a-number
stringlengths 7
7
| sequence
sequencelengths 1
377
| description
stringlengths 3
852
|
---|---|---|
A000301 | [
"1",
"2",
"2",
"4",
"8",
"32",
"256",
"8192",
"2097152",
"17179869184",
"36028797018963968",
"618970019642690137449562112",
"22300745198530623141535718272648361505980416",
"13803492693581127574869511724554050904902217944340773110325048447598592"
] | a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n). |
A000302 | [
"1",
"4",
"16",
"64",
"256",
"1024",
"4096",
"16384",
"65536",
"262144",
"1048576",
"4194304",
"16777216",
"67108864",
"268435456",
"1073741824",
"4294967296",
"17179869184",
"68719476736",
"274877906944",
"1099511627776",
"4398046511104",
"17592186044416",
"70368744177664",
"281474976710656"
] | Powers of 4: a(n) = 4^n. |
A000303 | [
"0",
"1",
"4",
"16",
"69",
"348",
"2016",
"13357",
"99376",
"822040",
"7477161",
"74207208",
"797771520",
"9236662345",
"114579019468",
"1516103040832",
"21314681315997",
"317288088082404",
"4985505271920096",
"82459612672301845",
"1432064398910663704",
"26054771465540507272"
] | Number of permutations of [n] in which the longest increasing run has length 2. |
A000304 | [
"2",
"3",
"6",
"18",
"108",
"1944",
"209952",
"408146688",
"85691213438976",
"34974584955819144511488",
"2997014624388697307377363936018956288",
"104819342594514896999066634490728502944926883876041385836544"
] | a(n) = a(n-1)*a(n-2). |
A000305 | [
"1",
"4",
"18",
"89",
"466",
"2537",
"14209",
"81316",
"473338",
"2793454",
"16674417",
"100487896",
"610549829",
"3735850007",
"23000055178",
"142370597601",
"885521350882",
"5531501612071",
"34686798239678",
"218273864005214",
"1377897874711437"
] | Number of certain rooted planar maps. |
A000306 | [
"1",
"4",
"19",
"66",
"219",
"645",
"1813",
"4802",
"12265",
"30198",
"72396",
"169231",
"387707",
"871989",
"1930868",
"4215615",
"9091410",
"19389327",
"40944999",
"85691893",
"177898521"
] | Number of trees of diameter 8. |
A000307 | [
"1",
"1",
"4",
"22",
"154",
"1304",
"12915",
"146115",
"1855570",
"26097835",
"402215465",
"6734414075",
"121629173423",
"2355470737637",
"48664218965021",
"1067895971109199",
"24795678053493443",
"607144847919796830",
"15630954703539323090",
"421990078975569031642",
"11918095123121138408128"
] | Number of 4-level labeled rooted trees with n leaves. |
A000308 | [
"1",
"2",
"3",
"6",
"36",
"648",
"139968",
"3265173504",
"296148833645101056",
"135345882205792807436868315512832",
"130876399105969522361889021452224949874232743897657526714368"
] | a(n) = a(n-1)*a(n-2)*a(n-3) with a(1)=1, a(2)=2 and a(3)=3. |
A000309 | [
"1",
"1",
"4",
"24",
"176",
"1456",
"13056",
"124032",
"1230592",
"12629760",
"133186560",
"1436098560",
"15774990336",
"176028860416",
"1990947110912",
"22783499599872",
"263411369705472",
"3073132646563840",
"36143187370967040",
"428157758086840320",
"5105072641718353920",
"61228492804372561920"
] | Number of rooted planar bridgeless cubic maps with 2n nodes. |
A000310 | [
"1",
"4",
"26",
"234",
"2696",
"37919",
"630521",
"12111114",
"264051201",
"6445170229",
"174183891471",
"5164718385337",
"166737090160871",
"5822980248613990",
"218756388226681557",
"8797723991458469015",
"377159237609540937788",
"17170729962232112834302",
"827382365085791968518198",
"42070004707327023844695198"
] | Coefficients of iterated exponentials. |
A000311 | [
"0",
"1",
"1",
"4",
"26",
"236",
"2752",
"39208",
"660032",
"12818912",
"282137824",
"6939897856",
"188666182784",
"5617349020544",
"181790703209728",
"6353726042486272",
"238513970965257728",
"9571020586419012608",
"408837905660444010496",
"18522305410364986906624"
] | Schroeder's fourth problem; also series-reduced rooted trees with n labeled leaves; also number of total partitions of n. |
A000312 | [
"1",
"1",
"4",
"27",
"256",
"3125",
"46656",
"823543",
"16777216",
"387420489",
"10000000000",
"285311670611",
"8916100448256",
"302875106592253",
"11112006825558016",
"437893890380859375",
"18446744073709551616",
"827240261886336764177",
"39346408075296537575424",
"1978419655660313589123979"
] | a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions). |
A000313 | [
"0",
"0",
"0",
"1",
"4",
"30",
"220",
"1855",
"17304",
"177996",
"2002440",
"24474285",
"323060540",
"4581585866",
"69487385604",
"1122488536715",
"19242660629360",
"348933579412440",
"6673354706262864",
"134252194678935321",
"2834212998777523380",
"62651024183503148470",
"1447238658638922729580"
] | Number of permutations of length n with 3 consecutive ascending pairs. |
A000314 | [
"1",
"1",
"1",
"4",
"31",
"362",
"5676",
"111982",
"2666392",
"74433564",
"2384579440",
"86248530296",
"3476794472064",
"154579941792256",
"7514932528712896",
"396595845237540600",
"22581060079942183936",
"1379771773100463174608",
"90059660791562688208128",
"6253914166368448348512064"
] | Number of mixed Husimi trees with n nodes; or labeled polygonal cacti with bridges. |
A000315 | [
