--- dataset_info: features: - name: x sequence: float64 - name: 'y' dtype: int64 splits: - name: train num_bytes: 1328000 num_examples: 4000 - name: test num_bytes: 332000 num_examples: 1000 download_size: 2009200 dataset_size: 1660000 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* license: apache-2.0 pretty_name: The MNIST-1D Dataset size_categories: - 1K [!NOTE] > The following is taken from the authors' GitHub repository: https://github.com/greydanus/mnist1d > # The MNIST-1D Dataset Most machine learning models get around the same ~99% test accuracy on MNIST. Our dataset, MNIST-1D, is 100x smaller (default sample size: 4000+1000; dimensionality: 40) and does a better job of separating between models with/without nonlinearity and models with/without spatial inductive biases. ## Dataset Creation This version of the dataset was created by using the pickle file provided by the dataset authors in the original repository: [mnist1d_data.pkl](https://github.com/greydanus/mnist1d/blob/master/mnist1d_data.pkl) and was generated like follows: ```python import sys ; sys.path.append('..') # useful if you're running locally import mnist1d from datasets import Dataset, DatasetDict # Load the data using the mnist1d library args = mnist1d.get_dataset_args() data = mnist1d.get_dataset(args, path='./mnist1d_data.pkl', download=True) # This is the default setting # Load the data into a Hugging Face dataset and push it to the hub train = Dataset.from_dict({"x": data["x"], "y":data["y"]}) test = Dataset.from_dict({"x": data["x_test"], "y":data["y_test"]}) DatasetDict({"train":train, "test":test}).push_to_hub("christopher/mnist1d") ``` ## Dataset Usage using the `datasets` library: ```python from datasets import load_dataset train = load_dataset("christopher/mnist1d", split="train") test = load_dataset("christopher/mnist1d", split="test") all = load_dataset("christopher/mnist1d", split="train+test") ``` ## Citation ```json @inproceedings{greydanus2024scaling, title={Scaling down deep learning with {MNIST}-{1D}}, author={Greydanus, Sam and Kobak, Dmitry}, booktitle={Proceedings of the 41st International Conference on Machine Learning}, year={2024} } ```