sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A357001
a(n) = A002729(n) - A357000(n) - 1.
[ "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "43", "0", "12", "0", "0", "0", "0", "0", "1954", "8", "0", "342", "0", "0", "0", "0" ]
[ "nonn", "more" ]
19
1
16
[ "A002729", "A357000", "A357001", "A357002" ]
null
Pontus von Brömssen, Sep 08 2022
2023-06-29T09:03:55
oeisdata/seq/A357/A357001.seq
4f305527ffb2b3b2bff9339a72ba4a1c
A357002
Numbers k such that A357001(k) > 0.
[ "8", "16", "18", "24", "25", "27" ]
[ "nonn", "more" ]
6
1
1
[ "A357000", "A357001", "A357002" ]
null
Pontus von Brömssen, Sep 08 2022
2022-09-17T08:51:38
oeisdata/seq/A357/A357002.seq
e4ed046ce00e1ee162ac8d50674b0606
A357003
Number of Hamiltonian cycles in the cyclic Haar graph with index n.
[ "0", "0", "1", "0", "1", "1", "6", "0", "1", "0", "6", "1", "6", "6", "72", "0", "1", "1", "8", "1", "8", "8", "156", "1", "8", "8", "156", "8", "156", "156", "1440", "0", "1", "0", "8", "0", "12", "12", "335", "0", "12", "0", "300", "12", "352", "300", "4800", "1", "8", "12", "335", "12", "300", "352", "4800", "8", "335", "300", "4800", "335", "4800", "4800", "43200", "0", "1", "1", "10", "1" ]
[ "nonn" ]
8
1
7
[ "A010796", "A291165", "A357000", "A357003", "A357004" ]
null
Pontus von Brömssen, Sep 08 2022
2022-09-17T09:53:54
oeisdata/seq/A357/A357003.seq
ba6648e415170793a3de4a77b93832c1
A357004
Smallest k for which the cyclic Haar graphs with indices k and n are isomorphic.
[ "1", "2", "3", "4", "5", "5", "7", "8", "9", "10", "11", "9", "11", "11", "15", "16", "17", "17", "19", "17", "19", "19", "23", "17", "19", "19", "23", "19", "23", "23", "31", "32", "33", "34", "35", "36", "37", "37", "39", "34", "37", "42", "43", "37", "45", "43", "47", "33", "35", "37", "39", "37", "43", "45", "47", "35", "39", "43", "47", "39", "47", "47", "63", "64", "65", "65", "67", "65" ]
[ "nonn" ]
14
1
2
[ "A137706", "A163382", "A272919", "A357000", "A357004", "A357005" ]
null
Pontus von Brömssen, Sep 08 2022
2023-06-26T22:31:46
oeisdata/seq/A357/A357004.seq
238e627ff891034a749dc219961ce322
A357005
Smallest k that is cyclically equivalent (see Comment for definition) to n.
[ "1", "2", "3", "4", "5", "5", "7", "8", "9", "10", "11", "9", "11", "11", "15", "16", "17", "17", "19", "17", "19", "19", "23", "17", "19", "19", "23", "19", "23", "23", "31", "32", "33", "34", "35", "36", "37", "37", "39", "34", "37", "42", "43", "37", "45", "43", "47", "33", "35", "37", "39", "37", "43", "45", "47", "35", "39", "43", "47", "39", "47", "47", "63", "64", "65", "65", "67", "65" ]
[ "nonn" ]
11
1
2
[ "A000120", "A002729", "A163382", "A267508", "A357004", "A357005", "A357006" ]
null
Pontus von Brömssen, Sep 08 2022
2022-09-17T09:53:46
oeisdata/seq/A357/A357005.seq
845e85e5a8ea5fcf77b1133a7b9fa549
A357006
Numbers k that are the smallest of all numbers that are cyclically equivalent to k.
[ "1", "2", "3", "4", "5", "7", "8", "9", "10", "11", "15", "16", "17", "19", "23", "31", "32", "33", "34", "35", "36", "37", "39", "42", "43", "45", "47", "63", "64", "65", "67", "69", "71", "75", "79", "95", "127", "128", "129", "130", "131", "133", "135", "136", "137", "138", "139", "141", "143", "147", "151", "153", "155", "159", "170", "171", "175", "187", "191", "255", "256" ]
[ "nonn" ]
10
1
2
[ "A002729", "A137706", "A333764", "A357005", "A357006" ]
null
Pontus von Brömssen, Sep 08 2022
2022-09-17T09:53:42
oeisdata/seq/A357/A357006.seq
57db892cad3f73db2935d5343a5dc5c9
A357007
Number of vertices in an equilateral triangle when n internal equilateral triangles are drawn between the 3n points that divide each side into n+1 equal parts.
[ "3", "6", "15", "30", "51", "66", "111", "150", "171", "246", "303", "312", "435", "510", "543", "678", "771", "765", "975", "1059", "1131", "1326", "1455", "1488", "1731", "1878", "1899", "2178", "2355", "2376", "2703", "2886", "2955", "3270", "3444", "3420", "3891", "4110", "4191", "4485", "4803", "4878", "5295", "5526", "5544", "6078", "6351", "6396", "6915", "7206", "7311", "7794", "8115" ]
[ "nonn" ]
23
0
1
[ "A091908", "A092866", "A333026", "A344657", "A356984", "A357007", "A357008" ]
null
Scott R. Shannon, Sep 08 2022
2022-09-10T21:05:02
oeisdata/seq/A357/A357007.seq
7357eb23a7d84a465b6de60db7390b29
A357008
Number of edges in an equilateral triangle when n internal equilateral triangles are drawn between the 3n points that divide each side into n+1 equal parts.
[ "3", "9", "27", "57", "99", "135", "219", "297", "351", "489", "603", "645", "867", "1017", "1107", "1353", "1539", "1575", "1947", "2127", "2295", "2649", "2907", "3021", "3459", "3753", "3855", "4359", "4707", "4821", "5403", "5769", "5967", "6537", "6897", "6957", "7779", "8217", "8451", "9003", "9603", "9837", "10587", "11061", "11211", "12153", "12699", "12897", "13827", "14409", "14715" ]
[ "nonn" ]
19
0
1
[ "A274586", "A332376", "A333027", "A344896", "A356984", "A357007", "A357008" ]
null
Scott R. Shannon, Sep 08 2022
2022-09-10T21:04:57
oeisdata/seq/A357/A357008.seq
65037e66a4e02171846ad9d96d8f450c
A357009
E.g.f. satisfies log(A(x)) = (exp(x) - 1)^2 * A(x).
[ "1", "0", "2", "6", "50", "390", "4322", "53046", "782210", "12920550", "241747682", "5000171286", "113961184130", "2830240421190", "76196913418082", "2209152734071926", "68655746019566210", "2276606079902438310", "80244521295497399522", "2995966456305973559766", "118119901491333724203650" ]
[ "nonn" ]
34
0
3
[ "A052859", "A052880", "A357009", "A357010", "A357024" ]
null
Seiichi Manyama, Sep 09 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357009.seq
a727bf41b434bc7f8d93b33b3ce12e9b
A357010
E.g.f. satisfies log(A(x)) = (exp(x) - 1)^3 * A(x).
[ "1", "0", "0", "6", "36", "150", "1620", "24486", "293076", "3843510", "68254740", "1311687366", "25479935316", "552545882070", "13437670215060", "345157499363046", "9370414233900756", "274413997443811830", "8572526271218671380", "281754864204797848326", "9767868351458229261396" ]
[ "nonn" ]
27
0
4
[ "A052880", "A353664", "A357009", "A357010", "A357025" ]
null
Seiichi Manyama, Sep 09 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357010.seq
06e5a080f86ba825a39db255500e4100
A357011
E.g.f. satisfies A(x) * log(A(x)) = exp(x * A(x)^3) - 1.
[ "1", "1", "6", "74", "1407", "36357", "1190476", "47254783", "2205546706", "118378505742", "7184030384361", "486440226752911", "36358328607088010", "2973464028723984551", "264119772408892921774", "25321946948812001539166", "2606224408648404660237647", "286624141573198517220290837" ]
[ "nonn" ]
12
0
3
[ "A216136", "A349583", "A349588", "A349601", "A356960", "A356973", "A357011" ]
null
Seiichi Manyama, Sep 08 2022
2022-09-12T08:28:14
oeisdata/seq/A357/A357011.seq
a398e957cb3e509176da82ab9ed50bf1
A357012
Triangle read by rows. T(n, k) = [x^k](0^n + 4^n * ((2 - 2*(1 - x)^(1/2)) / x - 1)).
[ "1", "0", "1", "0", "4", "2", "0", "16", "8", "5", "0", "64", "32", "20", "14", "0", "256", "128", "80", "56", "42", "0", "1024", "512", "320", "224", "168", "132", "0", "4096", "2048", "1280", "896", "672", "528", "429", "0", "16384", "8192", "5120", "3584", "2688", "2112", "1716", "1430", "0", "65536", "32768", "20480", "14336", "10752", "8448", "6864", "5720", "4862" ]
[ "nonn", "tabl" ]
4
0
5
[ "A000108", "A000302", "A008549", "A356651", "A357012" ]
null
Peter Luschny, Sep 09 2022
2022-09-09T04:05:45
oeisdata/seq/A357/A357012.seq
0bd2be5194edc37bfdc8af34eea1ae46
A357013
Triangle read by rows. T(n, k) = ((2*n)! * k!) / (n + k)!.
[ "1", "2", "1", "12", "4", "2", "120", "30", "12", "6", "1680", "336", "112", "48", "24", "30240", "5040", "1440", "540", "240", "120", "665280", "95040", "23760", "7920", "3168", "1440", "720", "17297280", "2162160", "480480", "144144", "52416", "21840", "10080", "5040", "518918400", "57657600", "11531520", "3144960", "1048320", "403200", "172800", "80640", "40320" ]
[ "nonn", "tabl" ]
7
0
2
[ "A000142", "A001813", "A357013" ]
null
Peter Luschny, Sep 25 2022
2022-09-25T11:05:17
oeisdata/seq/A357/A357013.seq
8cf7cdf34072505e3c0c1bd930071b54
A357014
Numbers whose sum of exponential divisors (A051377) is odd.