"1",
"1",
"1",
"4",
"56",
"9408",
"16942080",
"535281401856",
"377597570964258816",
"7580721483160132811489280",
"5363937773277371298119673540771840"
] | Number of reduced Latin squares of order n; also number of labeled loops (quasigroups with an identity element) with a fixed identity element. |
A000316 | [
"1",
"0",
"4",
"80",
"4752",
"440192",
"59245120",
"10930514688",
"2649865335040",
"817154768973824",
"312426715251262464",
"145060238642780180480",
"80403174342119992692736",
"52443098500204184915312640",
"39764049487996490505336537088"
] | Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches. |
A000317 | [
"1",
"2",
"3",
"7",
"37",
"1159",
"1301767",
"1693089917617",
"2866551265129451657751739",
"8217116155610406522540626640615749228405055996847"
] | a(n+1) = a(n)^2 - a(n) a(n-1) + a(n-1)^2. |
A000318 | [
"4",
"128",
"16384",
"4456448",
"2080374784",
"1483911200768",
"1501108249821184",
"2044143848640217088",
"3605459138582973251584",
"7995891855149741436305408",
"21776918737280678860353961984",
"71454103701490016776039304265728",
"278008871543597996197497752082448384"
] | Generalized tangent numbers d(4,n). |
A000319 | [
"1",
"1",
"74",
"-1",
"-2",
"-3",
"0",
"1",
"30",
"-2",
"-2",
"29",
"1",
"4",
"-6",
"0",
"1",
"2",
"-1",
"-1",
"-1",
"-1",
"-2",
"-9",
"0",
"0",
"1",
"2",
"-2",
"-35",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-2",
"-3",
"0",
"0",
"1",
"5",
"-2",
"-2",
"3",
"1",
"1",
"-4",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-2",
"-3",
"1",
"2",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-2",
"-3",
"0",
"1",
"2",
"-1",
"-2",
"-21",
"-7",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
] | a(n) = floor(b(n)), where b(n) = tan(b(n-1)), b(0)=1. |
A000320 | [
"4",
"272",
"55744",
"23750912",
"17328937984",
"19313964388352",
"30527905292468224",
"64955605537174126592",
"179013508069217017790464",
"620314831396713435870789632",
"2639743384489464189324523208704",
"13533573366345611477262311433961472",
"82274260343572247169162187576069586944"
] | Generalized tangent numbers d(5,n). |
A000321 | [
"1",
"-1",
"-1",
"5",
"1",
"-41",
"31",
"461",
"-895",
"-6481",
"22591",
"107029",
"-604031",
"-1964665",
"17669471",
"37341149",
"-567425279",
"-627491489",
"19919950975",
"2669742629",
"-759627879679",
"652838174519",
"31251532771999",
"-59976412450835",
"-1377594095061119",
"4256461892701199",
"64623242860354751"
] | H_n(-1/2), where H_n(x) is Hermite polynomial of degree n. |
A000322 | [
"1",
"1",
"1",
"1",
"1",
"5",
"9",
"17",
"33",
"65",
"129",
"253",
"497",
"977",
"1921",
"3777",
"7425",
"14597",
"28697",
"56417",
"110913",
"218049",
"428673",
"842749",
"1656801",
"3257185",
"6403457",
"12588865",
"24749057",
"48655365",
"95653929",
"188050673",
"369697889",
"726806913",
"1428864769"
] | Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1. |
A000323 | [
"5",
"9",
"21",
"37",
"69",
"69",
"89",
"137",
"177",
"421",
"481",
"657",
"749",
"885",
"1085",
"1305",
"1353",
"1489",
"1861",
"2617",
"2693",
"3125",
"5249",
"5761",
"7129",
"8109",
"9465",
"9465",
"10717",
"12401",
"12401",
"16237",
"16237",
"24833",
"30725",
"35237",
"46701",
"47441",
"47441",
"61493",
"67797",
"67805",
"67805"
] | Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives A(A000099(n)). |
A000324 | [
"1",
"5",
"9",
"49",
"2209",
"4870849",
"23725150497409",
"562882766124611619513723649",
"316837008400094222150776738483768236006420971486980609"
] | A nonlinear recurrence: a(0) = 1, a(1) = 5, a(n) = a(n-1)^2 - 4*a(n-1) + 4 for n>1. |
A000325 | [
"1",
"1",
"2",
"5",
"12",
"27",
"58",
"121",
"248",
"503",
"1014",
"2037",
"4084",
"8179",
"16370",
"32753",
"65520",
"131055",
"262126",
"524269",
"1048556",
"2097131",
"4194282",
"8388585",
"16777192",
"33554407",
"67108838",
"134217701",
"268435428",
"536870883",
"1073741794",
"2147483617"
] | a(n) = 2^n - n. |
A000326 | [
"0",
"1",
"5",
"12",
"22",
"35",
"51",
"70",
"92",
"117",
"145",
"176",
"210",
"247",
"287",
"330",
"376",
"425",
"477",
"532",
"590",
"651",
"715",
"782",
"852",
"925",
"1001",
"1080",
"1162",
"1247",
"1335",
"1426",
"1520",
"1617",
"1717",
"1820",
"1926",
"2035",
"2147",
"2262",
"2380",
"2501",
"2625",
"2752",
"2882",
"3015",
"3151"
] | Pentagonal numbers: a(n) = n*(3*n-1)/2. |
A000327 | [
"1",
"5",
"12",
"23",
"39",
"62",
"91",
"127",
"171",
"228",
"294",
"370",
"461",
"561",
"677",
"811",
"955",
"1121",
"1303",
"1499",
"1719",
"1960",
"2218",
"2499",
"2806",
"3131",
"3485",
"3868",
"4274",
"4706",
"5166",
"5658",
"6175",
"6725",
"7309",
"7923",
"8572",
"9256",
"9972",
"10728",
"11521",
"12349",
"13218",
"14126",
"15072"
] | Number of partitions into non-integral powers. |
A000328 | [
"1",
"5",
"13",
"29",
"49",
"81",
"113",
"149",
"197",
"253",
"317",
"377",
"441",
"529",
"613",
"709",
"797",
"901",
"1009",
"1129",
"1257",
"1373",
"1517",
"1653",
"1793",
"1961",
"2121",
"2289",
"2453",
"2629",
"2821",
