Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
christopher commited on
Commit
c0e05b7
·
verified ·
1 Parent(s): 124b64a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -26,4 +26,51 @@ pretty_name: The MNIST-1D Dataset
26
  size_categories:
27
  - 1K<n<10K
28
  ---
 
 
 
 
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  size_categories:
27
  - 1K<n<10K
28
  ---
29
+ > [!NOTE]
30
+ > The following is taken from the authors' GitHub repository: https://github.com/greydanus/mnist1d
31
+ >
32
+ # The MNIST-1D Dataset
33
 
34
+ Most machine learning models get around the same ~99% test accuracy on MNIST. Our dataset, MNIST-1D, is 100x smaller (default sample size: 4000+1000; dimensionality: 40) and does a better job of separating between models with/without nonlinearity and models with/without spatial inductive biases.
35
+
36
+ ## Dataset Creation
37
+
38
+ This version of the dataset was created by using the pickle file provided by the dataset authors in the original repository: [mnist1d_data.pkl](https://github.com/greydanus/mnist1d/blob/master/mnist1d_data.pkl) and was generated like follows:
39
+
40
+ ```python
41
+ import sys ; sys.path.append('..') # useful if you're running locally
42
+ import mnist1d
43
+ from datasets import Dataset, DatasetDict
44
+
45
+ # Load the data using the mnist1d library
46
+ args = mnist1d.get_dataset_args()
47
+ data = mnist1d.get_dataset(args, path='./mnist1d_data.pkl', download=True) # This is the default setting
48
+
49
+ # Load the data into a Hugging Face dataset and push it to the hub
50
+ train = Dataset.from_dict({"x": data["x"], "y":data["y"]})
51
+ test = Dataset.from_dict({"x": data["x_test"], "y":data["y_test"]})
52
+ DatasetDict({"train":train, "test":test}).push_to_hub("christopher/mnist1d")
53
+ ```
54
+
55
+ ## Dataset Usage
56
+
57
+ using the `datasets` library:
58
+
59
+ ```python
60
+ from datasets import load_dataset
61
+ train = load_dataset("christopher/mnist1d", split="train")
62
+ test = load_dataset("christopher/mnist1d", split="test")
63
+ all = load_dataset("christopher/mnist1d", split="train+test")
64
+ ```
65
+
66
+
67
+ ## Citation
68
+
69
+ ```json
70
+ @inproceedings{greydanus2024scaling,
71
+ title={Scaling down deep learning with {MNIST}-{1D}},
72
+ author={Greydanus, Sam and Kobak, Dmitry},
73
+ booktitle={Proceedings of the 41st International Conference on Machine Learning},
74
+ year={2024}
75
+ }
76
+ ```