[ "1", "3", "5", "7", "11", "13", "15", "17", "19", "21", "23", "29", "31", "33", "35", "37", "39", "41", "43", "47", "51", "53", "55", "57", "59", "61", "65", "67", "69", "71", "73", "77", "79", "81", "83", "85", "87", "89", "91", "93", "95", "97", "101", "103", "105", "107", "109", "111", "113", "115", "119", "123", "127", "129", "131", "133", "137", "139", "141", "143", "145", "149" ]
[ "nonn" ]
9
1
2
[ "A000079", "A028982", "A049419", "A051377", "A056911", "A197680", "A357014", "A357015", "A357017" ]
null
Amiram Eldar, Sep 09 2022
2022-09-09T06:30:46
oeisdata/seq/A357/A357014.seq
3429f879b2cf386a69da2f0760652a26
A357015
Nonsquarefree numbers whose sum of exponential divisors (A051377) is odd.
[ "81", "405", "567", "625", "891", "1053", "1377", "1539", "1863", "1875", "2349", "2401", "2511", "2835", "2997", "3321", "3483", "3807", "4293", "4375", "4455", "4779", "4941", "5265", "5427", "5751", "5913", "6237", "6399", "6723", "6875", "6885", "7203", "7209", "7371", "7695", "7857", "8125", "8181", "8343", "8667", "8829", "9153", "9315", "9639" ]
[ "nonn" ]
8
1
1
[ "A005117", "A013929", "A051377", "A056911", "A185199", "A357014", "A357015" ]
null
Amiram Eldar, Sep 09 2022
2022-09-09T06:30:43
oeisdata/seq/A357/A357015.seq
59908da59576434a7317f35ffb4608f6
A357016
Decimal expansion of the asymptotic density of numbers whose exponents in their prime factorization are squares (A197680).
[ "6", "4", "1", "1", "1", "5", "1", "6", "1", "3", "5", "9", "3", "5", "1", "4", "3", "1", "4", "4", "7", "7", "0", "6", "1", "8", "3", "8", "4", "4", "2", "4", "4", "6", "0", "4", "1", "5", "9", "2", "0", "8", "9", "4", "0", "4", "0", "9", "2", "5", "7", "4", "6", "5", "2", "6", "8", "5", "5", "6", "0", "9", "4", "1", "0", "5", "3", "3", "0", "7", "2", "3", "9", "3", "8", "3", "2", "0", "4", "0", "9", "7", "3", "4", "5", "4", "2", "1", "1", "8", "4", "6", "7", "4", "0", "0", "6", "9", "3", "5", "6", "3", "6", "3", "5" ]
[ "nonn", "cons" ]
5
0
1
[ "A000290", "A010052", "A049419", "A197680", "A357016", "A357017" ]
null
Amiram Eldar, Sep 09 2022
2022-09-09T04:19:00
oeisdata/seq/A357/A357016.seq
7f1f03a8421f9a89c7e4f12ee7b5c849
A357017
Decimal expansion of the asymptotic density of odd numbers whose exponents in their prime factorization are squares.
[ "4", "0", "9", "7", "9", "7", "4", "4", "6", "7", "1", "3", "3", "1", "9", "7", "0", "7", "5", "1", "0", "9", "2", "2", "9", "5", "6", "5", "2", "8", "4", "4", "0", "4", "9", "9", "9", "8", "2", "3", "0", "1", "6", "3", "9", "3", "9", "0", "6", "7", "2", "7", "3", "1", "1", "6", "9", "2", "2", "6", "8", "1", "6", "3", "7", "6", "2", "1", "9", "8", "3", "5", "0", "3", "1", "1", "5", "9", "5", "7", "3", "6", "2", "7", "8", "6", "0", "9", "3", "3", "9", "0", "2", "0", "1", "8", "0", "5", "3", "6", "9", "4", "1", "4", "5" ]
[ "nonn", "cons" ]
5
0
1
[ "A000290", "A010052", "A051377", "A197680", "A357014", "A357016", "A357017" ]
null
Amiram Eldar, Sep 09 2022
2022-09-09T04:18:47
oeisdata/seq/A357/A357017.seq
479533212102a23f55fc9970fc1dde0f
A357018
Records in the number of consecutive integers not expressible as sums of 2 squares.
[ "0", "1", "2", "4", "5", "6", "7", "8", "10", "14", "18", "19", "20", "23", "24", "27", "28", "30", "33", "34", "35", "36", "47", "48", "49", "52", "55", "59", "60", "62", "63", "65", "67", "70", "71", "73", "79", "80", "81", "86", "87", "104", "106" ]
[ "nonn", "more" ]
6
1
3
[ "A001481", "A022544", "A104271", "A260157", "A297350", "A357018" ]
null
Hugo Pfoertner, Sep 09 2022
2022-09-09T10:02:57
oeisdata/seq/A357/A357018.seq
656942fca91d94a0530088efaba35ccd
A357019
a(n) is the largest possible x in n = x^2 - x*y + y^2 with integers x > y >= 0, or 0 if n cannot be expressed in this form.
[ "0", "1", "0", "2", "2", "0", "0", "3", "0", "3", "0", "0", "4", "4", "0", "0", "4", "0", "0", "5", "0", "5", "0", "0", "0", "5", "0", "6", "6", "0", "0", "6", "0", "0", "0", "0", "6", "7", "0", "7", "0", "0", "0", "7", "0", "0", "0", "0", "8", "8", "0", "0", "8", "0", "0", "0", "0", "8", "0", "0", "0", "9", "0", "9", "8", "0", "0", "9", "0", "0", "0", "0", "0", "9", "0", "10", "10", "0", "0", "10", "0", "9", "0", "0", "10", "0" ]
[ "nonn" ]
16
0
4
[ "A002324", "A003136", "A133388", "A357019" ]
null
Hugo Pfoertner, Sep 10 2022
2022-09-12T17:14:19
oeisdata/seq/A357/A357019.seq
efd8b6586adcb90d325738233b7ee5c3
A357020
a(n) is the start of the first run of exactly n consecutive numbers not of the form x^2 + x*y + y^2.
[ "2", "5", "22", "32", "68", "85", "230", "260", "352", "1901", "950", "1912", "1430", "1502", "3442", "10733", "4310", "5890", "23933", "15101", "29548", "101534", "18698", "89245", "38858", "46774", "110440", "173213", "118772", "513598", "705437", "273485", "226324", "269813", "726929", "1448005", "1053830", "413974", "1329178", "1626548", "648542" ]
[ "nonn" ]
8
1
1
[ "A002324", "A003136", "A034020", "A104271", "A357020" ]
null
Hugo Pfoertner, Sep 10 2022
2022-09-12T16:09:43
oeisdata/seq/A357/A357020.seq
89016c0f6c47654daf6414ea85a0b598
A357021
First coordinate x of points in the triangular lattice, sorted first by the distance from the origin and then by the circumferential angle phi restricted to the sector 0 <= phi < Pi/6. y is given in A357022.
[ "0", "1", "2", "2", "3", "3", "4", "4", "4", "5", "5", "5", "6", "6", "6", "6", "7", "7", "7", "8", "7", "8", "8", "8", "9", "9", "8", "9", "9", "10", "10", "10", "9", "10", "10", "11", "11", "11", "10", "11", "12", "12", "11", "12", "12", "11", "12", "13", "13", "12", "13", "13", "12", "13", "14", "14", "14", "14", "13", "14", "13", "15", "15", "14", "15", "15", "14", "15", "16", "16", "14", "16", "15" ]
[ "nonn" ]
9
1
3
[ "A003136", "A280079", "A280317", "A305575", "A305576", "A355565", "A355585", "A357021" ]
null
Hugo Pfoertner, Sep 10 2022
2025-04-01T08:10:08
oeisdata/seq/A357/A357021.seq
8359bce715b77180ee6ca5876c5f048c
A357022
Second coordinate y of points in the triangular lattice, sorted first by the distance from the origin and then by the circumferential angle phi restricted to the sector 0 <= phi < Pi/6. x is given in A357021.
[ "0", "0", "1", "0", "1", "0", "2", "1", "0", "2", "1", "0", "3", "2", "1", "0", "3", "2", "1", "4", "0", "3", "2", "1", "4", "3", "0", "2", "1", "5", "4", "3", "0", "2", "1", "5", "4", "3", "0", "2", "6", "5", "1", "4", "3", "0", "2", "6", "5", "1", "4", "3", "0", "2", "7", "6", "5", "4", "1", "3", "0", "7", "6", "2", "5", "4", "1", "3", "8", "7", "0", "6", "2", "5", "4", "1", "3", "8", "7", "6", "0", "2", "5", "4", "1", "9", "8", "3" ]
[ "nonn" ]
4
1
7
[ "A357021", "A357022" ]
null
Hugo Pfoertner, Sep 10 2022
2022-09-10T07:35:02
oeisdata/seq/A357/A357022.seq
a8d7c782d92a47edef04e953962cfc2c
A357023
Semiprimes k such that k is congruent to 5 modulo k's index in the sequence of semiprimes.
[ "4", "185", "206", "209", "27681", "3066905", "3067135", "3067795", "3067985", "348933197", "348933239", "348933251", "348933257", "348933269", "44690978141", "44690978162", "44690978519", "44690978561", "44690978617", "44690978869", "44690978981", "44690979457", "44690979527", "6553736049293" ]
[ "nonn", "hard" ]
32
1
1
[ "A001358", "A106130", "A357023" ]
null
Lucas A. Brown, Oct 14 2022
2022-10-16T03:23:41
oeisdata/seq/A357/A357023.seq
6276ae723f33b9543d08657c7401095a
A357024
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2.