"3001",
"3209",
"3409",
"3625",
"3853",
"4053",
"4293",
"4513",
"4777",
"5025",
"5261",
"5525",
"5789",
"6077",
"6361",
"6625"
] | Number of points of norm <= n^2 in square lattice. |
A000329 | [
"1",
"2",
"75",
"-1",
"-1",
"-2",
"1",
"2",
"31",
"-1",
"-2",
"29",
"1",
"5",
"-6",
"1",
"1",
"3",
"-1",
"-1",
"-1",
"-1",
"-1",
"-9",
"1",
"1",
"1",
"2",
"-2",
"-35",
"0",
"0",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-2",
"1",
"1",
"1",
"5",
"-1",
"-2",
"4",
"1",
"2",
"-4",
"0",
"0",
"0",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-2",
"1",
"3",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1"
] | Nearest integer to b(n), where b(n) = tan(b(n-1)), b(0) = 1. |
A000330 | [
"0",
"1",
"5",
"14",
"30",
"55",
"91",
"140",
"204",
"285",
"385",
"506",
"650",
"819",
"1015",
"1240",
"1496",
"1785",
"2109",
"2470",
"2870",
"3311",
"3795",
"4324",
"4900",
"5525",
"6201",
"6930",
"7714",
"8555",
"9455",
"10416",
"11440",
"12529",
"13685",
"14910",
"16206",
"17575",
"19019",
"20540",
"22140",
"23821",
"25585",
"27434",
"29370"
] | Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6. |
A000331 | [
"5",
"14",
"1026",
"4324",
"311387",
"6425694",
"579783114",
"4028104212",
"7315072725560",
"61358264615344",
"9569450876916944",
"1632353370882506848",
"1365475358484643531856",
"15211641461623992544160",
"74766806258361827981250240",
"936580261005146914634459520",
"6083678228249789825160175706880",
"1936651082361926268672618636234240",
"688115696843061332335070140230720000",
"10517068622936239459488783307672335360",
"2913914903970372007778735454555848514846720"
] | Related to zeros of Bessel function. |
A000332 | [
"0",
"0",
"0",
"0",
"1",
"5",
"15",
"35",
"70",
"126",
"210",
"330",
"495",
"715",
"1001",
"1365",
"1820",
"2380",
"3060",
"3876",
"4845",
"5985",
"7315",
"8855",
"10626",
"12650",
"14950",
"17550",
"20475",
"23751",
"27405",
"31465",
"35960",
"40920",
"46376",
"52360",
"58905",
"66045",
"73815",
"82251",
"91390",
"101270",
"111930",
"123410"
] | Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24. |
A000333 | [
"1",
"5",
"15",
"40",
"98",
"237",
"534",
"1185",
"2554",
"5391",
"11117",
"22556",
"44858",
"88000",
"170107",
"324547",
"611755",
"1140382",
"2103554",
"3842826",
"6955918",
"12483075",
"22220002",
"39248230",
"68819781",
"119839422",
"207304370",
"356356801",
"608901907",
"1034452712",
"1747764522",
"2937370605",
"4911675955",
"8173032301"
] | Number of partitions into non-integral powers. |
A000334 | [
"1",
"5",
"15",
"45",
"120",
"326",
"835",
"2145",
"5345",
"13220",
"32068",
"76965",
"181975",
"425490",
"982615",
"2245444",
"5077090",
"11371250",
"25235790",
"55536870",
"121250185",
"262769080",
"565502405",
"1209096875",
"2569270050",
"5427963902",
"11404408525",
"23836421895",
"49573316740",
"102610460240"
] | Number of 4-dimensional partitions of n. |
A000335 | [
"1",
"5",
"15",
"45",
"120",
"331",
"855",
"2214",
"5545",
"13741",
"33362",
"80091",
"189339",
"442799",
"1023192",
"2340904",
"5302061",
"11902618",
"26488454",
"58479965",
"128120214",
"278680698",
"602009786",
"1292027222",
"2755684669",
"5842618668",
"12317175320",
"25825429276",
"53865355154",
"111786084504",
"230867856903",
"474585792077",
"971209629993"
] | Euler transform of A000292. |
A000336 | [
"1",
"2",
"3",
"4",
"24",
"576",
"165888",
"9172942848",
"21035720123168587776",
"18437563379178327736384102280592359424",
"590180110002114158896983994712576414865667267958188575935810179040280576"
] | a(n) = a(n-1)*a(n-2)*a(n-3)*a(n-4); for n < 5, a(n) = n. |
A000337 | [
"0",
"1",
"5",
"17",
"49",
"129",
"321",
"769",
"1793",
"4097",
"9217",
"20481",
"45057",
"98305",
"212993",
"458753",
"983041",
"2097153",
"4456449",
"9437185",
"19922945",
"41943041",
"88080385",
"184549377",
"385875969",
"805306369",
"1677721601",
"3489660929",
"7247757313",
"15032385537",
"31138512897",
"64424509441"
] | a(n) = (n-1)*2^n + 1. |
A000338 | [
"5",
"18",
"42",
"75",
"117",
"168",
"228",
"297",
"375",
"462",
"558",
"663",
"777",
"900",
"1032",
"1173",
"1323",
"1482",
"1650",
"1827",
"2013",
"2208",
"2412",
"2625",
"2847",
"3078",
"3318",
"3567",
"3825",
"4092",
"4368",
"4653",
"4947",
"5250",
"5562",
"5883",
"6213",
"6552",
"6900",
"7257",
"7623",
"7998",
"8382",
"8775",
"9177",
"9588",
"10008",
"10437",
"10875",
"11322",
"11778"
] | Expansion of x^3*(5-2*x)*(1-x^3)/(1-x)^4. |
A000339 | [
"1",
"5",
"18",
"45",
"100",
"185",
"323",
"522",
"804",
"1180",
"1687",
"2322",
"3139",
"4146",
"5377",
"6859",
"8645",
"10733",
"13203",
"16058",
"19356",
"23132",
"27460",
"32330",
"37846",
"44031",
"50954",
"58637",
"67203",
"76613",
"87021",
"98443",
"110951",
"124616",
"139526",
"155681",
"173246",
"192243"
] | Number of partitions into non-integral powers. |
A000340 | [
"1",
"5",
"18",
"58",
"179",
"543",
"1636",
"4916",
"14757",
"44281",
"132854",
"398574",
"1195735",
"3587219",
"10761672",
"32285032",
