sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A357701 | Irregular triangle read by rows where row n is the vertex depths of the rooted binary tree with Colijn-Plazzotta tree number n, traversed in pre-order, numerically larger child first. | [
"0",
"0",
"1",
"1",
"0",
"1",
"2",
"2",
"1",
"0",
"1",
"2",
"2",
"1",
"2",
"2",
"0",
"1",
"2",
"3",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"3",
"2",
"1",
"2",
"2",
"0",
"1",
"2",
"3",
"3",
"2",
"1",
"2",
"3",
"3",
"2",
"0",
"1",
"2",
"3",
"3",
"2",
"3",
"3",
"1",
"0",
"1",
"2",
"3",
"3",
"2",
"3",
"3",
"1",
"2",
"2",
"0",
"1",
"2",
"3",
"3",
"2",
"3",
"3",
"1",
"2",
"3",
"3",
"2",
"0",
"1",
"2",
"3",
"3",
"2",
"3",
"3",
"1",
"2",
"3",
"3",
"2",
"3",
"3"
] | [
"nonn",
"easy",
"tabf",
"changed"
] | 21 | 1 | 7 | [
"A002024",
"A002260",
"A064002",
"A357701",
"A357702"
] | null | Kevin Ryde, Oct 11 2022 | 2025-04-22T19:11:25 | oeisdata/seq/A357/A357701.seq | 19f07d830fd687f638ec54aab017a0d6 |
A357702 | Path length (total depths of vertices) of the rooted binary tree with Colijn-Plazzotta tree number n. | [
"0",
"2",
"6",
"10",
"12",
"16",
"22",
"18",
"22",
"28",
"34",
"20",
"24",
"30",
"36",
"38",
"26",
"30",
"36",
"42",
"44",
"50",
"34",
"38",
"44",
"50",
"52",
"58",
"66",
"28",
"32",
"38",
"44",
"46",
"52",
"60",
"54",
"34",
"38",
"44",
"50",
"52",
"58",
"66",
"60",
"66",
"42",
"46",
"52",
"58",
"60",
"66",
"74",
"68",
"74",
"82",
"50",
"54",
"60",
"66",
"68",
"74",
"82",
"76",
"82",
"90"
] | [
"nonn",
"easy"
] | 9 | 1 | 2 | [
"A002024",
"A002260",
"A064002",
"A196047",
"A357701",
"A357702"
] | null | Kevin Ryde, Oct 11 2022 | 2024-12-19T11:46:19 | oeisdata/seq/A357/A357702.seq | d402e51c4ddb2b38198dce5ec34fb826 |
A357703 | Expansion of e.g.f. cosh( sqrt(3) * log(1-x) ). | [
"1",
"0",
"3",
"9",
"42",
"240",
"1614",
"12474",
"108900",
"1059696",
"11371932",
"133410420",
"1698541416",
"23324023008",
"343606235544",
"5405580540360",
"90445832210448",
"1603781918563968",
"30042007763367600",
"592788643008571152",
"12289695299276133024",
"267079782474700715520"
] | [
"nonn"
] | 20 | 0 | 3 | [
"A357615",
"A357703",
"A357712"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357703.seq | eab8ccbff925f01cc718a5997774d8c5 |
A357704 | Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2. | [
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"2",
"0",
"0",
"2",
"0",
"3",
"0",
"0",
"2",
"2",
"0",
"3",
"0",
"0",
"3",
"1",
"3",
"0",
"4",
"0",
"0",
"3",
"2",
"4",
"2",
"0",
"4",
"0",
"0",
"4",
"2",
"6",
"2",
"3",
"0",
"5",
"0",
"0",
"4",
"3",
"5",
"7",
"3",
"3",
"0",
"5",
"0",
"0",
"5",
"3",
"8",
"4",
"10",
"2",
"4",
"0",
"6",
"0",
"0",
"5",
"4",
"8",
"6",
"11",
"9",
"3",
"4",
"0",
"6",
"0",
"0",
"6",
"4",
"11",
"5",
"15",
"8",
"13",
"3",
"5",
"0",
"7"
] | [
"nonn",
"tabl"
] | 7 | 0 | 6 | [
"A000041",
"A008619",
"A029862",
"A035363",
"A035544",
"A053251",
"A097805",
"A344612",
"A344651",
"A351005",
"A351006",
"A357136",
"A357189",
"A357487",
"A357488",
"A357621",
"A357623",
"A357629",
"A357630",
"A357631",
"A357632",
"A357633",
"A357634",
"A357637",
"A357638",
"A357639",
"A357640",
"A357641",
"A357643",
"A357644",
"A357645",
"A357646",
"A357704",
"A357705"
] | null | Gus Wiseman, Oct 10 2022 | 2022-10-10T20:47:12 | oeisdata/seq/A357/A357704.seq | 47700521db33480d2af3a7a6898d80a2 |
A357705 | Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2. | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"2",
"0",
"1",
"0",
"3",
"1",
"2",
"0",
"1",
"0",
"3",
"2",
"3",
"2",
"0",
"1",
"0",
"4",
"2",
"4",
"1",
"3",
"0",
"1",
"0",
"4",
"3",
"3",
"6",
"2",
"3",
"0",
"1",
"0",
"5",
"3",
"5",
"3",
"7",
"2",
"4",
"0",
"1",
"0",
"5",
"4",
"5",
"4",
"9",
"7",
"3",
"4",
"0",
"1",
"0",
"6",
"4",
"7",
"3",
"12",
"5",
"10",
"3",
"5",
"0",
"1"
] | [
"nonn",
"tabl"
] | 6 | 0 | 8 | [
"A000041",
"A004526",
"A035363",
"A035594",
"A053251",
"A097805",
"A298311",
"A344651",
"A351005",
"A351006",
"A357136",
"A357189",
"A357487",
"A357488",
"A357621",
"A357623",
"A357624",
"A357629",
"A357630",
"A357631",
"A357632",
"A357633",
"A357634",
"A357636",
"A357637",
"A357638",
"A357639",
"A357640",
"A357643",
"A357644",
"A357645",
"A357646",
"A357704",
"A357705"
] | null | Gus Wiseman, Oct 10 2022 | 2022-10-10T20:47:08 | oeisdata/seq/A357/A357705.seq | eb39b627388dc4293348f76ce419b5c3 |
A357706 | Numbers k such that the k-th composition in standard order has half-alternating sum and skew-alternating sum both 0. | [
"0",
"15",
"45",
"54",
"59",
"153",
"170",
"179",
"204",
"213",
"230",
"235",
"247",
"255",
"561",
"594",
"611",
"660",
"677",
"710",
"715",
"727",
"735",
"750",
"765",
"792",
"809",
"842",
"851",
"871",
"879",
"894",
"908",
"917",
"934",
"939",
"951",
"959",
"973",
"982",
"987",
"1005",
"1014",
"1019"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A000583",
"A001511",
"A001700",
"A004006",
"A035363",
"A035594",
"A088218",
"A228248",
"A357136",
"A357182",
"A357625",
"A357626",
"A357627",
"A357628",
"A357631",
"A357632",
"A357636",
"A357639",
"A357640",
"A357641",
"A357642",
"A357706"
] | null | Gus Wiseman, Oct 13 2022 | 2022-10-13T12:28:23 | oeisdata/seq/A357/A357706.seq | 47412dbdf9bf150714f6c0bf19732cd8 |
A357707 | Numbers whose prime indices have equal number of parts congruent to each of 1 and 3 (mod 4). | [
"1",
"3",
"7",
"9",
"10",
"13",
"19",
"21",
"27",
"29",
"30",
"34",
"37",
"39",
"43",
"49",
"53",
"55",
"57",
"61",
"62",
"63",
"70",
"71",
"79",
"81",
"87",
"89",
"90",
"91",
"94",
"100",
"101",
"102",
"107",
"111",
"113",
"115",
"117",
"129",
"130",
"131",
"133",
"134",
"139",
"147",
"151",
"159",
"163",
"165",
"166",
"169",
"171",
"173",
"181",
"183",
"186",
"187",
"189"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A035363",
"A035544",
"A035550",
"A035594",
"A053251",
"A056239",
"A066207",
"A097805",
"A112798",
"A298311",
"A316524",
"A344616",
"A344651",
"A357486",
"A357623",
"A357632",
"A357636",
"A357638",
"A357640",
"A357704",
"A357705",
"A357707"
] | null | Gus Wiseman, Oct 12 2022 | 2022-10-12T19:44:51 | oeisdata/seq/A357/A357707.seq | 7eedfd8ce0579c1eb8edcd7131654887 |
A357708 | Numbers k such that the k-th composition in standard order has sum equal to twice its maximum part. | [
"3",
"10",
"11",
"13",
"14",
"36",
"37",
"38",
"39",
"41",
"44",
"50",
"51",
"52",
"57",
"60",
"136",
"137",
"138",
"139",
"140",
"141",
"142",
"143",
"145",
"152",
"162",
"163",
"168",
"177",
"184",
"196",
"197",
"198",
"199",
"200",
"209",
"216",
"226",
"227",
"232",
"241",
"248",
"528",
"529",
"530",
"531",
"532",
"533",
"534",
"535",
"536",
"537",
"538",
"539"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A000120",
"A001511",
"A003754",
"A029931",
"A066311",
"A124767",
"A329395",
"A333766",
"A333768",
"A356844",
"A357708"
] | null | Gus Wiseman, Oct 14 2022 | 2022-10-15T08:10:51 | oeisdata/seq/A357/A357708.seq | c09e8bf3d9837a7d90af5dadb650d4ed |
A357709 | Number of integer partitions of n whose length is twice their alternating sum. | [
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"2",
"2",
"4",
"3",
"6",
"6",
"9",
"11",
"13",
"18",
"21",
"28",
"32",
"44",
"49",
"65",
"76",
"96",
"114",
"141",
"170",
"204",
"250",
"295",
"361",
"425",
"516",
"606",
"734",
"858",
"1031",
"1210",
"1440",
"1690",
"2000",
"2347",
"2759",
"3240",
"3786",
"4441",
"5174",
"6053",
"7030",
"8210",
"9509",
"11074",
"12807",
"14870"
] | [
"nonn"
] | 5 | 0 | 9 | [
"A000009",
"A000041",
"A004526",
"A025047",
"A097805",
"A103919",
"A262046",
"A262977",
"A301987",
"A344651",
"A357136",
"A357182",
"A357183",
"A357184",
"A357189",
"A357485",
"A357486",
"A357488",
"A357709",
"A357847",
"A357848"
] | null | Gus Wiseman, Oct 16 2022 | 2022-10-17T07:07:22 | oeisdata/seq/A357/A357709.seq | 2e3be1efb9ad312747fe15b390539b19 |
A357710 | Number of integer compositions of n with integer geometric mean. | [
"0",
"1",
"2",
"2",
"3",
"4",
"4",
"8",
"4",
"15",
"17",
"22",
"48",
"40",
"130",
"88",
"287",
"323",
"543",
"1084",
"1145",
"2938",
"3141",
"6928",
"9770",
"15585",
"29249",
"37540",
"78464",
"103289",
"194265",
"299752",
"475086",
"846933",