[ "1", "0", "2", "6", "74", "750", "11402", "195006", "3994202", "93164910", "2455754762", "72098755806", "2333497474970", "82569245246670", "3170700672801482", "131342693516044926", "5837883571730770778", "277151780512413426990", "13997018265350140886282", "749304617892345721184286" ]
[ "nonn" ]
13
0
3
[ "A030019", "A052859", "A357009", "A357024", "A357025", "A357031" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-12T03:20:05
oeisdata/seq/A357/A357024.seq
e40a5cbe63e0df6c9a24657da26f4e03
A357025
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^3.
[ "1", "0", "0", "6", "36", "150", "3060", "62286", "867636", "15591750", "419764500", "10834588446", "277719263316", "8580282719190", "297021183388020", "10459810717672686", "393932179466738676", "16351788886638987750", "717798906181149294420", "32905220431196072057406" ]
[ "nonn" ]
10
0
4
[ "A030019", "A353664", "A357010", "A357024", "A357025", "A357032" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-10T08:51:06
oeisdata/seq/A357/A357025.seq
9570c7c14a785d147766170aa8224a9c
A357026
E.g.f. satisfies A(x) = (1 - x)^(log(1 - x) * A(x)).
[ "1", "0", "2", "6", "58", "460", "5528", "70308", "1098060", "18910512", "371480832", "8022952080", "191325228576", "4961955705408", "139572074260656", "4224646630879920", "137077496211066384", "4744151145076980864", "174517898073769832448", "6798949897214608689024", "279688643858492900930496" ]
[ "nonn" ]
19
0
3
[ "A052813", "A357026", "A357027" ]
null
Seiichi Manyama, Sep 09 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357026.seq
f8042ad94d34d8ca98e9fd079e0c98ba
A357027
E.g.f. satisfies A(x) = 1/(1 - x)^(log(1 - x)^2 * A(x)).
[ "1", "0", "0", "6", "36", "210", "2430", "32424", "426552", "6575304", "118916640", "2328078456", "49421111256", "1153979875152", "29201577206256", "791744021665344", "22988121190902720", "712541051083100160", "23447653175729566080", "816434611464004145280", "30009023179153182132480" ]
[ "nonn" ]
19
0
4
[ "A052813", "A357026", "A357027" ]
null
Seiichi Manyama, Sep 09 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357027.seq
1e98d637c9d2b813b0801f3a614931eb
A357028
E.g.f. satisfies A(x) = (1 - x * A(x))^log(1 - x * A(x)).
[ "1", "0", "2", "6", "82", "820", "13568", "235368", "5111748", "123205248", "3404436312", "103998026880", "3516027852456", "129715202957184", "5198615642907360", "224652658604613120", "10419411912935774736", "516120552745366247424", "27198524267826237745824" ]
[ "nonn" ]
14
0
3
[ "A001761", "A357028", "A357029", "A357036" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-12T03:20:32
oeisdata/seq/A357/A357028.seq
d5ad79450b0d9f8c472ed22cc04ad0ac
A357029
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2).
[ "1", "0", "0", "6", "36", "210", "3870", "70224", "1122072", "23086344", "586910880", "15469437456", "441107126856", "14206113541152", "496333927370736", "18463733657766144", "739328759822848320", "31759148433997889280", "1447876893211813379520", "69881726567495477445120" ]
[ "nonn" ]
17
0
4
[ "A001761", "A353344", "A357028", "A357029", "A357037" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-12T04:51:25
oeisdata/seq/A357/A357029.seq
9db0588afae383444ba4233367ed88ea
A357030
a(n) is the number of integers in 0..n having nonincreasing digits.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "13", "14", "15", "15", "15", "15", "15", "15", "15", "15", "16", "17", "18", "19", "19", "19", "19", "19", "19", "19", "20", "21", "22", "23", "24", "24", "24", "24", "24", "24", "25", "26", "27", "28", "29", "30", "30", "30", "30", "30", "31", "32", "33", "34", "35", "36", "37", "37", "37", "37", "38", "39", "40" ]
[ "nonn", "base" ]
56
0
2
[ "A009996", "A357030" ]
null
Osman Mustafa Quddusi, Sep 09 2022
2024-03-04T08:51:20
oeisdata/seq/A357/A357030.seq
3b264ad60abcf42845d4c0672caa9e7b
A357031
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2 / 2.
[ "1", "0", "1", "3", "22", "195", "2131", "28623", "445789", "7982355", "161208976", "3626200743", "89942239861", "2438520508515", "71754865476841", "2277574224716703", "77570723071721938", "2821841221403098995", "109200125293424385271", "4479379126010806153143", "194148151869063307919725" ]
[ "nonn" ]
14
0
4
[ "A030019", "A060311", "A357024", "A357031", "A357032" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-12T05:21:40
oeisdata/seq/A357/A357031.seq
29df5a5de8cf48872b0d04751c7d7dc9
A357032
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^3 / 6.
[ "1", "0", "0", "1", "6", "25", "160", "1981", "24906", "295625", "4044900", "68136541", "1260048086", "24330807865", "508029259920", "11686882860381", "289532464998146", "7588430921962825", "210991834698749020", "6244230552027963901", "195584639712483465486", "6442981074293371848185" ]
[ "nonn" ]
9
0
5
[ "A030019", "A327504", "A357025", "A357031", "A357032" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-10T08:53:25
oeisdata/seq/A357/A357032.seq
99b0d95aa2b65914b8b9687104f5b16f
A357033
a(n) is the smallest number that has exactly n divisors that are cyclops numbers (A134808).
[ "1", "101", "202", "404", "606", "1212", "2424", "7272", "21816", "41208", "84048", "123624", "144144", "336336", "288288", "504504", "432432", "865368", "864864", "1009008", "2378376", "1729728", "3459456", "3027024", "4756752", "6054048", "9081072", "11099088", "12108096", "16648632", "23207184", "29405376", "36324288" ]
[ "nonn", "base" ]
15
0
2
[ "A134808", "A357033" ]
null
Marius A. Burtea, Sep 20 2022
2022-10-14T08:52:55
oeisdata/seq/A357/A357033.seq
9b5383dacd3f87258e6f9b60280f4a62
A357034
a(n) is the smallest number with exactly n divisors that are hoax numbers (A019506).
[ "1", "22", "308", "638", "3696", "4212", "18480", "26400", "55080", "52800", "73920", "108108", "220320", "216216", "275400", "324324", "432432", "550800", "734400", "1908000", "1144800", "1101600", "1377000", "1652400", "3027024", "2203200", "4039200", "2754000", "3304800", "5724000", "6528600", "9180000", "8586000", "5508000" ]
[ "nonn", "base" ]
12
0
2
[ "A019506", "A357034" ]
null
Marius A. Burtea, Sep 20 2022
2022-10-14T08:52:59
oeisdata/seq/A357/A357034.seq
2eba86d73812ece98e468230cfa6f048
A357035
a(n) is the smallest number that has exactly n divisors that are digitally balanced numbers (A031443).
[ "1", "2", "10", "36", "150", "180", "420", "840", "900", "3420", "2520", "5040", "6300", "7560", "12600", "15120", "18900", "42840", "32760", "37800", "95760", "105840", "69300", "124740", "163800", "138600", "166320", "327600", "249480", "207900", "491400", "622440", "498960", "706860", "415800", "963900", "1496880", "1164240", "1081080" ]
[ "nonn", "base" ]
17
0
2
[ "A031443", "A357035" ]
null
Marius A. Burtea, Sep 20 2022
2023-09-27T11:23:05
oeisdata/seq/A357/A357035.seq
40864b7accf94d0ee329edf9b68c03bd
A357036
E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).
[ "1", "0", "1", "3", "26", "230", "2794", "39564", "663606", "12712104", "275171106", "6632699040", "176309074644", "5123121177096", "161577261004860", "5497133655605760", "200683752698028924", "7825434930630743616", "324616635150708044796", "14273994548639305751040", "663205761925601097418488" ]
[ "nonn" ]
17
0
4
[ "A001761", "A347001", "A357028", "A357036", "A357037" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-12T05:18:33
oeisdata/seq/A357/A357036.seq
99bf3632fb59676ebf6b203ed11fd358
A357037
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6).
[ "1", "0", "0", "1", "6", "35", "295", "3304", "42112", "599724", "9657330", "174222576", "3464835726", "75208002792", "1771121398956", "44998593873024", "1226723273550720", "35714547582173280", "1106012915718532920", "36304411160854523520", "1259105580819317636280", "46007354360033491345920" ]
[ "nonn" ]
17
0
5
[ "A001761", "A347002", "A357029", "A357032", "A357036", "A357037" ]
null
Seiichi Manyama, Sep 09 2022
2022-09-12T03:04:27
oeisdata/seq/A357/A357037.seq
dc4939e1a0d6da3cda65743129dd437f
A357038
Numbers m such that each of the four consecutive numbers starting at m is the product of 8 prime factors (counting with multiplicity).
[ "4109290623", "10440390750", "24239110623", "63390659373", "66169625247", "67492525373", "72177640623", "74735721872", "88651359872", "97510501023", "99039940623" ]
[ "nonn", "more" ]
9
1
1
[ "A356893", "A357038" ]
null
Zak Seidov, Sep 09 2022
2022-10-08T17:31:05
oeisdata/seq/A357/A357038.seq
c56c4a0fbc3f990a9536f0a39ca34eb3
A357039
Number of integer solutions to x' = 2n, where x' is the arithmetic derivative of x.
[ "0", "1", "1", "1", "2", "2", "2", "3", "2", "2", "3", "4", "3", "2", "3", "4", "4", "4", "2", "3", "4", "4", "4", "6", "4", "3", "5", "4", "4", "7", "3", "5", "6", "3", "5", "7", "5", "5", "7", "6", "5", "8", "5", "4", "9", "6", "5", "8", "3", "6", "8", "5", "6", "9", "6", "8", "10", "6", "6", "13", "4", "6", "10", "4", "7", "9", "6", "5", "8", "9", "8", "11", "6", "5", "12", "5", "8", "12", "5", "8", "11", "6", "6", "14", "9", "6", "11", "9", "7", "14", "6", "8", "13", "7", "8", "13", "7", "9", "13", "8" ]
[ "nonn" ]
20
1
5
[ "A003415", "A099302", "A357039" ]
null
Craig J. Beisel, Sep 09 2022
2022-09-12T22:49:11
oeisdata/seq/A357/A357039.seq
7a57f133b905ff7a5e46a0fdf8d3b63a
A357040
Deficient composite numbers whose sum of aliquot divisors as well as product of aliquot divisors is a perfect square.
