparity_rad)) where: - B is the baseline. - theta is the vertical angle corresponding to each pixel in the y-grid. - disparity_rad is the angular disparity in radians. Parameters: depth_map (torch.Tensor): Input tensor of shape (bs, 1, h, w) or (bs, h, w). Returns: torch.Tensor: Disparity map of shape (bs, h, w). """ # Ensure input is 3D (batch, height, width) has_channel_dim: bool = depth_map.dim() == 4 and depth_map.shape[1] == 1 if has_channel_dim: depth_map = depth_map.squeeze(1) bs, height, width = depth_map.shape # Compute y-grid values y_grid = ( torch.arange(512 + 2 * height - 1, 512, step=-2, device=depth_map.device) .unsqueeze(0) .unsqueeze(-1) .expand(bs, -1, width) ) # Compute theta (polar angle) theta_grid = y_grid * torch.pi / HEIGHT_ORIGINAL # Initialize depth map disparity_map = torch.zeros_like(depth_map, dtype=torch.float32) # Compute disparity only where depth is valid non_zero_depth = depth_map != 0 tan_disparity_rad = torch.sin(theta_grid[non_zero_depth]) / ( (depth_map[non_zero_depth] / BASELINE) - torch.cos(theta_grid[non_zero_depth]) ) disparity_map_rad = torch.atan(tan_disparity_rad) disparity_map[non_zero_depth] = (HEIGHT_DOWNSCALED / torch.pi) * disparity_map_rad # Restore channel dimension if input had it if has_channel_dim: disparity_map = disparity_map.unsqueeze(1) return disparity_map def disp_deg_to_disp_pix(disp_deg: float) -> float: """ Convert a disparity value from degrees to pixels. The relationship is: disp_pix = (H / 180) * disp_deg where: - H is the image height specific to the dataset. - disp_deg is the disparity value in degrees. Parameters: disp_deg (float): Disparity in degrees. Returns: float: Disparity in pixels. """ H_down: int = 960 return (H_down / 180) * disp_deg def disp_pix_to_disp_deg(disp_pix: float) -> float: """ Convert a disparity value from pixels to degrees. The relationship is: disp_deg = (180 / H) * disp_pix where: - H is the dataset-specific image height. - disp_pix is the disparity value in pixels. Parameters: disp_pix (float): Disparity in pixels. Returns: float: Disparity in degrees. """ H_down: int = 960 return (180 / H_down) * disp_pix def readDepthHelvipad(filename: str) -> tuple[torch.Tensor, torch.Tensor]: """ Read a depth map from a Helvipad dataset file. The depth is stored in a 16-bit format and needs to be scaled by 1/256. Parameters: filename (str): Path to the depth file. Returns: tuple[torch.Tensor, torch.Tensor]: - Depth map tensor (H, W). - Validity mask tensor (H, W) indicating valid depth values. """ depth = load_depth_with_infinite_retry(filename) / 256.0 valid = depth > 0.0 return depth, valid def readDisparityHelvipad(filename: str) -> tuple[torch.Tensor, torch.Tensor]: """ Read a disparity map from a Helvipad dataset file. The disparity is stored in a 16-bit format and needs to be scaled by 1/2048. Parameters: filename (str): Path to the disparity file. Returns: tuple[torch.Tensor, torch.Tensor]: - Disparity map tensor (H, W). - Validity mask tensor (H, W) indicating valid disparity values. """ disp = load_depth_with_infinite_retry(filename) / 2048.0 valid = disp > 0.0 return disp, valid