"1216749",
"2261920",
"3320935",
"5795349",
"9292376",
"14825858",
"25570823",
"39030115",
"68265801",
"106030947",
"178696496"
] | [
"nonn"
] | 15 | 0 | 3 | [
"A011782",
"A025047",
"A051293",
"A067538",
"A067539",
"A078174",
"A078175",
"A102627",
"A271654",
"A320322",
"A326027",
"A326028",
"A326622",
"A326623",
"A326624",
"A326625",
"A326641",
"A339452",
"A357182",
"A357183",
"A357490",
"A357710"
] | null | Gus Wiseman, Oct 15 2022 | 2023-09-24T13:03:43 | oeisdata/seq/A357/A357710.seq | 33ced8cac424b7f4612200f58e435dc6 |
A357711 | Expansion of e.g.f. cosh( 2 * log(1-x) ). | [
"1",
"0",
"4",
"12",
"60",
"360",
"2520",
"20160",
"181440",
"1814400",
"19958400",
"239500800",
"3113510400",
"43589145600",
"653837184000",
"10461394944000",
"177843714048000",
"3201186852864000",
"60822550204416000",
"1216451004088320000",
"25545471085854720000",
"562000363888803840000"
] | [
"nonn"
] | 14 | 0 | 3 | [
"A065143",
"A357711",
"A357712"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357711.seq | c2cd8ad653ff1c74abdbe3f7839b4646 |
A357712 | Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * log(1-x) ). | [
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"2",
"3",
"0",
"1",
"0",
"3",
"6",
"12",
"0",
"1",
"0",
"4",
"9",
"26",
"60",
"0",
"1",
"0",
"5",
"12",
"42",
"140",
"360",
"0",
"1",
"0",
"6",
"15",
"60",
"240",
"896",
"2520",
"0",
"1",
"0",
"7",
"18",
"80",
"360",
"1614",
"6636",
"20160",
"0",
"1",
"0",
"8",
"21",
"102",
"500",
"2520",
"12474",
"55804",
"181440",
"0",
"1",
"0",
"9",
"24",
"126",
"660",
"3620",
"20160",
"108900",
"525168",
"1814400",
"0"
] | [
"nonn",
"tabl"
] | 18 | 0 | 13 | [
"A000007",
"A105752",
"A263687",
"A357681",
"A357683",
"A357703",
"A357711",
"A357712"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357712.seq | 57cf336e3f81806845190e470cba6979 |
A357713 | a(0) = 2; afterwards a(n) is the least prime greater than a(n-1) such that Omega(a(n-1) + a(n)) = n. | [
"2",
"3",
"7",
"11",
"13",
"19",
"197",
"251",
"389",
"1531",
"2053",
"3067",
"17669",
"25339",
"66821",
"105211",
"140549",
"318203",
"1008901",
"1940219",
"6710533",
"9804539",
"12215557",
"34970363",
"49964293",
"75864827",
"276456709",
"864393979",
"1350198533",
"2877659899",
"4101661957",
"7709498107",
"16449692933",
"51196041979"
] | [
"nonn"
] | 28 | 0 | 1 | [
"A001222",
"A357713"
] | null | Zak Seidov, Oct 10 2022 | 2023-09-25T08:15:24 | oeisdata/seq/A357/A357713.seq | 2511b5c0471322245e0a686eaea81f83 |
A357714 | a(n) is the number of equations in the set E_{n,b} := {x+2^b*y=n^b, 2^b*x+3^b*y=n^b, ..., k^b*x+(k+1)^b*y=n^b, ..., n^b*x+(n+1)^b*y=n^b} which admit at least one nonnegative integer solution when b is sufficiently large. | [
"1",
"2",
"3",
"4",
"3",
"5",
"4",
"6",
"5",
"6",
"4",
"8",
"5",
"7",
"7",
"8",
"5",
"9",
"5",
"9",
"8",
"8",
"6",
"12",
"7",
"8",
"8",
"10",
"6",
"12",
"7",
"11",
"9",
"9",
"9",
"14",
"7",
"9",
"9",
"13",
"7",
"13",
"8",
"12",
"12",
"10",
"8",
"16",
"9",
"12",
"10",
"12",
"8",
"14",
"10",
"14",
"11",
"11",
"9",
"19",
"9",
"11",
"13",
"14",
"11",
"15",
"9",
"13",
"11",
"15",
"9",
"19",
"10",
"12",
"14",
"14",
"12",
"16",
"10",
"18",
"13"
] | [
"nonn"
] | 13 | 1 | 2 | [
"A000005",
"A356770",
"A357714"
] | null | Luca Onnis, Oct 10 2022 | 2022-12-11T10:19:37 | oeisdata/seq/A357/A357714.seq | 918887f22b080135594f9432ec967112 |
A357715 | Decimal expansion of sqrt(16 + 32 / sqrt(5)). | [
"5",
"5",
"0",
"5",
"5",
"2",
"7",
"6",
"8",
"1",
"8",
"8",
"4",
"6",
"9",
"4",
"1",
"5",
"2",
"8",
"2",
"8",
"8",
"3",
"8",
"3",
"2",
"7",
"6",
"4",
"3",
"5",
"5",
"0",
"7",
"1",
"8",
"1",
"0",
"3",
"5",
"9",
"7",
"3",
"4",
"4",
"0",
"3",
"2",
"6",
"3",
"4",
"6",
"5",
"3",
"4",
"6",
"2",
"7",
"0",
"3",
"0",
"6",
"2",
"4",
"7",
"6",
"3",
"8",
"0",
"7",
"7",
"5",
"0",
"6",
"8",
"6",
"9",
"1",
"9",
"4",
"0",
"2",
"6",
"3",
"8",
"1",
"1",
"9",
"7",
"2",
"4",
"4",
"0",
"2",
"8",
"0"
] | [
"nonn",
"cons",
"easy"
] | 27 | 1 | 1 | [
"A019934",
"A019952",
"A019970",
"A121570",
"A179290",
"A204188",
"A356869",
"A357715"
] | null | Michal Paulovic, Oct 10 2022 | 2022-11-17T05:31:10 | oeisdata/seq/A357/A357715.seq | 05e907ed0feda020d6ca91ac51164166 |
A357716 | Number of ways to write n as an ordered sum of eight positive Fibonacci numbers (with a single type of 1). | [
"1",
"8",
"36",
"112",
"274",
"560",
"1008",
"1640",
"2479",
"3536",
"4844",
"6392",
"8170",
"10136",
"12308",
"14680",
"17291",
"20160",
"23248",
"26440",
"29674",
"32992",
"36456",
"40040",
"43834",
"47712",
"51752",
"55840",
"60250",
"64856",
"69560",
"74088",
"78331",
"82440",
"86500",
"90616",
"95074",
"99568",
"104188",
"108528",
"113304"
] | [
"nonn"
] | 6 | 8 | 2 | [
"A000045",
"A076739",
"A121548",
"A121549",
"A121550",
"A319401",
"A357688",
"A357690",
"A357691",
"A357694",
"A357716",
"A357717"
] | null | Ilya Gutkovskiy, Oct 10 2022 | 2022-10-10T16:11:09 | oeisdata/seq/A357/A357716.seq | 2dc1ae842135452ff823abb55ed83cf1 |
A357717 | Number of ways to write n as an ordered sum of nine positive Fibonacci numbers (with a single type of 1). | [
"1",
"9",
"45",
"156",
"423",
"954",
"1878",
"3321",
"5409",
"8251",
"11979",
"16686",
"22446",
"29250",
"37134",
"46107",
"56259",
"67671",
"80407",
"94338",
"109269",
"125118",
"141930",
"159723",
"178608",
"198522",
"219510",
"241338",
"264438",
"288810",
"314550",
"341010",
"367785",
"394596",
"421443",
"448650",
"476614",
"505404",
"534978"
] | [
"nonn"
] | 6 | 9 | 2 | [
"A000045",
"A076739",
"A121548",
"A121549",
"A121550",
"A319402",
"A357688",
"A357690",
"A357691",
"A357694",
"A357716",
"A357717"
] | null | Ilya Gutkovskiy, Oct 10 2022 | 2022-10-10T16:11:15 | oeisdata/seq/A357/A357717.seq | e5af850941548994ee23fdb6e96ea7dd |
A357718 | Expansion of e.g.f. cos( sqrt(3) * log(1+x) ). | [
"1",
"0",
"-3",
"9",
"-24",
"60",
"-84",
"-756",
"13104",
"-157248",
"1795248",
"-20900880",
"254007936",
"-3250473408",
"43922668608",
"-626830626240",
"9437477107968",
"-149644407564288",
"2493958878657792",
"-43592393744250624",
"797394015216175104",
"-15230735270523601920"
] | [
"sign"
] | 12 | 0 | 3 | [
"A357703",
"A357718",
"A357720",
"A357726"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357718.seq | 0ece697eb794186e333c1d7609e0c5e8 |
A357719 | Expansion of e.g.f. cos( 2 * log(1+x) ). | [
"1",
"0",
"-4",
"12",
"-28",
"40",
"200",
"-3360",
"35680",
"-357120",
"3644800",
"-38896000",
"437756800",
"-5206406400",
"65372153600",
"-864339840000",
"11991424640000",
"-173800340480000",
"2617640829440000",
"-40693929269760000",
"647089190924800000",
"-10383194262604800000"
] | [
"sign"
] | 11 | 0 | 3 | [
"A357711",
"A357719",
"A357720",
"A357727"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357719.seq | a5f7b61b479288820eefc1804c4cdec6 |
A357720 | Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cos( sqrt(k) * log(1+x) ). | [
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"-1",
"0",
"1",
"0",
"-2",
"3",
"0",
"1",
"0",
"-3",
"6",
"-10",
"0",
"1",
"0",
"-4",
"9",
"-18",
"40",
"0",
"1",
"0",
"-5",
"12",
"-24",
"60",
"-190",
"0",
"1",
"0",
"-6",
"15",
"-28",
"60",
"-216",
"1050",
"0",
"1",
"0",
"-7",
"18",
"-30",
"40",
"-84",
"756",
"-6620",
"0",
"1",
"0",
"-8",
"21",
"-30",
"0",
"200",
"-756",
"-1620",
"46800",
"0",
"1",
"0",
"-9",
"24",
"-28",
"-60",
"630",
"-3360",
"13104",
"-14256",
"-365300",
"0"
] | [
"sign",
"tabl"
] | 12 | 0 | 13 | [
"A000007",
"A003703",
"A357693",
"A357712",
"A357718",
"A357719",
"A357720",
"A357721",
"A357728"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357720.seq | cab5a61d88f9e9e1e25d07ecb24c64cd |
A357721 | a(n) = Sum_{k=0..floor(n/2)} (-n)^k * Stirling1(n,2*k). | [
"1",
"0",
"-2",
"9",
"-28",
"0",
"1200",
"-16464",
"167904",
"-1393200",
"7429240",
"43124400",
"-2404571904",
"55590286752",
"-1027511503200",
"16489054310400",
"-222885864448000",
"1994839594780032",
"14489184835474272",
"-1470395490046560000",
"54581408106475622400",
"-1608207353670788640000"
] | [
"sign"
] | 10 | 0 | 3 | [
"A357683",
"A357720",
"A357721",
"A357729"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357721.seq | 926d1ad1becc8c804385b03ded780a5b |