[ "75", "76", "124", "147", "153", "243", "332", "363", "477", "507", "524", "575", "688", "867", "892", "963", "1075", "1083", "1421", "1532", "1573", "1587", "1611", "1916", "2032", "2075", "2224", "2299", "2401", "2421", "2523", "2572", "2883", "2891", "3479", "4107", "4336", "4527", "4961", "4975" ]
[ "nonn" ]
8
1
1
[ "A005100", "A064116", "A357040" ]
null
Tanya Khovanova, Sep 09 2022
2022-09-11T19:03:46
oeisdata/seq/A357/A357040.seq
aaa31445b656a081cb90eca388a123c9
A357041
a(n) = Sum_{d|n} 2^(d-1) * binomial(d+n/d-1,d).
[ "1", "4", "7", "18", "21", "66", "71", "196", "305", "648", "1035", "2526", "4109", "8774", "16875", "34288", "65553", "134860", "262163", "531506", "1051237", "2109594", "4194327", "8425348", "16779257", "33611984", "67123631", "134350206", "268435485", "537178750", "1073741855", "2148064768", "4295048345", "8591114580" ]
[ "nonn" ]
110
1
2
[ "A081543", "A338682", "A357041", "A360797" ]
null
Seiichi Manyama, Feb 26 2023
2023-07-31T02:25:36
oeisdata/seq/A357/A357041.seq
8676da5790d1192ddaeab3991513de34
A357042
The sum of the numbers of the central diamond of the multiplication table [1..k] X [1..k] for k=2*n-1.
[ "1", "20", "117", "400", "1025", "2196", "4165", "7232", "11745", "18100", "26741", "38160", "52897", "71540", "94725", "123136", "157505", "198612", "247285", "304400", "370881", "447700", "535877", "636480", "750625", "879476", "1024245", "1186192", "1366625", "1566900", "1788421", "2032640", "2301057", "2595220", "2916725", "3267216", "3648385" ]
[ "nonn", "easy" ]
77
1
2
[ "A000290", "A000583", "A001844", "A003991", "A015237", "A357042" ]
null
Nicolay Avilov, Sep 18 2022
2024-10-04T00:27:08
oeisdata/seq/A357/A357042.seq
17122c2c5a34c2aa7b1a918f7341b5d4
A357043
Lexicographically earliest infinite sequence of distinct nonnegative integers such that neither a(n) nor a(n+1) share a digit with (a(n)+a(n+1))/2.
[ "0", "1", "3", "5", "7", "2", "4", "6", "8", "10", "34", "9", "20", "42", "18", "30", "14", "31", "13", "35", "17", "33", "11", "37", "15", "39", "16", "38", "50", "22", "40", "26", "41", "19", "36", "52", "24", "46", "21", "45", "27", "44", "28", "58", "70", "23", "57", "25", "47", "29", "51", "73", "43", "60", "82", "12", "48", "62", "32", "56", "84", "49", "61", "83", "55", "71", "53", "75", "91", "63", "80", "54", "72", "90", "64", "81", "59" ]
[ "nonn", "base", "easy" ]
27
0
3
null
null
Eric Angelini and M. F. Hasler, Sep 10 2022
2024-12-21T20:32:40
oeisdata/seq/A357/A357043.seq
16508ff42437b193e3af7160bd22c3d8
A357044
Lexicographic earliest sequence of distinct palindromes (A002113) such that a(n)+a(n+1) is never palindromic.
[ "1", "9", "3", "7", "5", "8", "2", "11", "4", "6", "22", "88", "44", "66", "77", "33", "99", "55", "101", "909", "111", "191", "121", "181", "131", "171", "141", "161", "151", "252", "262", "242", "272", "232", "282", "222", "292", "212", "393", "313", "494", "323", "383", "333", "373", "343", "363", "353", "454", "464", "444", "474", "434", "484", "424" ]
[ "nonn", "base" ]
21
1
2
[ "A002113", "A029742", "A262038", "A357044", "A357045" ]
null
Eric Angelini and M. F. Hasler, Sep 14 2022
2024-12-21T20:35:54
oeisdata/seq/A357/A357044.seq
105b3c9eaf72dd9c50ea3e6daa075267
A357045
Lexicographically earliest sequence of distinct non-palindromic numbers (A029742) such that a(n)+a(n+1) is always a palindrome (A002113).
[ "10", "12", "21", "23", "32", "34", "43", "45", "54", "47", "19", "14", "30", "25", "41", "36", "52", "49", "17", "16", "28", "27", "39", "38", "50", "51", "15", "18", "26", "29", "37", "40", "48", "53", "13", "20", "24", "31", "35", "42", "46", "65", "56", "75", "76", "85", "86", "95", "96", "106", "116", "126", "136", "146", "157", "105", "97", "64", "57", "74" ]
[ "nonn", "base" ]
16
1
1
[ "A002113", "A029742", "A357044", "A357045" ]
null
Eric Angelini and M. F. Hasler, Sep 14 2022
2024-12-21T20:37:03
oeisdata/seq/A357/A357045.seq
57fe9b025da1c4345c8a2bf83599b7ce
A357046
Squares visited by a knight moving on a board covered with horizontal dominoes [m|m], m = 0, 1, 2, ... in a diamond-shaped spiral, when the knight always jumps to the unvisited square with the least number on the corresponding domino.
[ "0", "11", "14", "1", "4", "13", "10", "3", "18", "7", "2", "5", "22", "9", "28", "31", "60", "15", "32", "29", "52", "25", "8", "27", "12", "53", "26", "23", "6", "17", "34", "59", "30", "87", "126", "51", "24", "45", "20", "39", "16", "33", "58", "55", "86", "125", "50", "47", "76", "21", "40", "67", "36", "61", "94", "57", "54", "85", "176", "129", "56", "93", "138", "187", "92", "137", "96", "35", "38", "19" ]
[ "nonn", "fini", "full" ]
26
0
2
[ "A174344", "A268038", "A274641", "A274923", "A316328", "A326922", "A326924", "A328908", "A328909", "A328928", "A328929", "A357046" ]
null
M. F. Hasler, Oct 19 2022
2022-12-25T22:48:19
oeisdata/seq/A357/A357046.seq
45804da38131e5b856629804f8733b7e
A357047
Lexicographically earliest sequence of distinct nonnegative integers such that a(2n)*a(2n+1) has n as substring, for all n >= 0.
[ "0", "1", "2", "5", "3", "4", "6", "22", "7", "12", "8", "19", "9", "14", "10", "17", "11", "18", "13", "15", "16", "63", "20", "55", "21", "58", "23", "31", "24", "59", "25", "46", "26", "62", "27", "64", "28", "65", "29", "66", "30", "34", "32", "38", "33", "37", "35", "67", "36", "68", "39", "75", "40", "315", "41", "47", "42", "69", "43", "103", "44", "70", "45", "71", "48", "84", "49", "117", "50", "268", "51", "85", "52", "93", "53" ]
[ "nonn", "base", "tabf" ]
16
0
3
null
null
Eric Angelini and M. F. Hasler, Dec 07 2022
2025-05-06T11:25:16
oeisdata/seq/A357/A357047.seq
9e483409b0aca84efb02a4ba0fe78146
A357048
Terms in the Fibostracci sequence A359128 that arise as the sum of the two previous terms.
[ "1", "3", "5", "8", "13", "16", "21", "25", "29", "35", "39", "41", "58", "59", "66", "76", "78", "81", "88", "99", "103", "107", "117", "118", "119", "139", "149", "151", "159", "160", "173", "177", "183", "198", "202", "209", "239", "245", "280", "351", "399", "599", "631", "703", "798", "800", "899", "999", "1198", "1200", "1399", "1499", "1600", "1798", "1998", "2099", "3999", "5999", "7998", "8000", "8999", "9999", "11998", "12000", "13999", "14999", "16000", "17998" ]
[ "nonn", "base" ]
34
1
2
[ "A000045", "A357048", "A359128" ]
null
M. F. Hasler and Eric Angelini, Dec 08 2022
2024-12-21T18:15:43
oeisdata/seq/A357/A357048.seq
5609c28a2d111b4fb2c7b47b1345eb17
A357049
Lexicographically earliest sequence of distinct nonnegative integers such that, when the digits fill a square array read by falling antidiagonals, the "bitmap" of even digits reproduces the same square array.
[ "0", "2", "4", "6", "1", "8", "3", "21", "20", "5", "23", "22", "7", "9", "24", "10", "12", "14", "16", "18", "26", "11", "30", "25", "27", "29", "41", "28", "43", "32", "13", "40", "34", "36", "38", "15", "50", "17", "19", "42", "31", "45", "52", "33", "47", "49", "61", "54", "35", "63", "44", "37", "46", "39", "56", "51", "58", "48", "70", "72", "74", "53", "65", "76", "78", "90", "67", "55", "69", "57" ]
[ "nonn", "base" ]
18
0
2
null
null
Eric Angelini and M. F. Hasler, Oct 20 2022
2022-10-23T01:45:58
oeisdata/seq/A357/A357049.seq
170092be2e73511ffcad10d66aa2083d
A357050
Number of ways A005101(n)+1 can be written as sum of a subset of the proper divisors of A005101(n), the n-th abundant number.