"96855113",
"290565357",
"871696090",
"2615088290",
"7845264891",
"23535794695",
"70607384108",
"211822152348",
"635466457069"
] | a(0)=1, a(n) = 3*a(n-1) + n + 1. |
A000341 | [
"1",
"2",
"3",
"6",
"26",
"96",
"210",
"1106",
"3759",
"12577",
"74072",
"423884",
"2333828",
"16736611",
"99838851",
"630091746",
"4525325020",
"38848875650",
"342245714017",
"3335164762941",
"31315463942337",
"241353231085002",
"2350106537365732",
"17903852593938447",
"158065352670318614",
"1815064841856534244",
"20577063085601738871",
"276081763499377227299"
] | Number of ways to pair up {1..2n} so sum of each pair is prime. |
A000342 | [
"0",
"0",
"0",
"0",
"0",
"1",
"5",
"19",
"61",
"180",
"498",
"1323",
"3405",
"8557",
"21103",
"51248",
"122898",
"291579",
"685562",
"1599209",
"3705122",
"8532309",
"19543867",
"44552066",
"101124867",
"228640542",
"515125815",
"1156829459",
"2590247002",
"5784031485",
"12883390590",
"28629914457"
] | Number of n-node rooted trees of height 5. |
A000343 | [
"1",
"5",
"20",
"70",
"230",
"721",
"2200",
"6575",
"19385",
"56575",
"163952",
"472645",
"1357550",
"3888820",
"11119325",
"31753269",
"90603650",
"258401245",
"736796675",
"2100818555",
"5990757124",
"17087376630",
"48753542665",
"139155765455",
"397356692275",
"1135163887190",
"3244482184720",
"9277856948255"
] | 5th power of rooted tree enumerator; number of linear forests of 5 rooted trees. |
A000344 | [
"1",
"5",
"20",
"75",
"275",
"1001",
"3640",
"13260",
"48450",
"177650",
"653752",
"2414425",
"8947575",
"33266625",
"124062000",
"463991880",
"1739969550",
"6541168950",
"24647883000",
"93078189750",
"352207870014",
"1335293573130",
"5071418015120",
"19293438101000",
"73514652074500",
"280531912316292"
] | a(n) = 5*binomial(2n, n-2)/(n+3). |
A000345 | [
"1",
"5",
"22",
"71",
"186",
"427",
"888",
"1704",
"3053",
"5203",
"8476",
"13318",
"20265",
"29946",
"43254",
"61171",
"84832",
"115713",
"155382",
"205779",
"269065",
"347906",
"445001",
"563685",
"707637",
"881042",
"1088339",
"1335019",
"1626233",
"1968701",
"2369320",
"2835467",
"3375820",
"3999234",
"4715586",
"5535965",
"6472005",
"7536195",
"8742102",
"10105163",
"11640190",
"13365254",
"15298155",
"17458190",
"19866739",
"22546131",
"25519743",
"28813410",
"32453730",
"36469433",
"40890672",
"45749944",
"51081147",
"56919908",
"63304577",
"70275008",
"77873381",
"86145156",
"95134772",
"104893757",
"115473250",
"126926418",
"139311512",
"152687434",
"167115830",
"182663928",
"199398527",
"217392226",
"236717247",
"257454630",
"279683011",
"303488723",
"328959602",
"356186407"
] | Number of partitions into non-integral powers. |
A000346 | [
"1",
"5",
"22",
"93",
"386",
"1586",
"6476",
"26333",
"106762",
"431910",
"1744436",
"7036530",
"28354132",
"114159428",
"459312152",
"1846943453",
"7423131482",
"29822170718",
"119766321572",
"480832549478",
"1929894318332",
"7744043540348",
"31067656725032",
"124613686513778",
"499744650202436"
] | a(n) = 2^(2*n+1) - binomial(2*n+1, n+1). |
A000347 | [
"1",
"5",
"24",
"84",
"251",
"653",
"1543",
"3341",
"6763",
"12879",
"23446",
"40883",
"68757",
"111976",
"177358",
"273926",
"413784",
"612430",
"889959",
"1271709",
"1789841",
"2483779",
"3402623",
"4605954",
"6166614",
"8171174",
"10724604",
"13950011",
"17994136",
"23029141",
"29255902",
"36908235",
"46257694",
"57616522",
"71344257",
"87853381",
"107612397"
] | Number of partitions into non-integral powers. |
A000348 | [
"1",
"1",
"2",
"4",
"12",
"9",
"72",
"160",
"428",
"2434",
"3011",
"10337",
"126962",
"264182",
"783550",
"5004266",
"34340141",
"176302123",
"1188146567",
"4457147441",
"7845512385",
"132253267889",
"1004345333251",
"3865703506342",
"40719018858150",
"213982561376958",
"1266218151414286",
"10976172953868304",
"59767467676582641",
"512279001476451101",
"6189067229056357433"
] | Number of ways to pair up {1^2, 2^2, ..., (2n)^2 } so sum of each pair is prime. |
A000349 | [
"0",
"0",
"0",
"1",
"5",
"24",
"128",
"835",
"6423",
"56410",
"554306",
"6016077",
"71426225",
"920484892",
"12793635300",
"190730117959",
"3035659077083",
"51371100102990",
"920989078354838",
"17437084517068465",
"347647092476801301",
"7280060180210901232",
"159755491837445900120",
"3665942433747225901707"
] | One-half the number of permutations of length n with exactly 2 rising or falling successions. |
A000350 | [
"0",
"1",
"5",
"25",
"29",
"41",
"49",
"61",
"65",
"85",
"89",
"101",
"125",
"145",
"149",
"245",
"265",
"365",
"385",
"485",
"505",
"601",
"605",
"625",
"649",
"701",
"725",
"745",
"749",
"845",
"865",
"965",
"985",
"1105",
"1205",
"1249",
"1345",
"1445",
"1585",
"1685",
"1825",
"1925",
"2065",
"2165",
"2305",
"2405",
"2501",
"2545",
"2645",
"2785",
"2885"
] | Numbers m such that Fibonacci(m) ends with m. |
A000351 | [
"1",
"5",
"25",
"125",
"625",
"3125",
"15625",
"78125",
"390625",
"1953125",
"9765625",
"48828125",
"244140625",
"1220703125",
"6103515625",
"30517578125",