A357722 | Number of partitions of n into 4 distinct positive Fibonacci numbers (with a single type of 1). | [
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"3",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"3",
"2",
"2",
"2"
] | [
"nonn"
] | 12 | 11 | 17 | [
"A000045",
"A000119",
"A319397",
"A357688",
"A357722",
"A357731",
"A357732"
] | null | Ilya Gutkovskiy, Oct 11 2022 | 2022-10-24T00:00:03 | oeisdata/seq/A357/A357722.seq | bde7e9a00f81270d99d9a6d524b8e20b |
A357723 | Number of ways to place a non-attacking black king and white king on an n X n board, up to rotation and reflection. | [
"0",
"0",
"0",
"5",
"21",
"63",
"135",
"270",
"462",
"770",
"1170",
"1755",
"2475",
"3465",
"4641",
"6188",
"7980",
"10260",
"12852",
"16065",
"19665",
"24035",
"28875",
"34650",
"40986",
"48438",
"56550",
"65975",
"76167",
"87885",
"100485",
"114840",
"130200",
"147560",
"166056",
"186813",
"208845",
"233415",
"259407",
"288230",
"318630"
] | [
"nonn",
"easy"
] | 51 | 0 | 4 | [
"A035286",
"A279111",
"A357723",
"A357740"
] | null | Nathan L. Skirrow, Oct 10 2022 | 2023-02-02T16:10:48 | oeisdata/seq/A357/A357723.seq | d66e4891a9a9f231051fd719daa09e83 |
A357724 | Triangular array read by rows: T(n,k) = Fib(n) mod Fib(k) for 1 <= k <= n, where Fib(k) = A000045(k). | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"2",
"0",
"0",
"0",
"0",
"2",
"3",
"0",
"0",
"0",
"1",
"1",
"3",
"5",
"0",
"0",
"0",
"1",
"0",
"1",
"5",
"8",
"0",
"0",
"0",
"0",
"1",
"4",
"2",
"8",
"13",
"0",
"0",
"0",
"1",
"1",
"0",
"7",
"3",
"13",
"21",
"0",
"0",
"0",
"1",
"2",
"4",
"1",
"11",
"5",
"21",
"34",
"0",
"0",
"0",
"0",
"0",
"4",
"0",
"1",
"18",
"8",
"34",
"55",
"0",
"0",
"0",
"1",
"2",
"3",
"1",
"12",
"2",
"29",
"13",
"55",
"89",
"0",
"0",
"0",
"1",
"2"
] | [
"nonn",
"look",
"tabl"
] | 32 | 1 | 14 | [
"A000045",
"A357724",
"A357814"
] | null | J. M. Bergot and Robert Israel, Oct 12 2022 | 2022-10-23T23:12:54 | oeisdata/seq/A357/A357724.seq | ceb980ae516ecff8850c587007dc87c3 |
A357725 | Expansion of e.g.f. cos( sqrt(2) * (exp(x) - 1) ). | [
"1",
"0",
"-2",
"-6",
"-10",
"10",
"190",
"1106",
"4438",
"9978",
"-35250",
"-666622",
"-5657370",
"-35308182",
"-155215970",
"-128513870",
"7051468022",
"105057922906",
"1042016038254",
"8053738122466",
"44608555196294",
"48639210067658",
"-3200193654245442",
"-60669816166988654",
"-769281697485061994"
] | [
"sign"
] | 24 | 0 | 3 | [
"A121867",
"A264036",
"A357725",
"A357728",
"A357736"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357725.seq | a70ae32a155e75ce9e03693236d84d46 |
A357726 | Expansion of e.g.f. cos( sqrt(3) * (exp(x) - 1) ). | [
"1",
"0",
"-3",
"-9",
"-12",
"45",
"465",
"2394",
"7827",
"639",
"-250410",
"-2588553",
"-17773635",
"-84525480",
"-105849399",
"3569654115",
"56100280308",
"561682625769",
"4227837863181",
"20472943653306",
"-38990802816489",
"-2621206974761253",
"-42512769453705474",
"-495174030273565173"
] | [
"sign"
] | 24 | 0 | 3 | [
"A357615",
"A357726",
"A357728",
"A357737"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357726.seq | db0f99846d38c117a87eee5f7091bd6e |
A357727 | Expansion of e.g.f. cos( 2 * (exp(x) - 1) ). | [
"1",
"0",
"-4",
"-12",
"-12",
"100",
"852",
"4004",
"9940",
"-36828",
"-726316",
"-6174300",
"-35968812",
"-109708508",
"702818004",
"16677814436",
"188794428628",
"1542659688996",
"8359981681364",
"-3068614764636",
"-868989327994668",
"-15076627082974940",
"-179727483880747308"
] | [
"sign"
] | 23 | 0 | 3 | [
"A065143",
"A357719",
"A357727",
"A357728",
"A357738"
] | null | Seiichi Manyama, Oct 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357727.seq | 02e5343174e9ac735e5cc89843583e19 |
A357728 | Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cos( sqrt(k) * (exp(x) - 1) ). | [
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"-1",
"0",
"1",
"0",
"-2",
"-3",
"0",
"1",
"0",
"-3",
"-6",
"-6",
"0",
"1",
"0",
"-4",
"-9",
"-10",
"-5",
"0",
"1",
"0",
"-5",
"-12",
"-12",
"10",
"33",
"0",
"1",
"0",
"-6",
"-15",
"-12",
"45",
"190",
"266",
"0",
"1",
"0",
"-7",
"-18",
"-10",
"100",
"465",
"1106",
"1309",
"0",
"1",
"0",
"-8",
"-21",
"-6",
"175",
"852",
"2394",
"4438",
"4905",
"0",
"1",
"0",
"-9",
"-24",
"0",
"270",
"1345",
"4004",
"7827",
"9978",
"11516",
"0"
] | [
"sign",
"tabl"
] | 20 | 0 | 13 | [
"A000007",
"A121867",
"A357681",
"A357720",
"A357725",
"A357726",
"A357727",
"A357728",
"A357729"
] | null | Seiichi Manyama, Oct 11 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357728.seq | c6b069c86b3d01f4be0213a026cdc334 |
A357729 | a(n) = Sum_{k=0..floor(n/2)} (-n)^k * Stirling2(n,2*k). | [
"1",
"0",
"-2",
"-9",
"-12",
"175",
"1938",
"9506",
"-24248",
"-1065663",
"-12021610",
"-56195425",
"677072220",
"19979234080",
"251733387514",
"1135594212255",
"-29317384858352",
"-901607623649489",
"-13233854770928514",
"-68574233644270566",
"2258648937829442660",
"81748108921355457777"
] | [
"sign"
] | 19 | 0 | 3 | [
"A357682",
"A357721",
"A357728",
"A357729"
] | null | Seiichi Manyama, Oct 11 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357729.seq | 46247e4e02fe39ebb1f625a9ba03dd6f |
A357730 | Number of ways to write n as an ordered sum of ten positive Fibonacci numbers (with a single type of 1). | [
"1",
"10",
"55",
"210",
"625",
"1542",
"3300",
"6310",
"11040",
"17980",
"27673",
"40660",
"57475",
"78520",
"104175",
"134742",
"170620",
"212220",
"260035",
"314290",
"374933",
"441790",
"514855",
"594210",
"680070",
"772582",
"871920",
"977790",
"1090680",
"1210960",
"1339417",
"1475340",
"1618020",
"1766080",
"1918785",
"2076012"
] | [
"nonn"
] | 6 | 10 | 2 | [
"A000045",
"A076739",
"A121548",
"A121549",
"A121550",
"A319403",
"A357688",
"A357690",
"A357691",
"A357694",
"A357716",
"A357717",
"A357730"
] | null | Ilya Gutkovskiy, Oct 11 2022 | 2022-10-11T06:00:13 | oeisdata/seq/A357/A357730.seq | d302a513a769e7a71121511c4e0aebad |
A357731 | Number of partitions of n into 2 distinct positive Fibonacci numbers (with a single type of 1). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 9 | 3 | null | [
"A000045",
"A000119",
"A121549",
"A319395",
"A357722",
"A357731",
"A357732"
] | null | Ilya Gutkovskiy, Oct 11 2022 | 2022-10-24T00:00:21 | oeisdata/seq/A357/A357731.seq | 5dcdf3d696a532b73efcce494fe3a68d |
A357732 | Number of partitions of n into 3 distinct positive Fibonacci numbers (with a single type of 1). | [
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"0",
"2",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"2",
"1",
"2"
] | [
"nonn"
] | 6 | 6 | 11 | [
"A000045",
"A000119",
"A121550",
"A319396",
"A357722",
"A357731",
"A357732"
] | null | Ilya Gutkovskiy, Oct 11 2022 | 2022-10-24T00:00:30 | oeisdata/seq/A357/A357732.seq | 5d836dff59f7ec91143a510761ffa9e4 |
A357733 | Integer lengths of the sides of such regular hexagons that a polyline described in A356047 exists. | [
"1",
"2",
"286",
"299",
"56653",
"56834",
"11006686",
"11009207",
"2135467321",
"2135502434",
"414272813758",
"414273302819",
"80366834417221",
"80366841228962",
"15590752217183806",
"15590752312059119",
"3024525571838019313",
"3024525573159461954",
"586742370303288400606",
"586742370321693722267",
"113824995314922590647741"
] | [
"nonn",
"easy"
] | 19 | 1 | 2 | [
"A356047",
"A357733"
] | null | Alexander M. Domashenko, Oct 11 2022 | 2023-03-13T11:57:23 | oeisdata/seq/A357/A357733.seq | 3521300221e47659aa18e9a59d92b534 |
A357734 | Array T(n,k), read by descending antidiagonals, whose rows are numbers congruent to p or q mod r, with 0 <= p < q < r, sorted by r, then p, then q. | [
"0",
"1",
"0",
"2",
"1",
"0",
"3",
"3",
"2",
"1",
"4",
"4",
"3",
"2",
"0",
"5",
"6",
"5",
"4",
"1",
"0",
"6",
"7",
"6",
"5",
"4",
"2",
"0",
"7",
"9",
"8",
"7",
"5",
"4",
"3",
"1",
"8",
"10",
"9",
"8",
"8",
"6",
"4",
"2",
"1",
"9",
"12",
"11",
"10",
"9",
"8",
"7",
"5",
"3",
"2",
"10",
"13",
"12",
"11",
"12",
"10",
"8",
"6",
"5",
"3",
"0",
"11",
"15",
"14",
"13",
"13",
"12",
"11",
"9",
"7",
"6",
"1",
"0"
] | [
"nonn",
"tabl",
"easy"
] | 27 | 1 | 4 | [
"A144629",
"A357734"