[ "2", "1", "1", "4", "4", "7", "2", "2", "10", "2", "2", "32", "2", "1", "26", "1", "6", "24", "1", "19", "20", "2", "1", "1", "20", "4", "1", "270", "11", "14", "1", "14", "116", "12", "9", "12", "3", "195", "1", "2", "719", "1", "42", "1", "8", "9", "8", "2", "148", "142", "6", "1", "8", "6", "6", "2154", "1", "534", "1", "6", "125", "108", "1", "6", "117", "1", "447", "4" ]
[ "nonn" ]
4
1
1
[ "A002975", "A005101", "A005835", "A006037", "A033880", "A100696", "A357050" ]
null
M. F. Hasler, Dec 13 2022
2022-12-15T13:52:57
oeisdata/seq/A357/A357050.seq
aa18d4aee81877083bc2ea3858414f21
A357051
a(n) = Sum_{d|n} 3^(n-d).
[ "1", "4", "10", "37", "82", "352", "730", "2998", "7291", "26488", "59050", "263170", "531442", "2127952", "5373460", "19669879", "43046722", "187086916", "387420490", "1607136634", "3878987860", "13947314752", "31381059610", "139902374692", "285916320883", "1129719740248", "2824682785300", "10460357985970" ]
[ "nonn", "easy" ]
39
1
2
[ "A074854", "A112329", "A342628", "A342629", "A357051", "A359203", "A359206" ]
null
Seiichi Manyama, Dec 20 2022
2023-08-23T08:42:22
oeisdata/seq/A357/A357051.seq
cc5f08e5635fcabbee9340dd80b02b5a
A357052
Distance from 10^n to the next prime triplet.
[ "4", "1", "1", "87", "267", "357", "33", "451", "2011", "2821", "10687", "2497", "5073", "5557", "15243", "7147", "7357", "7197", "6627", "9157", "26317", "25833", "39207", "56067", "6667", "32937", "70561", "106533", "597", "28503", "19167", "74551", "301711", "6747", "246871", "223353", "63057", "75183", "48513", "61323", "16107", "554287", "160141", "29821", "220711", "49441" ]
[ "nonn", "base" ]
25
0
1
[ "A007529", "A022004", "A022005", "A343635", "A357052" ]
null
M. F. Hasler, Sep 14 2022
2022-10-26T18:16:45
oeisdata/seq/A357/A357052.seq
721ab75c88929fb5ac497643ea61f5d1
A357053
Decimal expansion of Sum_{k>=1} k/Fibonacci(2*k).
[ "2", "3", "9", "7", "4", "1", "4", "1", "8", "7", "9", "1", "6", "5", "2", "1", "2", "0", "0", "4", "0", "9", "2", "2", "4", "4", "9", "5", "6", "8", "1", "7", "7", "8", "7", "0", "8", "5", "2", "0", "7", "2", "2", "2", "9", "6", "3", "7", "5", "5", "4", "4", "4", "8", "5", "8", "3", "1", "9", "7", "3", "7", "0", "8", "7", "2", "8", "2", "3", "7", "7", "7", "8", "9", "3", "2", "2", "1", "5", "9", "9", "2", "3", "2", "8", "7", "6", "1", "8", "6", "8", "5", "6", "7", "0", "3", "3", "6", "6", "5", "1", "0", "8", "4", "9" ]
[ "nonn", "cons" ]
12
1
1
[ "A000045", "A001622", "A001906", "A002448", "A002878", "A079586", "A081071", "A153386", "A153387", "A357053", "A357054" ]
null
Amiram Eldar, Sep 10 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357053.seq
9e3cc5ee1f81d401abbbb590c527b243
A357054
Decimal expansion of Sum_{k>=1} (-1)^(k+1)*k/Fibonacci(2*k).
[ "5", "8", "0", "0", "0", "4", "7", "3", "9", "5", "0", "7", "7", "7", "0", "6", "8", "0", "0", "6", "7", "4", "7", "0", "9", "8", "1", "8", "9", "5", "5", "2", "2", "8", "0", "2", "6", "9", "8", "5", "0", "1", "2", "6", "0", "9", "6", "4", "6", "1", "6", "3", "9", "0", "1", "5", "7", "7", "5", "6", "1", "0", "0", "1", "7", "7", "6", "7", "3", "7", "5", "7", "5", "2", "1", "9", "9", "7", "8", "4", "8", "9", "4", "9", "2", "1", "0", "4", "4", "7", "8", "6", "6", "9", "4", "0", "2", "2", "3", "7", "1", "4", "1", "1", "5" ]
[ "nonn", "cons" ]
12
0
1
[ "A000045", "A001519", "A001906", "A079586", "A081068", "A153386", "A153387", "A158933", "A265288", "A357053", "A357054" ]
null
Amiram Eldar, Sep 10 2022
2025-01-05T19:51:42
oeisdata/seq/A357/A357054.seq
b498d6526f0ce393c69f52ebef69e858
A357055
Integers k such that k^k + k^2 + 3*k + 2 is prime.
[ "0", "1", "3", "5", "11", "209", "1281" ]
[ "nonn", "more" ]
39
1
3
[ "A058912", "A187605", "A231712", "A357055" ]
null
Marco Ripà, Sep 10 2022
2024-09-17T12:44:40
oeisdata/seq/A357/A357055.seq
bd45b4efcb4bdf506014153711fa5231
A357056
Integers k such that k^k + k^2 + 2*k + 1 is prime.
[ "0", "1", "2", "3", "4", "9", "10", "13", "15", "24" ]
[ "nonn", "more", "hard" ]
27
1
3
[ "A058912", "A187605", "A231712", "A357056" ]
null
Marco Ripà, Sep 10 2022
2024-09-17T14:17:04
oeisdata/seq/A357/A357056.seq
9fb935b5adea0dfe2749e53b775c260a
A357057
a(n) = A356886(2^n+1)/A356886(2^n-1).
[ "3", "3", "3", "5", "5", "7", "11", "11", "13", "17", "19", "19", "23", "29", "31", "37", "37", "41", "43", "47", "53", "59", "59", "61", "67", "71", "73", "79", "83", "83", "89" ]
[ "nonn", "more" ]
64
1
1
[ "A000051", "A000225", "A065091", "A356886", "A357057" ]
null
Paul Curtz, Sep 09 2022
2022-10-02T00:10:41
oeisdata/seq/A357/A357057.seq
19c573ac8a72ed492b22a9d1e88836b3
A357058
Number of regions in a square when n internal squares are drawn between the 4n points that divide each side into n+1 equal parts.
[ "1", "5", "17", "37", "65", "93", "145", "181", "257", "309", "401", "457", "577", "653", "785", "869", "1025", "1109", "1297", "1413", "1601", "1725", "1937", "2041", "2305", "2453", "2705", "2861", "3137", "3289", "3601", "3765", "4089", "4293", "4625", "4801", "5185", "5405", "5769", "5993", "6401", "6605", "7057", "7309", "7737", "8013", "8465", "8673", "9217", "9477", "9993", "10309" ]
[ "nonn" ]
22
0
2
[ "A108914", "A355798", "A355838", "A356984", "A357058", "A357060", "A357061" ]
null
Scott R. Shannon, Sep 10 2022
2022-09-17T14:14:24
oeisdata/seq/A357/A357058.seq
4d04b75aa179c4ef67e1d4d09b232c63
A357059
Decimal expansion of sum of squares of reciprocals of primes whose distance to the next prime is equal to 4, Sum_{j>=1} 1/A029710(j)^2.
[ "0", "3", "1", "3", "2", "1", "6", "2", "0", "6", "4", "6" ]
[ "nonn", "cons", "hard", "more" ]
48
0
2
[ "A006512", "A023200", "A029710", "A046132", "A065421", "A077800", "A078437", "A085548", "A096247", "A160910", "A194098", "A209328", "A209329", "A242301", "A242302", "A242303", "A242304", "A306539", "A342714", "A356793", "A357059" ]
null
Artur Jasinski, Sep 10 2022
2022-09-29T08:51:57
oeisdata/seq/A357/A357059.seq
5bcfd06a82d9e83ae4bea4c009af5e45
A357060
Number of vertices in a square when n internal squares are drawn between the 4n points that divide each side into n+1 equal parts.
[ "4", "8", "20", "40", "68", "88", "148", "168", "260", "296", "404", "436", "580", "632", "788", "840", "1028", "1072", "1300", "1384", "1604", "1688", "1940", "1972", "2308", "2408", "2708", "2808", "3140", "3220", "3604", "3696", "4084", "4232", "4628", "4716", "5188", "5336", "5764", "5908", "6404", "6496", "7060", "7224", "7732", "7928", "8468", "8524", "9220", "9368", "9988", "10216" ]
[ "nonn" ]
23
0
1
[ "A355799", "A355839", "A355949", "A357007", "A357058", "A357060", "A357061" ]
null
Scott R. Shannon, Sep 10 2022
2022-09-17T13:06:58
oeisdata/seq/A357/A357060.seq
33d921eadf72bbcfab262235b45913fb
A357061
Number of edges in a square when n internal squares are drawn between the 4n points that divide each side into n+1 equal parts.
[ "4", "12", "36", "76", "132", "180", "292", "348", "516", "604", "804", "892", "1156", "1284", "1572", "1708", "2052", "2180", "2596", "2796", "3204", "3412", "3876", "4012", "4612", "4860", "5412", "5668", "6276", "6508", "7204", "7460", "8172", "8524", "9252", "9516", "10372", "10740", "11532", "11900", "12804", "13100", "14116", "14532", "15468", "15940", "16932", "17196", "18436" ]
[ "nonn" ]
14
0
1
[ "A355800", "A355840", "A355948", "A357008", "A357058", "A357060", "A357061" ]
null
Scott R. Shannon, Sep 10 2022
2022-09-17T11:41:20
oeisdata/seq/A357/A357061.seq
592946e4fa872c6f459002b04ce6ad99
A357062
Number of ordered solutions to n = x*y*z + x + y + z in positive integers.