"152587890625",
"762939453125",
"3814697265625",
"19073486328125",
"95367431640625",
"476837158203125",
"2384185791015625",
"11920928955078125"
] | Powers of 5: a(n) = 5^n. |
A000352 | [
"5",
"29",
"118",
"418",
"1383",
"4407",
"13736",
"42236",
"128761",
"390385",
"1179354",
"3554454",
"10696139",
"32153963",
"96592972",
"290041072",
"870647517",
"2612991141",
"7841070590",
"23527406090",
"70590606895",
"211788597919",
"635399348208",
"1906265153508",
"5718929678273",
"17157057470297"
] | One half of the number of permutations of [n] such that the differences have three runs with the same signs. |
A000353 | [
"7",
"23",
"47",
"59",
"167",
"179",
"263",
"383",
"503",
"863",
"887",
"983",
"1019",
"1367",
"1487",
"1619",
"1823",
"2063",
"2099",
"2207",
"2447",
"2459",
"2579",
"2819",
"2903",
"3023",
"3167",
"3623",
"3779",
"3863",
"4007",
"4127",
"4139",
"4259",
"4703",
"5087",
"5099",
"5807",
"5927",
"5939",
"6047",
"6659",
"6779",
"6899",
"6983"
] | Primes == 7, 19, 23 (mod 40) such that (p-1)/2 is also prime. |
A000354 | [
"1",
"1",
"5",
"29",
"233",
"2329",
"27949",
"391285",
"6260561",
"112690097",
"2253801941",
"49583642701",
"1190007424825",
"30940193045449",
"866325405272573",
"25989762158177189",
"831672389061670049",
"28276861228096781665",
"1017967004211484139941",
"38682746160036397317757"
] | Expansion of e.g.f. exp(-x)/(1-2*x). |
A000355 | [
"3",
"11",
"23",
"29",
"83",
"89",
"131",
"191",
"251",
"431",
"443",
"491",
"509",
"683",
"743",
"809",
"911",
"1031",
"1049",
"1103",
"1223",
"1229",
"1289",
"1409",
"1451",
"1511",
"1583",
"1811",
"1889",
"1931",
"2003",
"2063",
"2069",
"2129",
"2351",
"2543",
"2549",
"2903",
"2963",
"2969",
"3023",
"3329",
"3389",
"3449",
"3491",
"3623",
"3803"
] | Primes = 3, 9, 11 (mod 20) such that 2p+1 is also prime. |
A000356 | [
"1",
"5",
"35",
"294",
"2772",
"28314",
"306735",
"3476330",
"40831076",
"493684828",
"6114096716",
"77266057400",
"993420738000",
"12964140630900",
"171393565105575",
"2291968851019650",
"30961684478686500",
"422056646314726500"
] | Number of rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle: (2n)!(2n+1)! / (n!^2*(n+1)!(n+2)!). |
A000357 | [
"1",
"1",
"5",
"35",
"315",
"3455",
"44590",
"660665",
"11035095",
"204904830",
"4183174520",
"93055783320",
"2238954627848",
"57903797748386",
"1601122732128779",
"47120734323344439",
"1470076408565099152",
"48449426629560437576",
"1681560512531504058350",
"61293054886119796799892"
] | Number of 5-level labeled rooted trees with n leaves. |
A000358 | [
"1",
"2",
"2",
"3",
"3",
"5",
"5",
"8",
"10",
"15",
"19",
"31",
"41",
"64",
"94",
"143",
"211",
"329",
"493",
"766",
"1170",
"1811",
"2787",
"4341",
"6713",
"10462",
"16274",
"25415",
"39651",
"62075",
"97109",
"152288",
"238838",
"375167",
"589527",
"927555",
"1459961",
"2300348",
"3626242",
"5721045",
"9030451",
"14264309",
"22542397",
"35646312",
"56393862",
"89264835",
"141358275"
] | Number of binary necklaces of length n with no subsequence 00, excluding the necklace "0". |
A000359 | [
"1",
"5",
"40",
"440",
"6170",
"105315",
"2120610",
"49242470",
"1296133195",
"38152216495",
"1242274374380",
"44345089721923",
"1722416374173854",
"72330102999829054",
"3265871028909088036",
"157797437377747327987",
"8124524883679977475839",
"444098724261935142753430"
] | Coefficients of iterated exponentials. |
A000360 | [
"1",
"0",
"1",
"1",
"1",
"1",
"2",
"0",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"1",
"2",
"2",
"4",
"1",
"4",
"3",
"3",
"1",
"4",
"2",
"4",
"2",
"3",
"2",
"3",
"0",
"3",
"3",
"4",
"2",
"6",
"3",
"5",
"2",
"5",
"4",
"7",
"2",
"6",
"4",
"4",
"1",
"5",
"3",
"6",
"3",
"6",
"4",
"6",
"1",
"5",
"4",
"5",
"2",
"5",
"2",
"3",
"1",
"3",
"3",
"6",
"2",
"7",
"5",
"6",
"2",
"8",
"5",
"9",
"4",
"8",
"5",
"7",
"1",
"7",
"6",
"9",
"4",
"11",
"6",
"9",
"3",
"8",
"6",
"10",
"3",
"8",
"5",
"5",
"1",
"6",
"4",
"8",
"4",
"9",
"6",
"9",
"2"
] | Distribution of nonempty triangles inside a fractal rep-4-tile. |
A000361 | [
"1",
"0",
"2",
"1",
"1",
"2",
"5",
"0",
"10",
"6",
"3",
"2",
"19",
"2",
"10",
"1",
"5",
"10",
"89",
"1",
"170",
"28",
"7",
"2",
"71",
"12",
"170",
"5",
"25",
"10",
"21",
"0",
"42",
"26",
"51",
"10",
"1251",
"38",
"682",
"6",
"301",
"170",
"5833",
"3",
"2730",
"120",
"15",
"2",
"271",
"56"
] | From a fractal set of positive Lebesgue measure, a self-replicating tiling with holes, the 4-reptile following the 2-reptile of Paul Levy. |
A000362 | [
"5",
"57",
"352",
"1280",
"3522",
"7970",
"15872",
"29184",
"49410",
"79042",
"122400",
"180224",
"257314",
"362340",
"492032",
"655360",
"867588",
"1117314",
"1420320",
"1803264",
"2237380",
"2745154",
"3380736",
"4080640",
"4881250",
"5874150",
"6928416",
"8126464",
"9600870",
"11133604"
] | Generalized class numbers c_(n,2). |
A000363 | [
"5",
"61",
"479",
"3111",
"18270",
"101166",
"540242",
"2819266",
"14494859",
"73802835",
"373398489",
"1881341265",