] | null | David Lovler, Oct 11 2022 | 2022-11-05T08:19:03 | oeisdata/seq/A357/A357734.seq | c162ea44519acf2722fee5f97890e4eb |
A357735 | a(1)=1, a(2)=2. Thereafter a(n+1) is least k != partial sum s(n) which has not occurred earlier, such that gcd(k, s(n)) > 1. | [
"1",
"2",
"6",
"3",
"4",
"8",
"9",
"11",
"10",
"12",
"14",
"5",
"15",
"16",
"18",
"20",
"7",
"21",
"13",
"24",
"27",
"22",
"26",
"28",
"23",
"25",
"30",
"32",
"33",
"31",
"34",
"35",
"40",
"44",
"55",
"36",
"37",
"39",
"17",
"42",
"45",
"38",
"46",
"48",
"50",
"19",
"57",
"52",
"41",
"62",
"43",
"54",
"56",
"58",
"60",
"64",
"51",
"63",
"66",
"49",
"70",
"77",
"68",
"69",
"72",
"75",
"74",
"76"
] | [
"nonn"
] | 10 | 1 | 2 | [
"A064413",
"A084385",
"A347113",
"A351743",
"A357735"
] | null | David James Sycamore, Oct 11 2022 | 2022-10-12T09:49:31 | oeisdata/seq/A357/A357735.seq | deb0e1f781a3bf6b46e4401e9efb2244 |
A357736 | Expansion of e.g.f. sin( sqrt(2) * (exp(x) - 1) )/sqrt(2). | [
"0",
"1",
"1",
"-1",
"-11",
"-45",
"-119",
"-49",
"2045",
"18075",
"105121",
"436471",
"679669",
"-10538333",
"-155858247",
"-1404609569",
"-9667430739",
"-46708291093",
"-25694453615",
"3002522206471",
"49051481154341",
"546022210068595",
"4800733688293929",
"31399017314213487",
"75507020603213405"
] | [
"sign"
] | 17 | 0 | 5 | [
"A264037",
"A357725",
"A357736"
] | null | Seiichi Manyama, Oct 11 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357736.seq | 45667958485b32c7be580b6ad63c7d8f |
A357737 | Expansion of e.g.f. sin( sqrt(3) * (exp(x) - 1) )/sqrt(3). | [
"0",
"1",
"1",
"-2",
"-17",
"-65",
"-134",
"331",
"5797",
"41092",
"199621",
"500731",
"-2996432",
"-58995155",
"-573624323",
"-4065029714",
"-19194210269",
"7657775035",
"1581081323122",
"24363365708815",
"260409006907921",
"2127851409822892",
"11143555796154673",
"-27234657667343081"
] | [
"sign"
] | 16 | 0 | 4 | [
"A357572",
"A357726",
"A357737"
] | null | Seiichi Manyama, Oct 11 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357737.seq | dfeff1ec05e199db62fb04909672828d |
A357738 | Expansion of e.g.f. sin( 2 * (exp(x) - 1) )/2. | [
"0",
"1",
"1",
"-3",
"-23",
"-83",
"-119",
"973",
"11145",
"69805",
"278281",
"33165",
"-12794231",
"-157150355",
"-1271714807",
"-7108146611",
"-11364216951",
"380051588653",
"6923479542025",
"78935931180813",
"669998027706505",
"3602978599128301",
"-8825050911646199",
"-598024924863875123"
] | [
"sign"
] | 18 | 0 | 4 | [
"A357598",
"A357727",
"A357738"
] | null | Seiichi Manyama, Oct 11 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357738.seq | f9e1996d5e4eb790861fb363df8d2694 |
A357739 | a(n) = Sum_{k=0..floor((n-1)/2)} (-n)^k * Stirling2(n,2*k+1). | [
"0",
"1",
"1",
"-2",
"-23",
"-99",
"1",
"4411",
"45137",
"205570",
"-1270799",
"-38876573",
"-441073511",
"-1921300835",
"34908578433",
"994442615986",
"13032718992033",
"59450652771077",
"-1794250960044623",
"-57608157168424497",
"-901446808420344919",
"-5274602459214885362",
"160827105304127790529"
] | [
"sign"
] | 11 | 0 | 4 | null | null | Seiichi Manyama, Oct 11 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357739.seq | 97de43c49fbf544ca8bbdb4d02ec29b3 |
A357740 | Number of non-equivalent ways under symmetry in one axis that 2 non-attacking kings of different colors can be placed on an n X n board. | [
"0",
"0",
"17",
"78",
"234",
"520",
"1035",
"1806",
"2996",
"4608",
"6885",
"9790",
"13662",
"18408",
"24479",
"31710",
"40680",
"51136",
"63801",
"78318",
"95570",
"115080",
"137907",
"163438",
"192924",
"225600",
"262925",
"303966",
"350406",
"401128",
"458055",
"519870",
"588752",
"663168",
"745569",
"834190",
"931770",
"1036296",
"1150811",
"1273038"
] | [
"nonn",
"easy"
] | 29 | 1 | 3 | [
"A035286",
"A357723",
"A357740"
] | null | Nathan L. Skirrow, Oct 11 2022 | 2023-04-03T21:47:29 | oeisdata/seq/A357/A357740.seq | d9435aff2ee74bcefc937a8b305976eb |
A357741 | Semiprimes k such that k is divisible by its index in the sequence of semiprimes. | [
"4",
"6",
"9",
"21",
"33",
"129",
"159",
"3066835",
"3067195",
"3067255",
"3067615",
"3067745",
"3068045",
"44690978227",
"44690978647",
"44690978983",
"44690979529"
] | [
"nonn",
"hard",
"more"
] | 56 | 1 | 1 | [
"A001358",
"A106125",
"A356764",
"A357741"
] | null | Lucas A. Brown, Oct 13 2022 | 2022-10-29T04:42:53 | oeisdata/seq/A357/A357741.seq | 23eb39baf445c4595d651a1a61b48e56 |
A357742 | a(n) is the maximum binary weight of the squares of n-bit numbers. | [
"1",
"2",
"3",
"5",
"6",
"8",
"9",
"13",
"13",
"15",
"16",
"18",
"20",
"22",
"24",
"25",
"27",
"29",
"31",
"34",
"34",
"37",
"38",
"39",
"41",
"44",
"44",
"47",
"49",
"51",
"52",
"54",
"55",
"57",
"59",
"63",
"63",
"64",
"66",
"68",
"69",
"72",
"73",
"76",
"77",
"78",
"80",
"82",
"85",
"87"
] | [
"nonn",
"base",
"hard",
"more"
] | 26 | 1 | 2 | [
"A000290",
"A159918",
"A357304",
"A357658",
"A357742"
] | null | Karl-Heinz Hofmann and Hugo Pfoertner , Oct 11 2022 | 2023-12-26T03:52:06 | oeisdata/seq/A357/A357742.seq | f9c6f7805267e7d3c8981b2b3c063609 |
A357743 | Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n, k+1) + A(n+1, k). | [
"0",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"3",
"2",
"1",
"3",
"2",
"3",
"1",
"3",
"4",
"5",
"5",
"4",
"3",
"2",
"5",
"3",
"6",
"3",
"5",
"2",
"3",
"5",
"6",
"5",
"5",
"6",
"5",
"3",
"1",
"4",
"3",
"5",
"2",
"5",
"3",
"4",
"1",
"4",
"5",
"7",
"8",
"7",
"7",
"8",
"7",
"5",
"4",
"3",
"7",
"4",
"9",
"5",
"10",
"5",
"9",
"4",
"7",
"3",
"5",
"8",
"9",
"7",
"8",
"11",
"11",
"8",
"7",
"9",
"8",
"5",
"2",
"7",
"5",
"8",
"3",
"9",
"6",
"9",
"3",
"8",
"5",
"7",
"2"
] | [
"nonn",
"tabl"
] | 52 | 0 | 5 | [
"A002487",
"A007306",
"A355855",
"A357743",
"A358871"
] | null | Rémy Sigrist, Nov 29 2022 | 2022-12-05T20:46:31 | oeisdata/seq/A357/A357743.seq | 75dbf3ccf2d764697d48b66e79d5dd4f |
A357744 | a(n) is the least k such that prime(n) * k occurs in one of the eight main spokes of a square spiral with 1 in the center. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"25",
"1",
"17",
"1",
"59",
"1",
"13",
"37",
"1",
"4",
"3",
"13",
"5",
"1",
"21",
"8",
"2",
"4",
"1",
"131",
"3",
"1",
"2",
"1",
"1",
"1",
"2",
"37",
"4",
"13",
"58",
"7",
"1",
"34",
"1",
"7",
"23",
"4",
"1",
"29",
"1",
"251",
"1",
"5",
"25",
"3",
"13",
"1",
"7",
"30",
"1",
"311",
"31",
"38",
"3",
"49",
"3",
"6",
"5",
"37",
"19",
"16",
"7",
"5",
"149",
"3",
"1",
"7",
"419",
"1",
"1",
"91",
"10",
"2"
] | [
"nonn"
] | 56 | 1 | 10 | [
"A000040",
"A016754",
"A033951",
"A053755",
"A054552",
"A054554",
"A054556",
"A054567",
"A054569",
"A357744",
"A357745"
] | null | Karl-Heinz Hofmann, Dec 01 2022 | 2023-01-31T08:25:37 | oeisdata/seq/A357/A357744.seq | 45c2a8dfc7da45a48d8b1cb0c2d3302c |
A357745 | Numbers on the 8 main spokes of a square spiral with 1 in the center. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"13",
"15",
"17",
"19",
"21",
"23",
"25",
"28",
"31",
"34",
"37",
"40",
"43",
"46",
"49",
"53",
"57",
"61",
"65",
"69",
"73",
"77",
"81",
"86",
"91",
"96",
"101",
"106",
"111",
"116",
"121",
"127",
"133",
"139",
"145",
"151",
"157",
"163",
"169",
"176",
"183",
"190",
"197",
"204",
"211",
"218",
"225",
"233",
"241",
"249",
"257",
"265",
"273"
] | [
"nonn",
"easy"
] | 43 | 1 | 2 | [
"A002061",
"A016754",
"A033951",
"A039823",
"A053755",
"A054552",
"A054554",
"A054556",
"A054567",
"A054569",
"A080335",
"A200975",
"A267682",
"A317186",
"A357745"
] | null | Karl-Heinz Hofmann, Dec 22 2022 | 2023-06-16T05:30:13 | oeisdata/seq/A357/A357745.seq | 774adc6d8943efb8fd4cf442d6231df9 |
A357746 | Primes p such that the least k for which k*p + 1 is prime is also the least k for which k*p - 1 is prime. | [
"47",
"103",
"107",
"283",
"313",
"347",
"397",
"773",
"787",
"907",
"1051",
"1117",
"1319",
"1433",
"1823",
"2027",
"2153",
"2203",
"2287",
"2333",
"2347",
"2381",
"2909",
"3221",
"3257",
"3673",
"3923",
"3929",
"4129",
"4153",
"4217",
"4547",
"4597",
"4657",
"4721",
"4969",
"5023",
"5387",
"5407",
"5693",
"5717",
"5827",
"5881",
"6373",
"6781",
"6863",
"6997"
] | [
"nonn"
] | 16 | 1 | 1 | [
"A000040",
"A001359",
"A006512",
"A014574",
"A035096",
