Chengzu Li commited on
Commit
c4e9bec
·
verified ·
1 Parent(s): a990c51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -3
README.md CHANGED
@@ -1,3 +1,111 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - visual-question-answering
5
+ language:
6
+ - en
7
+ tags:
8
+ - spatial
9
+ - multimodal
10
+ size_categories:
11
+ - 1K<n<10K
12
+ ---
13
+ # Dataset Card for TOPVIEWRS
14
+
15
+ <!-- Provide a quick summary of the dataset. -->
16
+ The TOPVIEWRS (Top-View Reasoning in Space) benchmark is a multimodal benchmark intended to evaluate the spatial reasoning ability of current Vision-Language Models.
17
+ It consists of 11,384 multiple-choice questions with either realistic or semantic top-view map as visual input, across 4 perception and reasoning tasks with different levels of complexity.
18
+ For details, please refer to the [project page](https://topviewrs.github.io/) and the [paper](https://arxiv.org/pdf/2406.02537).
19
+
20
+ ## Dataset Description
21
+
22
+ - **Homepage/Repository:** [https://topviewrs.github.io/](https://topviewrs.github.io/)
23
+ - **Paper:** [TOPVIEWRS: Vision-Language Models as Top-View Spatial Reasoners](https://arxiv.org/pdf/2406.02537)
24
+ - **Point of Contact:** [[email protected]](mailto:[email protected])
25
+
26
+ ## Dataset Details
27
+
28
+ ### Dataset Features
29
+
30
+ <!-- Provide a longer summary of what this dataset is. -->
31
+ - **Multi-Scale Top-View Maps**: Multi-scale top-view maps of single rooms and full houses add divergence in the granularity of the entities (objects or rooms) in spatial reasoning.
32
+ - **Realistic Environmental Scenarios with Rich Object Sets**: Real-world environments from indoor scenes, with 80 objects per scene on average.
33
+ - **Structured Question Framework**: Four tasks including 9 sub-tasks in total, allowing for a fine-grained evaluation and analysis of models’ capabilities from various perspectives and levels of granularity.
34
+
35
+ ### Dataset Statistics
36
+
37
+ The TOPVIEWRS evaluation dataset comprises a total of 11,384 multiple-choice questions after human verification, with
38
+ 5,539 questions associated with realistic top-view
39
+ maps, and 5,845 with semantic top-view maps.
40
+ The choices are uniformly distributed over choices A(25.5%), B (24.6%), C (24.5%) and D (25.4%).
41
+
42
+ The maps are collected from Matterport3D dataset, which includes 90 building-scale scenes with instance-level semantic and room-level region annotations in 3D meshes.
43
+ We filter these to exclude multi-floor and low-quality scenes, selecting 7 scenes with an average of 80 objects and 12 rooms each.
44
+
45
+ **Note**: *We only release part of the benchmark (2 different scenarios covering all the tasks of the benchmark) in this dataset card to avoid data contamination.
46
+ For full access to the benchmark, please get in touch with [Chengzu Li](chengzu-li.github.io) via email: [[email protected]](mailto:[email protected])*
47
+
48
+ ### Uses
49
+
50
+ ```
51
+ data = load_datasets(
52
+ "cl917/topviewrs",
53
+ trust_remote_code=True,
54
+ map_type=MAP_TYPE,
55
+ task_split=TASK_SPLIT,
56
+ image_save_dir=IMAGE_SAVE_DIR
57
+ )
58
+ ```
59
+
60
+ To use the dataset, you have to specify several arguments when calling `load_datasets`:
61
+ - `map_type`: should be one of `['realistic', 'semantic']`
62
+ - `task_split`: should be one of `['top_view_recognition', 'top_view_localization', 'static_spatial_reasoning', 'dynamic_spatial_reasoning']`
63
+ - `image_save_dir`: specify the directory where you would like the images to be saved
64
+
65
+ ### Data Instances
66
+
67
+ For example an instance from the `top_view_recognition` task is:
68
+
69
+ ```
70
+ {
71
+ 'index': 0,
72
+ 'scene_id': '17DRP5sb8fy',
73
+ 'question': 'Which of the following objects are in the room?',
74
+ 'choices': ['shelving', 'bed', 'toilet', 'seating'],
75
+ 'labels': ['bed'],
76
+ 'choice_type': '<OBJECT>',
77
+ 'map_path': '<IMAGE_SAVE_DIR>/data/mp3d/17DRP5sb8fy/semantic/17DRP5sb8fy_0_0.png',
78
+ 'question_ability': 'object_recognition'
79
+ }
80
+ ```
81
+
82
+ ### Data Fields
83
+
84
+ Every example has the following fields
85
+ - `idx`: an `int` feature
86
+ - `scene_id`: a `string` feature, unique id for the scene from Matterport3D
87
+ - `question`: a `string` feature
88
+ - `choices`: a sequence of `string` feature, choices for multiple-choice question
89
+ - `labels`: a sequence of `string` feature, answer for multiple-choice question. The label's position in the `choices` can be used to determine whether it is A, B, C, or D.
90
+ - `choice_type`: a `string` feature
91
+ - `map_path`: a `string` feature, the path of the input image
92
+ - `question_ability`: a `string` feature, sub-tasks for fine-grained evaluation and analysis
93
+
94
+ For `dynamic_spatial_reasoning` task, there would be one more data field:
95
+ - `reference_path`: a sequence of `list[int]` feature, the coordinate sequence of the navigation path on the top-view map.
96
+
97
+
98
+ ## Citation
99
+
100
+ ```
101
+ @misc{li2024topviewrs,
102
+ title={TopViewRS: Vision-Language Models as Top-View Spatial Reasoners},
103
+ author={Chengzu Li and Caiqi Zhang and Han Zhou and Nigel Collier and Anna Korhonen and Ivan Vulić},
104
+ year={2024},
105
+ eprint={2406.02537},
106
+ archivePrefix={arXiv},
107
+ primaryClass={cs.CL}
108
+ }
109
+ ```
110
+
111
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->