[ "0", "0", "0", "0", "1", "0", "3", "0", "3", "3", "3", "0", "9", "0", "4", "6", "6", "0", "9", "3", "9", "6", "3", "0", "18", "3", "6", "6", "9", "3", "15", "0", "9", "12", "6", "6", "19", "0", "3", "9", "21", "0", "18", "0", "12", "12", "6", "6", "21", "6", "9", "12", "9", "0", "24", "6", "18", "6", "3", "6", "33", "6", "6", "12", "15", "6", "18", "0", "15", "15", "15", "0", "33", "6", "6", "18", "13", "6", "21", "3", "21", "9", "9", "0", "36", "12", "9", "12", "18", "9", "27", "6", "9", "9", "6" ]
[ "nonn" ]
36
0
7
[ "A350535", "A357062", "A357809" ]
null
Charles R Greathouse IV, Oct 13 2022
2022-10-23T01:09:47
oeisdata/seq/A357/A357062.seq
050bc4821ff41efc2b35ad593e45b82a
A357063
Lengths of the B blocks associated with A091787.
[ "1", "4", "13", "42", "127", "382", "1149", "3448", "10345", "31044", "93133", "279400", "838203", "2514610", "7543831", "22631496", "67894489", "203683468", "611050413", "1833151240", "5499453721", "16498361166", "49495083499", "148485250498", "445455751497", "1336367254492", "4009101763477", "12027305290463", "36081915871390", "108245747614173", "324737242842520", "974211728527561", "2922635185582686", "8767905556748059", "26303716670244178", "78911150010732543", "236733450032197630", "710200350096592891" ]
[ "nonn" ]
31
1
2
[ "A091787", "A357063", "A357068" ]
null
Levi van de Pol, Sep 10 2022
2022-11-22T22:36:40
oeisdata/seq/A357/A357063.seq
50a4c547f2ad3a5e76586f9d20b6f51a
A357064
a(n) = k such that A091411(k) = A091409(n).
[ "1", "2", "3", "7", "418090195952691922788354" ]
[ "nonn" ]
23
1
2
[ "A091409", "A091411", "A357064" ]
null
Levi van de Pol, Sep 10 2022
2022-10-25T05:13:25
oeisdata/seq/A357/A357064.seq
bd951a26efe4d7939ad064fbc7b323f1
A357065
Numbers k with the following property: the value A091839(k+1) is not a 1 that is obtained from smoothing A091579.
[ "0", "1", "2", "3", "5", "7", "8", "9", "10", "11", "13", "15", "16", "17", "18", "19", "21", "23", "24", "25", "26", "27", "29", "31", "33", "34", "35", "37", "39", "40", "41", "42", "43", "45", "47", "49", "50", "51", "53", "55", "56", "57", "58", "59", "61", "63", "65", "66", "67", "69", "71", "73", "74", "75", "77", "79", "80", "81", "82", "83", "85", "87", "88", "89", "90", "91", "93", "95", "97", "98", "99", "101", "103" ]
[ "nonn", "base" ]
31
1
3
[ "A090822", "A091787", "A357065", "A357066", "A357067" ]
null
Levi van de Pol, Sep 10 2022
2022-10-23T02:29:03
oeisdata/seq/A357/A357065.seq
7a6f06c39e093153197ec8fa32651fcb
A357066
Decimal expansion of the limit of k/A357065(k) as k goes to infinity.
[ "6", "9", "1", "6", "7", "2", "2", "0", "8", "7", "8", "1", "1", "2", "6", "1", "5", "3", "3", "8" ]
[ "nonn", "cons", "more" ]
24
0
1
[ "A090822", "A091409", "A357065", "A357066" ]
null
Levi van de Pol, Oct 21 2022
2022-11-03T10:08:13
oeisdata/seq/A357/A357066.seq
5e1374637cf37a86f74162cfdae76af3
A357067
Decimal expansion of the limit of A091411(k)/2^(k-1) as k goes to infinity.
[ "3", "4", "8", "6", "6", "9", "8", "8", "6", "4", "3", "8", "3", "6", "5", "5", "9", "7", "0", "2", "3", "5", "8", "7", "2", "7", "0", "0", "7", "0", "2", "2", "2", "0", "6", "6", "7", "3", "3", "5", "4", "1", "3", "6", "6", "2" ]
[ "nonn", "cons", "more" ]
23
1
1
[ "A090822", "A091409", "A091411", "A091579", "A357066", "A357067", "A357068" ]
null
Levi van de Pol, Oct 22 2022
2023-02-28T09:23:57
oeisdata/seq/A357/A357067.seq
d1319d6cf8272535cd6dd37fa52c9dd5
A357068
Decimal expansion of the limit of A357063(k)/3^(k-1) as k goes to infinity.
[ "1", "5", "7", "7", "2", "2", "7", "9", "2", "3", "9", "9", "4", "5", "0", "0", "6", "9", "4", "1", "0" ]
[ "nonn", "cons", "more" ]
11
1
2
[ "A091787", "A091840", "A357063", "A357066", "A357067", "A357068" ]
null
Levi van de Pol, Oct 24 2022
2022-10-25T11:38:34
oeisdata/seq/A357/A357068.seq
77ea474bece7f9f77319a33082263b66
A357069
Number of partitions of n into at most 4 distinct positive squares.
[ "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "2", "2", "0", "0", "2", "2", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "2", "1", "0", "0", "2", "2", "0", "0", "2", "3", "1", "1", "2", "2", "0", "1", "1", "1", "1", "0", "2", "3", "1", "1", "4", "2", "0", "1", "2", "2", "1", "0", "1", "4", "2", "0", "2", "4", "1", "1", "3", "1", "1", "2", "3", "3", "1", "0", "3", "5", "2", "0", "2", "4", "2", "0", "1", "3", "2", "2", "4" ]
[ "nonn" ]
10
0
26
[ "A000290", "A002635", "A025435", "A025443", "A033461", "A341040", "A347534", "A347586", "A347711", "A357069" ]
null
Ilya Gutkovskiy, Oct 25 2022
2022-10-25T20:39:19
oeisdata/seq/A357/A357069.seq
b5682e5f72a1cdb9460fb0cc298d254c
A357070
Number of partitions of n into at most 2 distinct positive triangular numbers.
[ "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "2", "0", "1", "0", "0", "2", "1", "0", "1", "1", "0", "1", "1", "1", "0", "2", "0", "0", "1", "0", "2", "1", "1", "1", "0", "0", "1", "1", "0", "1", "2", "0", "1", "1", "0", "2", "0", "0", "0", "2", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "2", "1", "0", "1", "1", "0", "1", "1", "0", "0", "2", "0", "1", "1", "0", "3", "0", "1", "1", "0", "0", "1", "1", "0", "0", "2", "1", "1", "2", "0", "0", "1", "0", "1", "1", "1" ]
[ "nonn" ]
7
0
17
[ "A000217", "A024940", "A052343", "A307597", "A347730", "A357070", "A357071", "A357072" ]
null
Ilya Gutkovskiy, Oct 25 2022
2022-11-19T21:15:20
oeisdata/seq/A357/A357070.seq
e40a67863173c193d3d277fe511a6967
A357071
Number of partitions of n into at most 3 distinct positive triangular numbers.
[ "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "1", "1", "2", "1", "1", "2", "0", "2", "2", "0", "2", "2", "1", "1", "3", "1", "1", "3", "2", "0", "2", "1", "2", "4", "1", "3", "1", "1", "2", "2", "2", "2", "4", "1", "1", "4", "1", "2", "4", "1", "2", "3", "2", "2", "3", "2", "2", "4", "1", "2", "3", "2", "4", "4", "1", "2", "4", "2", "3", "3", "2", "1", "5", "2", "1", "5", "1", "4", "5", "2", "4", "2", "2", "4", "3", "2", "1", "6", "2", "3", "6", "2", "2", "4", "2", "2", "4", "3" ]
[ "nonn" ]
7
0
11
[ "A000217", "A002636", "A024940", "A307598", "A347731", "A357070", "A357071", "A357072" ]
null
Ilya Gutkovskiy, Oct 25 2022
2022-11-19T21:15:28
oeisdata/seq/A357/A357071.seq
07b0dc0b0546bd023cd66c2a22d9b0b5
A357072
Number of partitions of n into at most 4 distinct positive triangular numbers.
[ "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "1", "1", "2", "1", "1", "2", "1", "2", "2", "0", "2", "3", "1", "1", "3", "2", "1", "4", "3", "0", "3", "2", "2", "4", "3", "3", "3", "1", "3", "3", "2", "4", "5", "4", "1", "5", "3", "2", "6", "3", "3", "6", "4", "2", "5", "4", "4", "5", "4", "2", "7", "5", "5", "7", "3", "4", "7", "4", "4", "8", "5", "4", "7", "6", "2", "7", "6", "5", "10", "5", "6", "7", "5", "7", "7", "6", "4", "10", "8", "3", "12", "6", "4", "11", "6", "5", "9", "7" ]
[ "nonn" ]
7
0
11
[ "A000217", "A024940", "A341021", "A347586", "A347627", "A347732", "A357070", "A357071", "A357072" ]
null
Ilya Gutkovskiy, Oct 25 2022
2022-11-19T21:15:36
oeisdata/seq/A357/A357072.seq
8f0bc82db209ef8c46ee9c7626a94070
A357073
For n >= 1, a(n) = A003714(n) mod n.
[ "0", "0", "1", "1", "3", "3", "3", "0", "8", "8", "9", "9", "6", "5", "4", "4", "3", "4", "3", "2", "1", "21", "20", "20", "19", "20", "19", "18", "22", "21", "20", "20", "19", "26", "24", "22", "21", "19", "19", "17", "15", "18", "16", "14", "13", "11", "19", "17", "15", "14", "12", "12", "10", "8", "36", "33", "30", "28", "25", "24", "21", "18", "20", "17", "14", "12", "9", "16", "13", "10", "8", "5" ]
[ "nonn" ]
13
1
5
[ "A003714", "A276488", "A357073" ]
null
Ctibor O. Zizka, Sep 10 2022
2022-09-11T16:20:09
oeisdata/seq/A357/A357073.seq
a5e874b0eb6494d3b4f891374b098829
A357074
Numbers sandwiched between a pair of numbers each with exactly two prime factors (counted without multiplicity).