"A216568",
"A357746"
] | null | Karl-Heinz Hofmann, Jan 01 2023 | 2023-01-02T15:26:50 | oeisdata/seq/A357/A357746.seq | 68f73ca62937d5bf600193677561a301 |
A357747 | Distances in the lyrics of the Rolling Stones song "2000 Light Years From Home". | [
"100",
"600",
"1000",
"2000"
] | [
"nonn",
"fini",
"full",
"less"
] | 8 | 1 | 1 | [
"A357747",
"A357748"
] | null | Hugo Pfoertner, Oct 15 2022 | 2022-10-15T20:21:17 | oeisdata/seq/A357/A357747.seq | c1d7527609ebd7a8a1490bc69d0a79e5 |
A357748 | Numbers in the lyrics of the Rolling Stones song "2000 Light Years From Home" in the order in which they appear. | [
"100",
"600",
"1000",
"1000",
"14",
"2000",
"2000"
] | [
"nonn",
"fini",
"full",
"less"
] | 6 | 1 | 1 | [
"A357747",
"A357748"
] | null | Hugo Pfoertner, Oct 15 2022 | 2022-10-15T20:21:47 | oeisdata/seq/A357/A357748.seq | 467b485ce3d654fd8d8cb94c2bc80a12 |
A357749 | Sorted list of nonzero numbers x, y, z that occur in solutions to the equation (x + y)^2 + (y + z)^2 + (z + x)^2 = 12*x*y*z. | [
"1",
"3",
"13",
"61",
"217",
"291",
"1393",
"3673",
"4683",
"6673",
"16693",
"31971",
"62221",
"106153",
"153181",
"360517",
"733933",
"1054081",
"1285131",
"1709221",
"2430493",
"3516483",
"4778353",
"16848481",
"17857153",
"21717363",
"27755113",
"38745493",
"55764867",
"80725921",
"98938381",
"185236633",
"302517517",
"386781123"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A002559",
"A101368",
"A357749",
"A357870"
] | null | Hugo Pfoertner, Oct 18 2022 | 2022-10-18T13:50:53 | oeisdata/seq/A357/A357749.seq | 9e7145b2a7915fc6e6675bdf0a0a0b25 |
A357750 | a(n) is the least k such that B(k^2) - B(k) = n, where B(m) is the binary weight A000120(m). | [
"0",
"5",
"11",
"21",
"45",
"75",
"217",
"331",
"181",
"789",
"1241",
"2505",
"5701",
"5221",
"11309",
"19637",
"43151",
"69451",
"82709",
"166027",
"346389",
"607307",
"689685",
"1458357",
"1380917",
"2507541",
"5906699",
"2965685",
"5931189",
"11862197",
"47448787",
"82188309",
"57804981",
"94905541",
"188883211",
"373457573",
"640164021"
] | [
"nonn",
"base"
] | 21 | 0 | 2 | [
"A000120",
"A000290",
"A159918",
"A164343",
"A164344",
"A356877",
"A357658",
"A357750"
] | null | Karl-Heinz Hofmann and Hugo Pfoertner, Oct 17 2022 | 2025-01-03T18:39:46 | oeisdata/seq/A357/A357750.seq | ebdfe77a26b4f368514bc1d622cec636 |
A357751 | a(n) is the least perfect power > 2^n. | [
"4",
"4",
"8",
"9",
"25",
"36",
"81",
"144",
"289",
"529",
"1089",
"2116",
"4225",
"8281",
"16641",
"33124",
"66049",
"131769",
"263169",
"525625",
"1050625",
"2099601",
"4198401",
"8392609",
"16785409",
"33558849",
"67125249",
"134235396",
"268468225",
"536895241",
"1073807361",
"2147488281",
"4295098369",
"8589953124",
"17180131329",
"34359812496"
] | [
"nonn",
"easy"
] | 14 | 0 | 1 | [
"A000079",
"A001597",
"A357751",
"A357752"
] | null | Hugo Pfoertner, Oct 12 2022 | 2022-10-13T13:08:28 | oeisdata/seq/A357/A357751.seq | bd77110e2d42c30a03dd65f8154844a3 |
A357752 | a(n) is the largest perfect power < 2^n. | [
"4",
"9",
"27",
"49",
"125",
"243",
"484",
"1000",
"2025",
"3969",
"8100",
"16129",
"32761",
"65025",
"131044",
"261121",
"524176",
"1046529",
"2096704",
"4190209",
"8386816",
"16769025",
"33547264",
"67092481",
"134212225",
"268402689",
"536848900",
"1073676289",
"2147395600",
"4294836225",
"8589767761",
"17179607041",
"34359441769"
] | [
"nonn"
] | 6 | 3 | 1 | [
"A000079",
"A001597",
"A357751",
"A357752",
"A357754"
] | null | Hugo Pfoertner, Oct 12 2022 | 2022-10-12T08:59:53 | oeisdata/seq/A357/A357752.seq | 428e352dfbc087e751d0fdea47a9aeb0 |
A357753 | a(n) is the least square with n binary digits. | [
"4",
"9",
"16",
"36",
"64",
"144",
"256",
"529",
"1024",
"2116",
"4096",
"8281",
"16384",
"33124",
"65536",
"131769",
"262144",
"525625",
"1048576",
"2099601",
"4194304",
"8392609",
"16777216",
"33558849",
"67108864",
"134235396",
"268435456",
"536895241",
"1073741824",
"2147488281",
"4294967296",
"8589953124",
"17179869184"
] | [
"nonn",
"base"
] | 36 | 3 | 1 | [
"A000290",
"A000302",
"A017912",
"A065732",
"A070939",
"A357753",
"A357754"
] | null | Hugo Pfoertner, Oct 11 2022 | 2022-10-18T13:31:31 | oeisdata/seq/A357/A357753.seq | 0f67e7a5c1d69a7dd70834c81eb4a956 |
A357754 | a(n) is the largest square with n binary digits. | [
"4",
"9",
"25",
"49",
"121",
"225",
"484",
"961",
"2025",
"3969",
"8100",
"16129",
"32761",
"65025",
"131044",
"261121",
"524176",
"1046529",
"2096704",
"4190209",
"8386816",
"16769025",
"33547264",
"67092481",
"134212225",
"268402689",
"536848900",
"1073676289",
"2147395600",
"4294836225",
"8589767761",
"17179607041",
"34359441769"
] | [
"nonn",
"base",
"easy"
] | 25 | 3 | 1 | [
"A000290",
"A056007",
"A070939",
"A116601",
"A357753",
"A357754"
] | null | Hugo Pfoertner, Oct 11 2022 | 2022-10-13T15:27:58 | oeisdata/seq/A357/A357754.seq | e31cac169e29f184d2f83ad7abfddd71 |
A357755 | Number of solutions for a 10-digit number whose n-th power contains each digit (0-9) exactly n times. | [
"3265920",
"468372",
"65663",
"15487",
"5020",
"1930",
"855",
"417",
"246",
"114",
"97",
"45",
"33",
"24",
"20",
"18",
"7",
"6",
"1",
"3",
"2",
"3",
"0",
"1",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1"
] | [
"nonn",
"base",
"more"
] | 28 | 1 | 1 | [
"A010784",
"A078255",
"A154532",
"A154566",
"A357755"
] | null | Zhining Yang, Nov 26 2022 | 2025-03-23T20:53:21 | oeisdata/seq/A357/A357755.seq | d44ca13eb7d6317a179aed4cd84d3048 |
A357756 | a(n) is the least k > 0 such that A007953(n*k) equals A007953((n*k)^2), where A007953 is the sum of the digits. | [
"1",
"1",
"5",
"3",
"25",
"2",
"3",
"27",
"62",
"1",
"1",
"5",
"15",
"27",
"128",
"3",
"31",
"17",
"1",
"1",
"5",
"9",
"9",
"2",
"75",
"4",
"18",
"7",
"64",
"5",
"3",
"16",
"56",
"3",
"85",
"17",
"5",
"27",
"5",
"9",
"25",
"9",
"45",
"13",
"27",
"1",
"1",
"27",
"66",
"54",
"2",
"9",
"9",
"18",
"22",
"1",
"32",
"15",
"25",
"135",
"3",
"18",
"8",
"3",
"28",
"9",
"3",
"43",
"47",
"72",
"27",
"8",
"25",
"126",
"27"
] | [
"nonn",
"base"
] | 57 | 0 | 3 | [
"A000010",
"A007953",
"A051628",
"A058369",
"A060284",
"A132740",
"A178505",
"A357756"
] | null | Thomas Scheuerle, Oct 12 2022 | 2022-11-17T14:12:03 | oeisdata/seq/A357/A357756.seq | 329c10928dab4739604711713db94a5a |
A357757 | We draw n non-crossing straight line segments inside an n X n square between 2*n grid points on its perimeter in such a way that it is not possible to add more non-crossing line segments between the remaining perimeter grid points. a(n) is the number of distinct possibilities for each n without duplicates by rotation or reflection. | [
"1",
"2",
"18",
"142",
"1383",
"14040",
"148858",
"1606567"
] | [
"nonn",
"more"
] | 42 | 1 | 2 | null | null | Tamas Sandor Nagy, Nov 26 2022 | 2025-03-04T22:34:36 | oeisdata/seq/A357/A357757.seq | 1dcb11200795fd36f590d451ac6aa2dd |
A357758 | Numbers k such that in the binary expansion of k, the Hamming weight of each block differs by at most 1 from every other block of the same length. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"16",
"17",
"18",
"20",
"21",
"22",
"23",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"36",
"37",
"41",
"42",
"43",
"45",
"46",
"47",
"53",
"54",
"55",
"59",
"61",
"62",
"63",
"64",
"65",
"66",
"68",
"72",
"73",
"74",
"82",
"84",
"85",
"86",
"90",
"91",
"93",
"94",
"95",
"106",
"107",
"109",
"110",
"111"
] | [
"nonn",
"base"
] | 10 | 1 | 3 | [
"A005598",
"A274008",
"A357758",
"A357759"
] | null | Rémy Sigrist, Oct 12 2022 | 2022-10-13T12:28:16 | oeisdata/seq/A357/A357758.seq | 3e0339769bfab6746e0bb0740791cdd4 |
A357759 | Numbers k such that in the binary expansion of k, the Hamming weight of each block differs by at most 2 from every other block of the same length. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"72",
"73",
"74",
"75"
] | [
"nonn",
"base"
] | 18 | 1 | 3 | [
"A274005",
"A357758",
"A357759"
] | null | Rémy Sigrist, Oct 12 2022 | 2024-10-09T18:31:16 | oeisdata/seq/A357/A357759.seq | 97584c2f1e534cae16d32b06e382a74f |