"9453340172",
"47417364268",
"237571096820",
"1189405165908",
"5951965440609",
"29775517732665",
"148927275340835",
"744793282001995"
] | Number of permutations of [n] with exactly 2 increasing runs of length at least 2. |
A000364 | [
"1",
"1",
"5",
"61",
"1385",
"50521",
"2702765",
"199360981",
"19391512145",
"2404879675441",
"370371188237525",
"69348874393137901",
"15514534163557086905",
"4087072509293123892361",
"1252259641403629865468285",
"441543893249023104553682821",
"177519391579539289436664789665"
] | Euler (or secant or "Zig") numbers: e.g.f. (even powers only) sec(x) = 1/cos(x). |
A000365 | [
"5",
"93",
"1030",
"8885",
"65954",
"442610",
"2762412",
"16322085",
"92400330",
"505403910",
"2687477780",
"13957496098",
"71053094420",
"355548314180",
"1752827693528",
"8529176056965",
"41026491589722",
"195327793313790",
"921451498774660",
"4311086414580022",
"20019238138410940"
] | Number of genus 0 rooted planar maps with 4 faces and n vertices. |
A000366 | [
"1",
"1",
"2",
"7",
"38",
"295",
"3098",
"42271",
"726734",
"15366679",
"391888514",
"11860602415",
"420258768950",
"17233254330343",
"809698074358250",
"43212125903877439",
"2599512037272630686",
"175079893678534943287",
"13122303354155987156306"
] | Genocchi numbers of second kind (A005439) divided by 2^(n-1). |
A000367 | [
"1",
"1",
"-1",
"1",
"-1",
"5",
"-691",
"7",
"-3617",
"43867",
"-174611",
"854513",
"-236364091",
"8553103",
"-23749461029",
"8615841276005",
"-7709321041217",
"2577687858367",
"-26315271553053477373",
"2929993913841559",
"-261082718496449122051"
] | Numerators of Bernoulli numbers B_2n. |
A000368 | [
"1",
"1",
"4",
"9",
"28",
"71",
"202",
"542",
"1507",
"4114",
"11381",
"31349",
"86845",
"240567",
"668553",
"1860361",
"5188767",
"14495502",
"40572216",
"113743293",
"319405695",
"898288484",
"2530058013",
"7135848125",
"20152898513",
"56986883801"
] | Number of connected graphs with one cycle of length 4. |
A000369 | [
"1",
"3",
"1",
"21",
"9",
"1",
"231",
"111",
"18",
"1",
"3465",
"1785",
"345",
"30",
"1",
"65835",
"35595",
"7650",
"825",
"45",
"1",
"1514205",
"848925",
"196245",
"24150",
"1680",
"63",
"1",
"40883535",
"23586255",
"5755050",
"775845",
"62790",
"3066",
"84",
"1",
"1267389585",
"748471185",
"190482705",
"27478710"
] | Triangle of numbers related to triangle A049213; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497. |
A000370 | [
"1",
"2",
"4",
"14",
"222",
"616126",
"200253952527184",
"263735716028826576482466871188128",
"5609038300883759793482640992086670939164957990135057216103303119630336"
] | Number of NPN-equivalence classes of Boolean functions of n or fewer variables. |
A000371 | [
"2",
"2",
"10",
"218",
"64594",
"4294642034",
"18446744047940725978",
"340282366920938463334247399005993378250",
"115792089237316195423570985008687907850547725730273056332267095982282337798562"
] | a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*2^(2^k). |
A000372 | [
"2",
"3",
"6",
"20",
"168",
"7581",
"7828354",
"2414682040998",
"56130437228687557907788"
] | Dedekind numbers or Dedekind's problem: number of monotone Boolean functions of n variables, number of antichains of subsets of an n-set, number of elements in a free distributive lattice on n generators, number of Sperner families. |
A000373 | [
"0",
"0",
"1",
"8",
"44",
"214",
"1000",
"4592",
"20888",
"94846",
"434973",
"2042836",
"9979086",
"51460622",
"283839957",
"1688139424",
"10859199656",
"75338888918",
"560740210491",
"4445766353604",
"37329808482989",
"330143634313064",
"3064464030121369"
] | Conjectured dimension of a module associated with the free commutative Moufang loop with n generators. |
A000374 | [
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"3",
"2",
"2",
"2",
"2",
"3",
"5",
"1",
"3",
"3",
"2",
"2",
"6",
"2",
"3",
"2",
"3",
"2",
"4",
"3",
"2",
"5",
"7",
"1",
"5",
"3",
"6",
"3",
"2",
"2",
"5",
"2",
"3",
"6",
"4",
"2",
"8",
"3",
"3",
"2",
"5",
"3",
"8",
"2",
"2",
"4",
"5",
"3",
"5",
"2",
"2",
"5",
"2",
"7",
"13",
"1",
"7",
"5",
"2",
"3",
"6",
"6",
"3",
"3",
"9",
"2",
"8",
"2",
"6",
"5",
"3",
"2",
"5",
"3",
"2",
"6",
"12",
"4",
"5",
"2",
"9",
"8",
"10",
"3",
"14",
"3",
"5",
"2",
"3",
"5",
"8",
"3"
] | Number of cycles (mod n) under doubling map. |
A000375 | [
"0",
"1",
"2",
"4",
"7",
"10",
"16",
"22",
"30",
"38",
"51",
"65",
"80",
"101",
"113",
"139",
"159",
"191",
"221"
] | Topswops (1): start by shuffling n cards labeled 1..n. If top card is m, reverse order of top m cards, then repeat. a(n) is the maximal number of steps before top card is 1. |
A000376 | [
"0",
"1",
"2",
"4",
"7",
"10",
"16",
"22",
"30",
"38",
"51",
"63",
"80",
"101",
"112",
"130",
"159",
"191",
"207",
"231"
] | Topswops (2): start by shuffling n cards labeled 1..n. If top card is m, reverse order of top m cards. Repeat until 1 gets to top, then stop. Suppose the whole deck is now sorted (if not, discard this case). a(n) is the maximal number of steps before 1 got to the top. |
