|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text""" |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{pafilis2013species, |
|
title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text}, |
|
author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl}, |
|
journal={PloS one}, |
|
volume={8}, |
|
number={6}, |
|
pages={e65390}, |
|
year={2013}, |
|
publisher={Public Library of Science} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition, |
|
which we here use to identifynames of species and other taxa in text. The tool, SPECIES, is more than an order of |
|
magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard |
|
corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus |
|
comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of |
|
organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database |
|
and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists. |
|
""" |
|
|
|
_HOMEPAGE = "https://species.jensenlab.org/" |
|
_URL = "https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download/" |
|
_BIOBERT_NER_DATASET_DIRECTORY = "s800" |
|
_TRAINING_FILE = "train.tsv" |
|
_DEV_FILE = "devel.tsv" |
|
_TEST_FILE = "test.tsv" |
|
|
|
|
|
class Species800Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Species800""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Species800. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Species800Config, self).__init__(**kwargs) |
|
|
|
|
|
class Species800(datasets.GeneratorBasedBuilder): |
|
"""Species800 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Species800Config(name="species_800", version=datasets.Version("1.0.0"), description="Species800 dataset"), |
|
] |
|
|
|
def _info(self): |
|
custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE', |
|
'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', |
|
'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=custom_names |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"biobert_ner_datasets": _URL, |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
dataset_directory = os.path.join(downloaded_files["biobert_ner_datasets"], _BIOBERT_NER_DATASET_DIRECTORY) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dataset_directory, _TRAINING_FILE)} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dataset_directory, _DEV_FILE)} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dataset_directory, _TEST_FILE)} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split("\t") |
|
tokens.append(splits[0]) |
|
if(splits[1].rstrip()=="B"): |
|
ner_tags.append("B-SPECIES") |
|
elif(splits[1].rstrip()=="I"): |
|
ner_tags.append("I-SPECIES") |
|
else: |
|
ner_tags.append(splits[1].rstrip()) |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|