A357760 | a(n) is the number of different pairs of shortest grid paths joining two opposite corners in opposite order in an n X n X n grid with middle point on the paths as a common point. | [
"6",
"1782",
"163968",
"145833750",
"20373051636",
"24849381916800",
"4084135317043200",
"5797029176271753750",
"1041061545857195362500",
"1615355981352350001296532",
"306767275482371866616143872",
"504734657532271646660879497344",
"99610601729722879962014433236736",
"170840233187582521064354430462720000"
] | [
"nonn"
] | 54 | 1 | 1 | null | null | Janaka Rodrigo, Oct 12 2022 | 2025-03-23T20:53:30 | oeisdata/seq/A357/A357760.seq | b8abb70ef2c2f7700b5e425d02bbf6ce |
A357761 | a(n) = A227872(n) - A356018(n). | [
"1",
"2",
"0",
"3",
"0",
"0",
"2",
"4",
"-1",
"0",
"2",
"0",
"2",
"4",
"-2",
"5",
"0",
"-2",
"2",
"0",
"2",
"4",
"0",
"0",
"1",
"4",
"-2",
"6",
"0",
"-4",
"2",
"6",
"0",
"0",
"2",
"-3",
"2",
"4",
"0",
"0",
"2",
"4",
"0",
"6",
"-4",
"0",
"2",
"0",
"3",
"2",
"-2",
"6",
"0",
"-4",
"2",
"8",
"0",
"0",
"2",
"-6",
"2",
"4",
"0",
"7",
"0",
"0",
"2",
"0",
"0",
"4",
"0",
"-4",
"2",
"4",
"-2",
"6",
"2",
"0",
"2",
"0",
"-1",
"4",
"0"
] | [
"sign",
"base",
"easy"
] | 11 | 1 | 2 | [
"A000005",
"A000069",
"A000290",
"A001969",
"A027697",
"A027699",
"A046660",
"A048272",
"A106400",
"A227872",
"A230851",
"A356018",
"A357761",
"A357762"
] | null | Amiram Eldar, Oct 12 2022 | 2022-10-14T09:23:42 | oeisdata/seq/A357/A357761.seq | b60614ede6b0411e8864cf1f7e0b487e |
A357762 | Decimal expansion of -Sum_{k>=1} A106400(k)/k. | [
"1",
"1",
"9",
"6",
"2",
"8",
"3",
"2",
"6",
"4",
"3",
"2",
"5",
"2",
"5",
"6",
"4",
"3",
"7",
"2",
"2",
"2",
"2",
"9",
"1",
"6",
"3",
"3",
"2",
"0",
"0",
"8",
"1",
"9",
"1",
"8",
"1",
"0",
"1",
"0",
"4",
"2",
"6",
"7",
"4",
"6",
"4",
"0",
"1",
"5",
"9",
"4",
"3",
"8",
"1",
"8",
"9",
"8",
"7",
"2",
"3",
"3",
"3",
"7",
"3",
"0",
"7",
"8",
"3",
"7",
"5",
"1",
"6",
"1",
"0",
"9",
"1",
"5",
"8",
"0",
"8",
"7",
"7",
"7",
"9",
"1",
"1",
"9",
"6",
"4",
"5",
"4",
"6",
"2",
"1",
"1",
"0",
"7",
"4",
"8",
"9",
"6",
"3",
"3",
"3"
] | [
"nonn",
"cons"
] | 7 | 1 | 3 | [
"A106400",
"A215016",
"A351404",
"A357761",
"A357762"
] | null | Amiram Eldar, Oct 12 2022 | 2022-10-12T11:39:44 | oeisdata/seq/A357/A357762.seq | 8e81b553b9b246172e1fd9d63d9024dd |
A357763 | Numbers m such that A357761(m) > A357761(k) for all k < m. | [
"1",
"2",
"4",
"8",
"16",
"28",
"56",
"112",
"224",
"448",
"728",
"1456",
"2912",
"5824",
"10192",
"11648",
"20384",
"27664",
"40768",
"55328",
"110656",
"221312",
"442624",
"885248",
"1263808",
"1770496",
"2527616",
"3430336",
"5055232",
"6860672",
"10110464",
"13721344",
"16155776",
"20220928",
"24012352",
"32311552",
"48024704"
] | [
"nonn",
"base"
] | 12 | 1 | 2 | [
"A330289",
"A355969",
"A356020",
"A357761",
"A357763",
"A357764"
] | null | Amiram Eldar, Oct 12 2022 | 2023-03-31T05:12:24 | oeisdata/seq/A357/A357763.seq | da254412512000480844b2c56243699b |
A357764 | Numbers m such that A357761(m) < A357761(k) for all k < m. | [
"1",
"3",
"9",
"15",
"30",
"60",
"90",
"180",
"360",
"540",
"720",
"1080",
"2160",
"4320",
"6120",
"8640",
"12240",
"18360",
"24480",
"36720",
"73440",
"146880",
"257040",
"293760",
"514080",
"587520",
"807840",
"1028160",
"1615680",
"1884960",
"2056320",
"2827440",
"3231360",
"3769920",
"5654880",
"7539840",
"9424800",
"11309760",
"18849600"
] | [
"nonn",
"base"
] | 8 | 1 | 2 | [
"A355969",
"A356020",
"A357761",
"A357763",
"A357764"
] | null | Amiram Eldar, Oct 12 2022 | 2022-10-13T05:49:42 | oeisdata/seq/A357/A357764.seq | 8055f213d8dc173fac4b7f2bcaeb584e |
A357765 | Smallest positive integer that can be represented as the sum of n of its (possibly equal) divisors in the maximum number of ways (=A002966(n)). | [
"1",
"2",
"12",
"2520",
"48348686786400",
"10543141534556403817127800577537146514577188497111149855093902265479066128013109211427715400552367011213513440000"
] | [
"nice",
"nonn"
] | 9 | 1 | 2 | [
"A002966",
"A006585",
"A181700",
"A357765"
] | null | David A. Corneth and Max Alekseyev, Oct 12 2022 | 2022-10-13T12:52:03 | oeisdata/seq/A357/A357765.seq | 1699ea1aac4e27a0da76cf797c90feb9 |
A357766 | Number of n X n tables where rows represent distinct permutations of { 1, 2, ..., n } and the column sums are equal. | [
"1",
"2",
"12",
"2448",
"6828480",
"1386834134400",
"20251525440458995200",
"33182473074940946503237478400"
] | [
"hard",
"more",
"nonn"
] | 6 | 1 | 2 | [
"A356722",
"A356723",
"A356724",
"A356725",
"A357766",
"A357767",
"A357768"
] | null | Max Alekseyev, Oct 12 2022 | 2022-10-13T12:52:22 | oeisdata/seq/A357/A357766.seq | 0e5ff1ef92a4826cbb8bf662f9fad383 |
A357767 | Number of n X n tables where rows represent distinct permutations of { 1, 2, ..., n } and the column sums are equal, up to permutation of rows. | [
"1",
"1",
"2",
"102",
"56904",
"1926158520",
"4018159809614880",
"822978002850717919227120"
] | [
"hard",
"more",
"nonn"
] | 6 | 1 | 3 | [
"A356722",
"A356723",
"A356724",
"A356725",
"A357766",
"A357767",
"A357768"
] | null | Max Alekseyev, Oct 12 2022 | 2022-10-13T12:52:32 | oeisdata/seq/A357/A357767.seq | 99a6eaeaf739ae84ca5fd40e4750c8ed |
A357768 | Number of n X n tables where rows represent distinct permutations of { 1, 2, ..., n } and the column sums are equal, up to permutations of rows and columns. | [
"1",
"1",
"1",
"9",
"479",
"2677443",
"797253930582",
"20411160794088064950"
] | [
"hard",
"more",
"nonn"
] | 9 | 1 | 4 | [
"A356722",
"A356723",
"A356724",
"A356725",
"A357766",
"A357767",
"A357768"
] | null | Max Alekseyev, Oct 13 2022 | 2022-10-18T06:23:36 | oeisdata/seq/A357/A357768.seq | 5ce1f06c7651ccd66c24f3af46850f0f |
A357769 | Positive numbers with decimal expansion d_1, ..., d_w that are divisible by d_1 + ... + d_k for k = 1..w. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"18",
"20",
"24",
"30",
"36",
"40",
"48",
"50",
"60",
"70",
"80",
"90",
"100",
"102",
"108",
"110",
"112",
"114",
"120",
"126",
"132",
"140",
"150",
"156",
"180",
"190",
"200",
"204",
"210",
"216",
"220",
"224",
"228",
"230",
"240",
"252",
"264",
"270",
"280",
"300",
"306",
"312",
"330",
"336",
"360",
"396",
"400"
] | [
"nonn",
"base",
"easy"
] | 14 | 1 | 2 | [
"A005349",
"A034837",
"A259433",
"A328273",
"A356350",
"A357769"
] | null | Rémy Sigrist, Oct 12 2022 | 2022-10-17T07:06:41 | oeisdata/seq/A357/A357769.seq | 47b784019802ceffe9e71be3c8918d10 |
A357770 | Number of 2n-step closed paths on quasi-regular rhombic (rhombille) lattice starting from a degree-3 node. | [
"1",
"3",
"30",
"372",
"5112",
"74448",
"1125408",
"17461440",
"276193152",
"4433878272",
"72022049280",
"1181146106880",
"19524892723200",
"324921616773120",
"5438136568504320",
"91467357685235712",
"1545090682931085312",
"26199310348842762240",
"445746455962332561408",
"7606624602795641929728"
] | [
"nonn",
"easy",
"walk"
] | 25 | 0 | 2 | [
"A002893",
"A002894",
"A002898",
"A357770",
"A357771"
] | null | Dave R.M. Langers, Oct 12 2022 | 2025-03-23T20:51:46 | oeisdata/seq/A357/A357770.seq | 3cfbdfb4ca312e827cd85e712efbca38 |
A357771 | Number of 2n-step closed paths on quasi-regular rhombic (rhombille) lattice starting from a degree-6 node. | [
"1",
"6",
"60",
"744",
"10224",
"148896",
"2250816",
"34922880",
"552386304",
"8867756544",
"144044098560",
"2362292213760",
"39049785446400",
"649843233546240",
"10876273137008640",
"182934715370471424",
"3090181365862170624",
"52398620697685524480",
"891492911924665122816",
"15213249205591283859456",
"260315328935885892747264"
] | [
"nonn",
"easy",
"walk"
] | 33 | 0 | 2 | [
"A002893",
"A002894",
"A002898",
"A357770",
"A357771"
] | null | Dave R.M. Langers, Oct 12 2022 | 2025-03-23T20:51:49 | oeisdata/seq/A357/A357771.seq | cedadb0f05c10d9f095f3ff32e48b50d |
A357772 | Numbers with a sum of digits which is not 7-smooth. | [
"29",
"38",
"47",
"49",
"56",
"58",
"65",
"67",
"74",
"76",
"83",
"85",
"89",
"92",
"94",
"98",
"119",
"128",
"137",
"139",
"146",
"148",
"155",
"157",
"164",
"166",
"173",
"175",
"179",
"182",
"184",
"188",
"191",
"193",
"197",
"199",
"209",
"218",
"227",
"229",
"236",
"238",
"245",
"247",
"254",
"256",
"263"
] | [
"nonn",
"easy",
"base"
] | 24 | 1 | 1 | [
"A087144",