A000377 | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"0",
"2",
"2",
"1",
"0",
"1",
"0",
"2",
"2",
"2",
"0",
"1",
"3",
"0",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"0",
"4",
"1",
"0",
"0",
"0",
"2",
"0",
"2",
"0",
"2",
"2",
"0",
"0",
"1",
"3",
"3",
"0",
"0",
"2",
"1",
"4",
"2",
"0",
"2",
"2",
"2",
"0",
"2",
"2",
"1",
"0",
"2",
"0",
"0",
"0",
"4",
"0",
"1",
"2",
"0",
"3",
"0",
"4",
"0",
"2",
"2",
"1",
"0",
"2",
"2",
"0",
"0",
"2",
"2",
"0",
"2",
"0",
"0",
"2",
"0",
"0",
"1",
"2",
"3",
"2",
"3",
"2"
] | Expansion of f(-q^3) * f(-q^8) * chi(-q^12) / chi(-q) in powers of q where chi(), f() are Ramanujan theta functions. |
A000378 | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"24",
"25",
"26",
"27",
"29",
"30",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"56",
"57",
"58",
"59",
"61",
"62",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"72",
"73",
"74",
"75",
"76",
"77",
"78",
"80",
"81",
"82",
"83"
] | Sums of three squares: numbers of the form x^2 + y^2 + z^2. |
A000379 | [
"1",
"6",
"8",
"10",
"12",
"14",
"15",
"18",
"20",
"21",
"22",
"26",
"27",
"28",
"32",
"33",
"34",
"35",
"36",
"38",
"39",
"44",
"45",
"46",
"48",
"50",
"51",
"52",
"55",
"57",
"58",
"62",
"63",
"64",
"65",
"68",
"69",
"74",
"75",
"76",
"77",
"80",
"82",
"85",
"86",
"87",
"91",
"92",
"93",
"94",
"95",
"98",
"99",
"100",
"106",
"111",
"112",
"115",
"116",
"117",
"118",
"119",
"120",
"122",
"123",
"124",
"125",
"129"
] | Numbers n where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028. |
A000380 | [
"6",
"8",
"40",
"176",
"1421",
"10352",
"93114",
"912920",
"9929997",
"117970704",
"1521176826",
"21150414880",
"315400444070",
"5020920314016",
"84979755347122",
"1523710321272384",
"28851091193764023",
"575253584489378040",
"12047084261153160394",
"264377395040950523112",
"6066972656940255290199"
] | Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-3 places. |
A000381 | [
"2",
"3",
"4",
"6",
"9",
"14",
"22",
"35",
"56",
"90",
"145",
"234",
"378",
"611",
"988",
"1598",
"2585",
"4182",
"6766"
] | Essentially the same as A001611. |
A000382 | [
"6",
"11",
"20",
"36",
"65",
"119",
"218",
"400",
"735",
"1351",
"2484",
"4568",
"8401",
"15451",
"28418",
"52268",
"96135",
"176819",
"325220",
"598172",
"1100209",
"2023599",
"3721978",
"6845784",
"12591359",
"23159119",
"42596260",
"78346736",
"144102113",
"265045107",
"487493954"
] | Restricted permutations. |
A000383 | [
"1",
"1",
"1",
"1",
"1",
"1",
"6",
"11",
"21",
"41",
"81",
"161",
"321",
"636",
"1261",
"2501",
"4961",
"9841",
"19521",
"38721",
"76806",
"152351",
"302201",
"599441",
"1189041",
"2358561",
"4678401",
"9279996",
"18407641",
"36513081",
"72426721",
"143664401",
"284970241",
"565262081",
"1121244166",
"2224080691",
"4411648301"
] | Hexanacci numbers with a(0) = ... = a(5) = 1. |
A000384 | [
"0",
"1",
"6",
"15",
"28",
"45",
"66",
"91",
"120",
"153",
"190",
"231",
"276",
"325",
"378",
"435",
"496",
"561",
"630",
"703",
"780",
"861",
"946",
"1035",
"1128",
"1225",
"1326",
"1431",
"1540",
"1653",
"1770",
"1891",
"2016",
"2145",
"2278",
"2415",
"2556",
"2701",
"2850",
"3003",
"3160",
"3321",
"3486",
"3655",
"3828",
"4005",
"4186",
"4371",
"4560"
] | Hexagonal numbers: a(n) = n*(2*n-1). |
A000385 | [
"1",
"6",
"17",
"38",
"70",
"116",
"185",
"258",
"384",
"490",
"686",
"826",
"1124",
"1292",
"1705",
"1896",
"2491",
"2670",
"3416",
"3680",
"4602",
"4796",
"6110",
"6178",
"7700",
"7980",
"9684",
"9730",
"12156",
"11920",
"14601",
"14752",
"17514",
"17224",
"21395",
"20406",
"24590",
"24556",
"28920",
"27860",
"34112",
"32186",
"38674",
"37994",
"43980",
"42136",
"51646",
"47772",
"56749",
"55500",
"64316",
"60606",
"73420",
"67956",
"80500",
"77760",
"88860",
"83810",
"102284",
"92690",
"108752",
"105236",
"120777",
"112672",
"135120",
"123046",
"145194",
"138656",
"157512",
"146580",
"177515",
"159396",
"185744",
"179122"
] | Convolution of A000203 with itself. |
A000386 | [
"0",
"0",
"0",
"1",
"6",
"20",
"134",
"915",
"7324",
"65784",
"657180",
"7223637",
"86637650",
"1125842556",
"15757002706",
"236298742375",
"3780061394232",
"64251145312880",
"1156374220457784",
"21968796934412649",
"439337048505773790",
"9225384943965382564",
"202945418255342821470"
] | Coefficients of ménage hit polynomials. |
A000387 | [
"0",
"0",
"1",
"0",
"6",
"20",
"135",
"924",
"7420",
"66744",
"667485",
"7342280",
"88107426",
"1145396460",
"16035550531",
"240533257860",
"3848532125880",
"65425046139824",
"1177650830516985",
"22375365779822544",
"447507315596451070",
"9397653627525472260",
"206748379805560389951"
] | Rencontres numbers: number of permutations of [n] with exactly two fixed points. |
A000388 | [
"6",
"20",
"180",
"1106",
"9292",
"82980",
"831545",
"9139482",
"109595496",
"1423490744",
"19911182207",
"298408841160",
"4770598226296",
"81037124739588",
"1457607971046492",
"27675791180024802",