[ "11", "13", "19", "21", "23", "25", "27", "34", "35", "37", "39", "45", "47", "49", "51", "53", "55", "56", "57", "64", "73", "75", "76", "81", "86", "87", "92", "93", "94", "95", "97", "99", "105", "107", "116", "117", "118", "123", "134", "135", "142", "143", "144", "145", "146", "147", "154", "159", "160", "161", "163", "165", "176", "177", "184", "186", "188", "193", "195" ]
[ "nonn" ]
9
1
1
[ "A007774", "A357074" ]
null
Tanya Khovanova, Sep 10 2022
2022-09-11T19:13:28
oeisdata/seq/A357/A357074.seq
3e0c1415e3f4b85b4f90de5185f432ec
A357075
Numbers sandwiched between numbers with exactly three distinct prime factors.
[ "131", "139", "155", "169", "181", "221", "229", "239", "259", "265", "281", "307", "309", "311", "341", "349", "365", "371", "373", "379", "407", "409", "439", "441", "443", "469", "475", "491", "493", "505", "517", "519", "521", "529", "531", "533", "551", "559", "573", "581", "589", "599", "601", "611", "617", "619", "637", "643", "645", "664", "671", "679", "681", "683" ]
[ "nonn", "easy", "changed" ]
18
1
1
[ "A033992", "A080569", "A357074", "A357075" ]
null
Tanya Khovanova, Sep 10 2022
2025-07-06T15:15:09
oeisdata/seq/A357/A357075.seq
99d72a852da46f8945dfd89231098c53
A357076
Numbers k sandwiched between twin primes, such that k times the reverse of k is also sandwiched between twin primes.
[ "198", "642", "1050", "2730", "3000", "4050", "4230", "4272", "4548", "4638", "4968", "5010", "6270", "7950", "8970", "9630", "9858", "10092", "11700", "12240", "17490", "18918", "22740", "25470", "33750", "37200", "39240", "45180", "48648", "48732", "48822", "49548", "52182", "53172", "55620", "56532", "57330", "58602", "60918", "65100", "65730", "70140" ]
[ "nonn", "base" ]
10
1
1
[ "A014574", "A357076" ]
null
Tanya Khovanova, Sep 10 2022
2022-09-26T20:34:37
oeisdata/seq/A357/A357076.seq
548de6b3eba7e22b2e56fb9b5b425e38
A357077
The lesser of two consecutive numbers with at least 3 prime factors (counted with multiplicity).
[ "27", "44", "63", "75", "80", "98", "99", "104", "116", "124", "125", "135", "147", "152", "153", "164", "170", "171", "174", "175", "188", "189", "195", "207", "224", "230", "231", "242", "243", "244", "245", "255", "260", "272", "275", "279", "284", "285", "296", "315", "324", "332", "342", "343", "344", "350", "351", "356", "363", "368", "369", "374", "375", "384", "387", "399" ]
[ "nonn" ]
12
1
1
[ "A033942", "A344843", "A357077" ]
null
Tanya Khovanova, Sep 10 2022
2022-09-16T13:39:25
oeisdata/seq/A357/A357077.seq
f215838b1ff2a33fe5ebc65211c1245d
A357078
Triangle read by rows. The partition transform of A355488, which are the alternating row sums of the number of permutations of [n] with k components (A059438).
[ "1", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "8", "4", "0", "1", "0", "48", "16", "6", "0", "1", "0", "328", "100", "24", "8", "0", "1", "0", "2560", "688", "156", "32", "10", "0", "1", "0", "22368", "5376", "1080", "216", "40", "12", "0", "1", "0", "216224", "46816", "8456", "1504", "280", "48", "14", "0", "1", "0", "2291456", "450240", "73440", "11808", "1960", "348", "56", "16", "0", "1" ]
[ "nonn", "tabl" ]
17
0
8
[ "A003319", "A059438", "A269941", "A355488", "A356265", "A357078", "A357079" ]
null
Peter Luschny, Sep 10 2022
2022-09-15T14:44:00
oeisdata/seq/A357/A357078.seq
6326520d5bd4ccacca0e8c2b428400cc
A357079
Triangle read by rows. T(n, k) = A356265(n, k) + A357078(n, k) for 0 <= k <= n.
[ "1", "0", "1", "0", "1", "1", "0", "3", "2", "1", "0", "9", "12", "2", "1", "0", "49", "37", "31", "2", "1", "0", "329", "149", "176", "63", "2", "1", "0", "2561", "794", "853", "702", "127", "2", "1", "0", "22369", "5599", "3836", "5709", "2549", "255", "2", "1", "0", "216225", "47275", "18422", "37609", "33949", "8886", "511", "2", "1", "2291457", "451176", "107535", "218506", "344670", "184653", "29777", "1023", "2", "1" ]
[ "nonn", "tabl" ]
10
0
8
[ "A003319", "A059438", "A356265", "A357078", "A357079" ]
null
Peter Luschny, Sep 11 2022
2022-09-15T14:44:27
oeisdata/seq/A357/A357079.seq
b037e04195a600527cfe5ce329a924d7
A357080
Numbers k such that the sum of the digits of k multiplied by the sum of the digits of k^2 equals k.
[ "0", "1", "80", "162", "243", "476", "486" ]
[ "nonn", "base", "fini", "full" ]
14
1
3
[ "A004159", "A007953", "A130181", "A357080" ]
null
Tanya Khovanova, Sep 10 2022
2022-09-26T20:35:20
oeisdata/seq/A357/A357080.seq
eb3647f756205bd189255d23db68612e
A357081
Leader at step n of the THROWBACK procedure (see definition in comments).
[ "3", "4", "5", "6", "3", "7", "4", "8", "3", "5", "9", "4", "3", "6", "10", "5", "3", "4", "7", "11", "3", "6", "4", "5", "3", "8", "12", "4", "3", "7", "5", "6", "3", "4", "9", "13", "3", "5", "4", "8", "3", "6", "7", "4", "3", "5", "10", "14", "3", "4", "6", "5", "3", "9", "4", "7", "3", "8", "5", "4", "3", "6", "11", "15", "3", "4", "5", "7", "3", "6", "4", "10", "3", "5", "8", "4", "3", "9", "6", "5", "3", "4", "7", "12", "3", "16", "4", "5", "3", "6", "8", "4", "3", "7", "5", "11", "3", "4", "6", "9" ]
[ "nonn", "easy" ]
26
0
1
[ "A087165", "A155167", "A354223", "A355080", "A357081" ]
null
Anthony M. Kozar Jr., Sep 08 2022
2024-03-24T11:03:05
oeisdata/seq/A357/A357081.seq
5b979ce07dd65da042fd8c6b96ef37fe
A357082
a(0) = 0; for n > 0, a(n) is the smallest positive number not occurring earlier such that the binary string of a(n-1) + a(n) does not appear in the binary string concatenation of a(0)..a(n-1).
[ "0", "1", "2", "3", "4", "5", "10", "6", "9", "7", "17", "12", "20", "13", "16", "18", "11", "21", "15", "19", "23", "38", "26", "8", "24", "37", "27", "34", "30", "31", "33", "32", "40", "36", "28", "44", "41", "35", "29", "43", "39", "25", "47", "53", "51", "49", "42", "22", "50", "14", "58", "46", "54", "62", "65", "63", "66", "67", "61", "68", "60", "69", "59", "70", "74", "55", "73", "56", "72", "57", "71", "75", "78", "76", "52", "77", "92" ]
[ "nonn", "base", "look" ]
35
0
3
[ "A007088", "A030302", "A118248", "A341766", "A357082" ]
null
Scott R. Shannon, Sep 11 2022
2023-02-15T07:49:10
oeisdata/seq/A357/A357082.seq
a2f7032ca88388a4a8375c7fb2fecc1b
A357083
a(n) is the number of free polycubes of size n with holes.
[ "11", "215", "3173", "38564" ]
[ "nonn", "more", "hard" ]
11
11
1
[ "A038119", "A355966", "A357083" ]
null
John Mason, Sep 11 2022
2022-09-13T09:33:57
oeisdata/seq/A357/A357083.seq
9379e5744a5f599e66a3abb49bf1c857
A357084
E.g.f. satisfies log(A(x)) = (exp(x*A(x)) - 1)^2 * A(x).
[ "1", "0", "2", "6", "98", "990", "19082", "347046", "8512226", "220737390", "6776521082", "225532370646", "8413133799314", "339965749171230", "14995100013227882", "711308930246853126", "36278600375671552322", "1974411768891211652430", "114394542828023045764442" ]
[ "nonn" ]
9
0
3
[ "A349557", "A357024", "A357084", "A357085" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:06:30
oeisdata/seq/A357/A357084.seq
ee963a16e22bd15f842354de46fe4d3a
A357085
E.g.f. satisfies log(A(x)) = (exp(x*A(x)) - 1)^3 * A(x).
[ "1", "0", "0", "6", "36", "150", "3780", "77406", "1059156", "21669990", "640319940", "16622025486", "450085011156", "15416323450710", "561938117029380", "20587443165165246", "835816881563118036", "37282225483118856390", "1722621978491064495300", "83817942806509377794286" ]
[ "nonn" ]
9
0
4
[ "A349557", "A357025", "A357084", "A357085" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:06:42
oeisdata/seq/A357/A357085.seq
e4a7da333b65f6e37f700f9b1436529c
A357086
E.g.f. satisfies A(x) * log(A(x)) = (exp(x*A(x)) - 1)^2.
[ "1", "0", "2", "6", "50", "510", "5882", "88326", "1502258", "29368590", "650366762", "15974149686", "433095937826", "12829712583870", "412295632858202", "14292175302568806", "531485147656990994", "21107739762958541550", "891673745283286886282", "39923664347178352362006" ]
[ "nonn" ]
11
0
3
[ "A349588", "A357084", "A357086", "A357087", "A357088" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:06:51
oeisdata/seq/A357/A357086.seq
6263472731ac39b56711af8fea1729e8
A357087
E.g.f. satisfies A(x) * log(A(x)) = (exp(x*A(x)) - 1)^3.