"A357772"
] | null | Charles R Greathouse IV, Oct 13 2022 | 2022-10-13T11:36:54 | oeisdata/seq/A357/A357772.seq | 9001f498c82f7a57e5d9e93266f0f688 |
A357773 | Odd numbers with two zeros in their binary expansion. | [
"9",
"19",
"21",
"25",
"39",
"43",
"45",
"51",
"53",
"57",
"79",
"87",
"91",
"93",
"103",
"107",
"109",
"115",
"117",
"121",
"159",
"175",
"183",
"187",
"189",
"207",
"215",
"219",
"221",
"231",
"235",
"237",
"243",
"245",
"249",
"319",
"351",
"367",
"375",
"379",
"381",
"415",
"431",
"439",
"443",
"445",
"463",
"471",
"475",
"477",
"487",
"491",
"493",
"499",
"501"
] | [
"nonn",
"base",
"easy"
] | 65 | 1 | 1 | [
"A000225",
"A005408",
"A018900",
"A023416",
"A048490",
"A153894",
"A190620",
"A220236",
"A353654",
"A357773",
"A357774"
] | null | Bernard Schott, Oct 12 2022 | 2024-12-18T09:27:29 | oeisdata/seq/A357/A357773.seq | 106b8a79b8d884e4e7d5f91aed414cf5 |
A357774 | Binary expansions of odd numbers with two zeros in their binary expansion. | [
"1001",
"10011",
"10101",
"11001",
"100111",
"101011",
"101101",
"110011",
"110101",
"111001",
"1001111",
"1010111",
"1011011",
"1011101",
"1100111",
"1101011",
"1101101",
"1110011",
"1110101",
"1111001",
"10011111",
"10101111",
"10110111",
"10111011",
"10111101",
"11001111",
"11010111",
"11011011",
"11011101",
"11100111",
"11101011"
] | [
"nonn",
"base"
] | 34 | 1 | 1 | [
"A000042",
"A000217",
"A007088",
"A190619",
"A267524",
"A267705",
"A357773",
"A357774"
] | null | Bernard Schott, Oct 19 2022 | 2024-12-19T23:40:42 | oeisdata/seq/A357/A357774.seq | 6d581a0af59794377e6161211b7b13cc |
A357775 | Numbers k with the property that the symmetric representation of sigma(k) has seven parts. | [
"357",
"399",
"441",
"483",
"513",
"567",
"609",
"621",
"651",
"729",
"759",
"777",
"783",
"837",
"861",
"891",
"957",
"999",
"1023",
"1053",
"1089",
"1107",
"1131",
"1161",
"1209",
"1221",
"1269",
"1287",
"1323",
"1353",
"1419",
"1431",
"1443",
"1521",
"1551",
"1595",
"1599",
"1677",
"1705",
"1749",
"1815",
"1833",
"1887",
"1947",
"1989",
"2013",
"2035",
"2067",
"2091",
"2145",
"2193",
"2223",
"2255"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A018411",
"A174973",
"A196020",
"A235791",
"A236104",
"A237270",
"A237271",
"A237591",
"A237593",
"A238443",
"A239663",
"A239929",
"A240062",
"A266094",
"A279102",
"A280107",
"A320066",
"A320511",
"A357775"
] | null | Omar E. Pol, Oct 12 2022 | 2022-10-23T23:38:19 | oeisdata/seq/A357/A357775.seq | 81fd1a6d08f3e8780ed0ff2593f6b7cb |
A357776 | Integer pairs that generate only odd prime sums (as described in comment). | [
"1",
"2",
"6",
"11",
"12",
"17",
"30",
"41",
"72",
"101",
"156",
"546",
"1481",
"3917",
"11886",
"14627",
"27737",
"78696",
"118901",
"137436",
"1676610",
"12618762",
"111018431",
"574060031",
"47357739281",
"168920413410"
] | [
"nonn",
"base",
"more"
] | 32 | 1 | 2 | null | null | Bill McEachen, Oct 12 2022 | 2024-10-16T21:32:58 | oeisdata/seq/A357/A357776.seq | 52288fab018da90ad4ee92f515e6c1f4 |
A357777 | a(1)=1, a(2)=2. Thereafter a(n+1) is the smallest k such that gcd(k, a(n)) > 1, and gcd(k, s(n)) = 1, where s(n) is the n-th partial sum. | [
"1",
"2",
"4",
"6",
"3",
"9",
"12",
"8",
"14",
"7",
"35",
"5",
"15",
"10",
"16",
"20",
"18",
"21",
"27",
"24",
"22",
"11",
"33",
"30",
"25",
"55",
"40",
"26",
"13",
"39",
"36",
"28",
"32",
"34",
"17",
"51",
"45",
"57",
"19",
"133",
"38",
"44",
"46",
"23",
"69",
"42",
"48",
"50",
"52",
"54",
"56",
"49",
"63",
"60",
"58",
"29",
"87",
"66",
"62",
"31",
"93",
"72",
"64",
"68",
"70",
"65",
"75",
"78"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A064413",
"A357735",
"A357777"
] | null | David James Sycamore, Oct 12 2022 | 2022-10-21T15:12:48 | oeisdata/seq/A357/A357777.seq | 17774ee50e558331b7e015a22fcff897 |
A357778 | Maximum number of edges in a 5-degenerate graph with n vertices. | [
"0",
"1",
"3",
"6",
"10",
"15",
"20",
"25",
"30",
"35",
"40",
"45",
"50",
"55",
"60",
"65",
"70",
"75",
"80",
"85",
"90",
"95",
"100",
"105",
"110",
"115",
"120",
"125",
"130",
"135",
"140",
"145",
"150",
"155",
"160",
"165",
"170",
"175",
"180",
"185",
"190",
"195",
"200",
"205",
"210",
"215",
"220",
"225",
"230",
"235"
] | [
"nonn"
] | 17 | 1 | 3 | [
"A004273",
"A113127",
"A296515",
"A357778",
"A357779"
] | null | Allan Bickle, Oct 13 2022 | 2024-02-18T02:09:10 | oeisdata/seq/A357/A357778.seq | 35b029cc7bb7600443c530ee7f33c90f |
A357779 | Maximum number of edges in a 6-degenerate graph with n vertices. | [
"0",
"1",
"3",
"6",
"10",
"15",
"21",
"27",
"33",
"39",
"45",
"51",
"57",
"63",
"69",
"75",
"81",
"87",
"93",
"99",
"105",
"111",
"117",
"123",
"129",
"135",
"141",
"147",
"153",
"159",
"165",
"171",
"177",
"183",
"189",
"195",
"201",
"207",
"213",
"219",
"225",
"231",
"237",
"243",
"249",
"255",
"261",
"267",
"273",
"279"
] | [
"nonn"
] | 16 | 1 | 3 | [
"A004273",
"A113127",
"A296515",
"A357778",
"A357779"
] | null | Allan Bickle, Oct 13 2022 | 2024-02-18T12:17:37 | oeisdata/seq/A357/A357779.seq | fb253c2068b5a3a35d67c73c08e3ceda |
A357780 | Primes p such that changing, in p, all 1's to 2's we get semiprimes and changing all 1's to 3's we get triprimes. | [
"61",
"199",
"313",
"421",
"619",
"661",
"1033",
"1163",
"1217",
"1283",
"1301",
"1361",
"1567",
"1613",
"1721",
"1723",
"1759",
"1987",
"2179",
"2341",
"2617",
"3011",
"3163",
"3217",
"4211",
"4519",
"4621",
"5107",
"7417",
"8117",
"8123",
"8317",
"8521",
"9199",
"9319",
"9721",
"9817",
"10037",
"10093",
"10099",
"10139",
"10163",
"10211",
"10243",
"10567",
"10589",
"10601",
"10687",
"10781",
"10837",
"10957"
] | [
"nonn",
"base"
] | 44 | 1 | 1 | [
"A000040",
"A001358",
"A014612",
"A357780"
] | null | Zak Seidov, Oct 14 2022 | 2023-12-17T11:13:12 | oeisdata/seq/A357/A357780.seq | f7b913c3141cfb8b6b16bb50965b3e29 |
A357781 | Semiprimes k such that k is congruent to 1 modulo k's index in the sequence of semiprimes. | [
"4",
"82",
"85",
"106",
"121",
"133",
"142",
"166",
"169",
"217",
"3067001",
"3067006",
"3067286",
"3067411",
"3067651",
"3067691",
"3067721",
"3067751",
"3067771",
"3067781",
"3067801",
"3068071",
"348933121",
"348933127",
"348933199",
"348933223",
"348933241",
"348933259",
"348933271",
"348933427",
"44690978221",
"44690978543",
"44690978669"
] | [
"nonn",
"hard"
] | 28 | 1 | 1 | [
"A001358",
"A106126",
"A357781"
] | null | Lucas A. Brown, Oct 13 2022 | 2022-10-14T17:27:09 | oeisdata/seq/A357/A357781.seq | 5b8adf752be5df046e91591df630791c |
A357782 | a(n) = Sum_{k=0..floor(n/3)} 2^k * Stirling2(n,3*k). | [
"1",
"0",
"0",
"2",
"12",
"50",
"184",
"686",
"2996",
"16642",
"110328",
"784190",
"5645876",
"40685762",
"296458344",
"2226254766",
"17564381332",
"147289101090",
"1312394060536",
"12305546886398",
"119906479624084",
"1202273551045474",
"12341175064817576",
"129582557972751918",
"1394497073432776756"
] | [
"nonn"
] | 24 | 0 | 4 | [
"A143815",
"A357782",
"A357783",
"A357784",
"A357831"
] | null | Seiichi Manyama, Oct 13 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357782.seq | eff395961f15da2afce88ecbf6994a2d |
A357783 | a(n) = Sum_{k=0..floor((n-1)/3)} 2^k * Stirling2(n,3*k+1). | [
"0",
"1",
"1",
"1",
"3",
"21",
"131",
"705",
"3515",
"17389",
"91739",
"547889",
"3746227",
"28241373",
"224124083",
"1821051233",
"15023818091",
"126366334125",
"1094358852075",
"9858890038513",
"92983173940419",
"918408372280477",
"9454438841355395",
"100728532687727329",
"1103649166937235259"
] | [
"nonn"
] | 22 | 0 | 5 | [
"A143816",
"A357782",
"A357783",
"A357784",
"A357832"
] | null | Seiichi Manyama, Oct 13 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357783.seq | 3c5357d57e25d1fc0964d81a356c985a |
A357784 | a(n) = Sum_{k=0..floor((n-2)/3)} 2^k * Stirling2(n,3*k+2). | [
"0",
"0",
"1",
"3",
"7",
"17",
"61",
"343",
"2231",
"14301",
"88561",
"542011",
"3397483",
"22638993",
"164336085",
"1299899087",
"10991061663",
"97070035205",
"881323166809",
"8173386231395",
"77489746906355",
"754631383660729",
"7590899551399869",
"79174328607339767",
"856889470005396071"
] | [
"nonn"
] | 21 | 0 | 4 | [
"A143817",
"A357782",
"A357783",
"A357784",
"A357833"