"553166885187641670",
"11609691036091870428",
"255273744004170486155",
"5868308906885934514178"
] | Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-2 places. |
A000389 | [
"0",
"0",
"0",
"0",
"0",
"1",
"6",
"21",
"56",
"126",
"252",
"462",
"792",
"1287",
"2002",
"3003",
"4368",
"6188",
"8568",
"11628",
"15504",
"20349",
"26334",
"33649",
"42504",
"53130",
"65780",
"80730",
"98280",
"118755",
"142506",
"169911",
"201376",
"237336",
"278256",
"324632",
"376992",
"435897",
"501942",
"575757",
"658008",
"749398"
] | Binomial coefficients C(n,5). |
A000390 | [
"1",
"6",
"21",
"71",
"216",
"657",
"1907",
"5507",
"15522",
"43352",
"119140",
"323946",
"869476",
"2308071",
"6056581",
"15724170",
"40393693",
"102736274",
"258790004",
"645968054",
"1598460229",
"3923114261",
"9554122089",
"23098084695",
"55458417125",
"132293945737",
"313657570114"
] | Number of 5-dimensional partitions of n. |
A000391 | [
"1",
"6",
"21",
"71",
"216",
"672",
"1982",
"5817",
"16582",
"46633",
"128704",
"350665",
"941715",
"2499640",
"6557378",
"17024095",
"43756166",
"111433472",
"281303882",
"704320180",
"1749727370",
"4314842893",
"10565857064",
"25700414815",
"62115621317",
"149214574760",
"356354881511",
"846292135184"
] | Euler transform of A000332. |
A000392 | [
"0",
"0",
"0",
"1",
"6",
"25",
"90",
"301",
"966",
"3025",
"9330",
"28501",
"86526",
"261625",
"788970",
"2375101",
"7141686",
"21457825",
"64439010",
"193448101",
"580606446",
"1742343625",
"5228079450",
"15686335501",
"47063200806",
"141197991025",
"423610750290",
"1270865805301"
] | Stirling numbers of second kind S(n,3). |
A000393 | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"6",
"26",
"94",
"308",
"941",
"2744",
"7722",
"21166",
"56809",
"149971",
"390517",
"1005491",
"2564164",
"6485901",
"16289602",
"40659669",
"100934017",
"249343899",
"613286048",
"1502515487",
"3667953650",
"8925161513",
"21652815724",
"52387028291"
] | Number of n-node rooted trees of height 6. |
A000394 | [
"0",
"1",
"2",
"4",
"5",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"15",
"16",
"17",
"18",
"20",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"32",
"33",
"34",
"36",
"37",
"38",
"39",
"40",
"41",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"52",
"53",
"54",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"67",
"68",
"69",
"71",
"72"
] | Numbers of form x^2 + y^2 + 7z^2. |
A000395 | [
"1",
"6",
"27",
"104",
"369",
"1236",
"3989",
"12522",
"38535",
"116808",
"350064",
"1039896",
"3068145",
"9004182",
"26314773",
"76652582",
"222705603",
"645731148",
"1869303857",
"5404655358",
"15611296146",
"45060069406",
"129989169909",
"374843799786",
"1080624405287"
] | 6th power of rooted tree enumerator; number of linear forests of 6 rooted trees. |
A000396 | [
"6",
"28",
"496",
"8128",
"33550336",
"8589869056",
"137438691328",
"2305843008139952128",
"2658455991569831744654692615953842176",
"191561942608236107294793378084303638130997321548169216"
] | Perfect numbers k: k is equal to the sum of the proper divisors of k. |
A000397 | [
"6",
"32",
"109",
"288",
"654",
"1337",
"2506",
"4414",
"7379",
"11822",
"18273",
"27356",
"39938",
"56974",
"79607",
"109267",
"147523",
"196295",
"257715",
"334407",
"429086",
"545034",
"685917",
"855886",
"1059360",
"1301776",
"1588321",
"1925620",
"2320544",
"2780468",
"3314007",
"3930001",
"4638319",
"5449943",
"6376505",
"7430471",
"8625369",
"9976540",
"11498855",
"13210238",
"15128487",
"17272896",
"19664754",
"22326319",
"25280987",
"28554486",
"32173404",
"36166409",
"40563607",
"45397395",
"50701682",
"56512012",
"62866699",
"69805531",
"77370606",
"85607286",
"94560129",
"104280410",
"114819255",
"126229853",
"138570284",
"151899428",
"166278945",
"181775849",
"198456941",
"216394746",
"235661505",
"256338017",
"278503009",
"302242623",
"327644632",
"354799834",
"383805368",
"414759214",
"447764499",
"482931051"
] | Number of partitions into non-integral powers. |
A000398 | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"9",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"36",
"37",
"38",
"39",
"40",
"41",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64"
] | Numbers of form x^2 + 2y^2 + 2yz + 4z^2. |
A000399 | [
"1",
"6",
"35",
"225",
"1624",
"13132",
"118124",
"1172700",
"12753576",
"150917976",
"1931559552",
"26596717056",
"392156797824",
"6165817614720",
"102992244837120",
"1821602444624640",
"34012249593822720",
"668609730341153280",
"13803759753640704000"
] | Unsigned Stirling numbers of first kind s(n,3). |
A000400 | [
"1",
"6",
"36",
"216",
"1296",
"7776",
"46656",
"279936",
"1679616",
"10077696",
"60466176",
"362797056",
"2176782336",
"13060694016",
"78364164096",
"470184984576",
"2821109907456",
"16926659444736",
"101559956668416",
"609359740010496",
"3656158440062976",
"21936950640377856",
"131621703842267136"
] | Powers of 6: a(n) = 6^n. |
Subsets and Splits