[ "1", "0", "0", "6", "36", "150", "2340", "47166", "676116", "10602150", "248197860", "6304530606", "154511054676", "4227889233750", "134462460901860", "4519745455581726", "157756124072317716", "5960350758700381830", "243292987180534250340", "10433760831781705395726", "469420864688765414084436" ]
[ "nonn" ]
9
0
4
[ "A349588", "A357085", "A357086", "A357087", "A357089" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:06:59
oeisdata/seq/A357/A357087.seq
c4a9d14759eb320ad067c0e27b8eb491
A357088
E.g.f. satisfies A(x) * log(A(x)) = (exp(x*A(x)) - 1)^2 / 2.
[ "1", "0", "1", "3", "16", "135", "1246", "14238", "192613", "2948025", "51071236", "985911003", "20952667660", "486857940660", "12275673296251", "333786662478363", "9737819506544272", "303399477464036175", "10054949172135522106", "353197317869395005258", "13108298181041284002769" ]
[ "nonn" ]
8
0
4
[ "A349588", "A357088", "A357089" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:07:10
oeisdata/seq/A357/A357088.seq
fa0f1786c6ce49383158604ae43f51de
A357089
E.g.f. satisfies A(x) * log(A(x)) = (exp(x*A(x)) - 1)^3 / 6.
[ "1", "0", "0", "1", "6", "25", "140", "1561", "19586", "228425", "2870160", "44172601", "780614846", "14499946825", "284310704860", "6089231941521", "142225796401786", "3537029819020905", "92766573133851240", "2577870903366020521", "75999605064376599606", "2362944241092314079145" ]
[ "nonn" ]
8
0
5
[ "A349588", "A357088", "A357089" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:07:18
oeisdata/seq/A357/A357089.seq
a170788bb05c89517a5d496bca4a0d22
A357090
E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) * A(x)).
[ "1", "0", "2", "6", "106", "1060", "21728", "396648", "10174764", "267855264", "8517836832", "289596897480", "11137252365600", "461124747706896", "20922578332613904", "1018268757357253920", "53372000211252229392", "2981808910524462942720", "177468245487057424475136" ]
[ "nonn" ]
10
0
3
[ "A349556", "A357028", "A357090", "A357091" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:07:33
oeisdata/seq/A357/A357090.seq
ffe3dba99f627d8f3bc71af9522ca336
A357091
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 * A(x)).
[ "1", "0", "0", "6", "36", "210", "4590", "85344", "1353912", "30525384", "836587440", "22585438656", "676820305656", "23377203675072", "857981143380816", "33416782099297344", "1417453025671696320", "64371985604089220160", "3086958605328618687360", "157142856384519974847360" ]
[ "nonn" ]
10
0
4
[ "A349556", "A357029", "A357090", "A357091" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:07:46
oeisdata/seq/A357/A357091.seq
aef8e0cc8afc6d61dc45c14d8e38f6d6
A357092
E.g.f. satisfies A(x)^A(x) = (1 - x * A(x))^log(1 - x * A(x)).
[ "1", "0", "2", "6", "58", "580", "7568", "119448", "2195772", "46413792", "1106667072", "29403619080", "861570383232", "27600893313552", "959793100481616", "36006430081497120", "1449539553826089360", "62334045415459189248", "2851721291051846833152", "138299011223141244621024" ]
[ "nonn" ]
11
0
3
[ "A141209", "A357028", "A357092", "A357093" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:07:54
oeisdata/seq/A357/A357092.seq
c3f61d10418a25131869e542bf633fe3
A357093
E.g.f. satisfies A(x)^A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2).
[ "1", "0", "0", "6", "36", "210", "3150", "55104", "890232", "16735944", "386223120", "9790441056", "265867900056", "7943197796352", "260063260578576", "9156071916788544", "344740627648393920", "13880862578534022720", "595178180505073088640", "27035591386823290224000" ]
[ "nonn" ]
10
0
4
[ "A141209", "A357029", "A357092", "A357093" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:08:04
oeisdata/seq/A357/A357093.seq
c8942e7be7f762453373ae849a94e68b
A357094
E.g.f. satisfies A(x)^A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).
[ "1", "0", "1", "3", "20", "170", "1789", "22869", "342222", "5874840", "113865786", "2459446440", "58588151148", "1526055579828", "43149414029604", "1316279791377810", "43090904609439900", "1506889769163738432", "56062825134853664328", "2211097753021838716116", "92149286987928381312972" ]
[ "nonn" ]
10
0
4
[ "A141209", "A357036", "A357094", "A357095" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:08:15
oeisdata/seq/A357/A357094.seq
8103d8a50bf87407acd50d218062bd2a
A357095
E.g.f. satisfies A(x)^A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6).
[ "1", "0", "0", "1", "6", "35", "275", "2884", "35672", "494724", "7673670", "132896676", "2544253426", "53252983992", "1208888367596", "29592833903424", "777311220788320", "21808542026480120", "650880782773059840", "20590135175285212800", "688212821908314587880", "24235789570607605377680" ]
[ "nonn" ]
10
0
5
[ "A141209", "A357037", "A357094", "A357095" ]
null
Seiichi Manyama, Sep 11 2022
2022-09-11T10:08:43
oeisdata/seq/A357/A357095.seq
ea57cda4a2c8a6047834b2cfa81590ba
A357096
Least number whose set of decimal digits coincides with the set of decimal digits of prime(n).
[ "2", "3", "5", "7", "1", "13", "17", "19", "23", "29", "13", "37", "14", "34", "47", "35", "59", "16", "67", "17", "37", "79", "38", "89", "79", "10", "103", "107", "109", "13", "127", "13", "137", "139", "149", "15", "157", "136", "167", "137", "179", "18", "19", "139", "179", "19", "12", "23", "27", "29", "23", "239", "124", "125", "257", "236", "269", "127", "27", "128", "238", "239" ]
[ "nonn", "base" ]
93
1
1
[ "A179239", "A179308", "A357096" ]
null
Jean-Marc Rebert, Sep 12 2022
2022-09-13T09:33:26
oeisdata/seq/A357/A357096.seq
355e83ccf34caefb84d370f4b2d1c826
A357097
A multiplication table for the rows of the extended Wythoff array. See comments for definition.
[ "0", "1", "1", "2", "15", "2", "3", "8", "8", "3", "4", "12", "4", "12", "4", "5", "44", "18", "18", "44", "5", "6", "19", "24", "27", "24", "19", "6", "7", "62", "28", "96", "96", "28", "62", "7", "8", "26", "34", "42", "128", "42", "34", "26", "8", "9", "30", "14", "51", "56", "56", "51", "14", "30", "9", "10", "91", "44", "57", "180", "65", "180", "57", "44", "91", "10", "11", "37", "50", "66", "76", "79", "79", "76", "66", "50", "37", "11" ]
[ "nonn", "tabl" ]
28
0
4
[ "A000201", "A003622", "A019586", "A022344", "A035336", "A035513", "A101330", "A120873", "A287870", "A348853", "A357097" ]
null
Peter Munn, Sep 11 2022
2025-01-05T19:51:42
oeisdata/seq/A357/A357097.seq
3e074a375b84826055b81c252590c4d7
A357098
Emirps p such that the average of p and its digit reversal is an emirp.
[ "1001941", "1008701", "1012481", "1012861", "1034861", "1035641", "1037081", "1040981", "1052041", "1060781", "1078001", "1092061", "1101571", "1101931", "1102571", "1124951", "1141391", "1142131", "1142171", "1146791", "1149131", "1152071", "1157491", "1161331", "1165991", "1171231", "1185791", "1256681", "1267381", "1312411", "1319411", "1321571", "1321711" ]
[ "nonn", "base" ]
13
1
1
[ "A006567", "A357098" ]
null
Robert Israel, Sep 11 2022
2022-10-02T13:29:07
oeisdata/seq/A357/A357098.seq
245fcaea8c3640846c6eef5b514e7656
A357099
Second nontrivial square root of unity mod A033949(n), i.e., second smallest x > 1 such that x^2 == 1 mod the n-th positive integer that does not have a primitive root.
[ "5", "7", "11", "9", "11", "13", "7", "15", "19", "17", "23", "29", "19", "25", "11", "29", "23", "26", "17", "35", "27", "34", "15", "37", "19", "55", "33", "51", "43", "35", "47", "41", "19", "49", "39", "43", "53", "31", "29", "69", "59", "23", "71", "64", "47", "61", "56", "31", "89", "51", "67", "27", "34", "55", "89", "73", "41", "77", "91", "59", "64", "69", "19", "83", "63", "71" ]
[ "nonn" ]
38
1
1
[ "A033949", "A082568", "A277776", "A357099" ]
null
Alois P. Heinz, Oct 25 2022
2022-10-26T16:11:38
oeisdata/seq/A357/A357099.seq
c2ef22282d83e7082a9dbb1dce715f42
A357100
Decimal expansion of the real root of x^3 + x^2 - 3.
[ "1", "1", "7", "4", "5", "5", "9", "4", "1", "0", "2", "9", "2", "9", "8", "0", "0", "7", "4", "2", "0", "2", "3", "1", "8", "9", "8", "8", "6", "9", "5", "6", "5", "3", "9", "2", "5", "6", "7", "5", "9", "4", "8", "7", "2", "5", "3", "3", "7", "0", "8", "2", "4", "9", "8", "3", "3", "6", "7", "3", "3", "9", "2", "0", "3", "0", "2", "3", "6", "4", "7", "6", "4", "7", "9", "2" ]
[ "nonn", "cons", "easy" ]
18
1
3
[ "A356034", "A357100" ]
null
Wolfdieter Lang, Sep 13 2022
2022-11-09T04:40:24
oeisdata/seq/A357/A357100.seq
44293b1d8575bc7c06e6ede8d850de1a