] | null | Seiichi Manyama, Oct 13 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357784.seq | 399d94d9d3cc5850d8aeb0ffe1e76514 |
A357785 | a(n) = coefficient of x^n, n >= 1, in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ) * sqrt(1 - 4*x - 4*x^2). | [
"1",
"1",
"4",
"15",
"65",
"291",
"1356",
"6474",
"31555",
"156315",
"784924",
"3986534",
"20444676",
"105728100",
"550735400",
"2886924190",
"15217019595",
"80600822575",
"428766983300",
"2289637381800",
"12268642450420",
"65941128441080",
"355396218177760",
"1920215555772550",
"10398415258863275"
] | [
"nonn"
] | 18 | 1 | 3 | [
"A357547",
"A357785",
"A357786"
] | null | Paul D. Hanna, Dec 03 2022 | 2022-12-04T08:34:20 | oeisdata/seq/A357/A357785.seq | 6fe34272fc265868555e47abcf383bec |
A357786 | a(n) = coefficient of x^n, n >= 1, in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ) * sqrt(1 - 4*x - 8*x^2). | [
"1",
"1",
"5",
"20",
"98",
"483",
"2499",
"13182",
"71030",
"388484",
"2152982",
"12061840",
"68212585",
"388886050",
"2232764700",
"12898728750",
"74923372563",
"437303591874",
"2563373794884",
"15083551143318",
"89060360731377",
"527477003037984",
"3132774700791126",
"18652891302520806",
"111314950683514698"
] | [
"nonn"
] | 13 | 1 | 3 | [
"A357548",
"A357785",
"A357786"
] | null | Paul D. Hanna, Dec 03 2022 | 2022-12-04T08:34:24 | oeisdata/seq/A357/A357786.seq | 96225b12887172ae65a06051164ebec9 |
A357787 | a(n) = coefficient of x^n in A(x) such that C(x)^2 + S(x)^2 = 1 where: C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * A(x)^n. | [
"1",
"2",
"2",
"8",
"14",
"32",
"68",
"0",
"22",
"-768",
"-2020",
"-9216",
"-23156",
"-45056",
"-115320",
"32768",
"102118",
"3391488",
"8927532",
"38993920",
"100272484",
"240910336",
"602657464",
"230686720",
"307036796",
"-14736687104",
"-40340665064",
"-204925304832",
"-536096789800",
"-1533403987968",
"-3850562998512",
"-4313489342464",
"-8988517048442",
"61275962867712"
] | [
"sign"
] | 26 | 0 | 2 | [
"A357787",
"A357788",
"A357789",
"A357806"
] | null | Paul D. Hanna, Dec 04 2022 | 2022-12-06T13:15:13 | oeisdata/seq/A357/A357787.seq | 4ab16f9b86a3c9780308fb9aa5655418 |
A357788 | a(n) = coefficient of x^(2*n) in C(x) defined by: C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n, where F(x) is the g.f. of A357787 such that C(x)^2 + S(x)^2 = 1. | [
"1",
"0",
"-32",
"-256",
"-2048",
"-12288",
"-32768",
"131072",
"3276800",
"28311552",
"125829120",
"-285212672",
"-11274289152",
"-110326972416",
"-511101108224",
"2052994367488",
"66383014526976",
"707123415613440",
"4088396548931584",
"-1608585511436288",
"-341992096703447040",
"-4383726471663845376"
] | [
"sign"
] | 14 | 0 | 3 | [
"A357787",
"A357788",
"A357789",
"A357806"
] | null | Paul D. Hanna, Dec 05 2022 | 2022-12-10T14:33:58 | oeisdata/seq/A357/A357788.seq | e96e1f4e4a609b500a8ba2cb39bd2096 |
A357789 | a(n) = coefficient of x^(2*n) in S(x) defined by: C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n, where F(x) is the g.f. of A357787 such that C(x)^2 + S(x)^2 = 1. | [
"8",
"32",
"128",
"0",
"-9216",
"-94208",
"-671744",
"-3014656",
"1245184",
"171704320",
"1756364800",
"8338276352",
"-26013073408",
"-946201427968",
"-10033714692096",
"-56471303749632",
"43465874341888",
"4967278927937536",
"61805829224923136",
"423546310109429760",
"713014908152709120",
"-24149207336980840448"
] | [
"sign"
] | 12 | 1 | 1 | [
"A357787",
"A357788",
"A357789"
] | null | Paul D. Hanna, Dec 05 2022 | 2022-12-10T14:33:35 | oeisdata/seq/A357/A357789.seq | 7d10ebfe620d3615bc475fab0dacf279 |
A357790 | a(n) = coefficient of x^n/n! in A(x) = Sum_{n>=0} x^n * cosh(sqrt(n)*x). | [
"1",
"1",
"2",
"9",
"48",
"305",
"2280",
"19537",
"188608",
"2024577",
"23911200",
"308049401",
"4298093184",
"64555255921",
"1038311141504",
"17803434637185",
"324148992092160",
"6245040776838017",
"126919440612205056",
"2713418986517310313",
"60871624993766717440",
"1429679116231319002161"
] | [
"nonn"
] | 16 | 0 | 3 | null | null | Paul D. Hanna, Jan 01 2023 | 2023-01-04T12:39:31 | oeisdata/seq/A357/A357790.seq | 5491ad9aa80950a04899b9e6b357c70c |
A357791 | a(n) = coefficient of x^n in A(x) such that: x = Sum_{n=-oo..+oo} x^n * (1 - x^n * A(-x)^n)^n. | [
"1",
"1",
"2",
"5",
"21",
"88",
"377",
"1654",
"7424",
"34000",
"158274",
"746525",
"3559456",
"17128250",
"83078147",
"405754479",
"1993777057",
"9849668910",
"48892589632",
"243739139810",
"1219789105228",
"6125813250402",
"30862120708266",
"155937956267432",
"790019313067409",
"4012282344217699",
"20423575546661000"
] | [
"nonn"
] | 8 | 0 | 3 | [
"A357399",
"A357791",
"A359672"
] | null | Paul D. Hanna, Dec 24 2022 | 2023-01-11T10:22:54 | oeisdata/seq/A357/A357791.seq | 1f51e870ec71499bd757027e93eb1c81 |
A357792 | a(n) = coefficient of x^n in A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108). | [
"1",
"1",
"1",
"3",
"7",
"20",
"60",
"189",
"613",
"2039",
"6918",
"23850",
"83315",
"294282",
"1049279",
"3771685",
"13653313",
"49730599",
"182130129",
"670274170",
"2477514172",
"9193599339",
"34237330355",
"127914531260",
"479318575375",
"1800971051420",
"6783809423496",
"25611913597250",
"96903193235645",
"367363376407250"
] | [
"nonn"
] | 26 | 0 | 4 | [
"A000108",
"A357792",
"A357793"
] | null | Paul D. Hanna, Dec 14 2022 | 2023-03-14T05:13:24 | oeisdata/seq/A357/A357792.seq | bcf77c6239efdf931df3694cc625e510 |
A357793 | a(n) = coefficient of x^n in A(x) = Sum_{n>=0} x^n*F(x)^n * (1 - x^n*F(x)^n)^n, where F(x) = 1 + x*F(x)^3 is a g.f. of A001764. | [
"1",
"1",
"1",
"4",
"14",
"64",
"314",
"1633",
"8826",
"49107",
"279349",
"1617290",
"9498099",
"56445918",
"338817460",
"2051182532",
"12509647159",
"76785827812",
"474000090118",
"2940761033970",
"18327028477625",
"114677403429121",
"720191795608082",
"4537925593859911",
"28679991910774479",
"181761824439041725"
] | [
"nonn"
] | 15 | 0 | 4 | [
"A001764",
"A357792",
"A357793"
] | null | Paul D. Hanna, Dec 20 2022 | 2023-03-14T04:56:55 | oeisdata/seq/A357/A357793.seq | 7db30a683c4a8fa974265b74e4d4e007 |
A357794 | a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^n * (1 - x^(n+1))^n * A(x)^(n+1). | [
"1",
"3",
"15",
"114",
"1086",
"10824",
"114382",
"1252002",
"14083275",
"161810358",
"1890774909",
"22401092826",
"268465408738",
"3248818848876",
"39643793276526",
"487251937616006",
"6026537732208078",
"74954027622814455",
"936840765257368687",
"11761260253206563461",
"148240496011414115676"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A357158",
"A357794",
"A357795",
"A357796"
] | null | Paul D. Hanna, Dec 22 2022 | 2022-12-24T11:17:07 | oeisdata/seq/A357/A357794.seq | b252ac6d1ec346931e236468477266fe |
A357795 | a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/3! * x^n * (1 - x^(n+2))^n * A(x)^(n+2). | [
"1",
"4",
"26",
"300",
"4134",
"61696",
"969660",
"15837400",
"266125823",
"4571229248",
"79904206064",
"1416736880104",
"25418030469904",
"460600399886240",
"8417980252615072",
"154985730303047328",
"2871904782258356719",
"53519211809275995362",
"1002383232008661189884",
"18858606600633628740774"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A357158",
"A357794",
"A357795",
"A357796"
] | null | Paul D. Hanna, Dec 22 2022 | 2022-12-24T11:16:46 | oeisdata/seq/A357/A357795.seq | fb311ce197cac87dd0e9745971be977c |
A357796 | a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/4! * x^n * (1 - x^(n+3))^n * A(x)^(n+3). | [
"1",
"5",
"40",
"635",
"12095",
"248245",
"5381435",
"121355095",
"2817706420",
"66909209195",
"1617401484401",
"39668321722180",
"984661725380420",
"24690230217076810",
"624476169158179615",
"15912858189842638180",
"408139640637624168780",
"10528308534373198776840",
"272970775748658547320275"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A357158",
"A357794",
"A357795",
"A357796"
] | null | Paul D. Hanna, Dec 22 2022 | 2022-12-24T11:16:50 | oeisdata/seq/A357/A357796.seq | 9f002fc60280d680ba3b1f888cde5860 |
A357797 | a(n) = coefficient of x^n in the power series A(x) such that: x = Sum_{n=-oo..+oo} (-1)^n * x^n * (2 + x^n)^n * A(x)^n. | [
"1",
"1",
"5",
"18",
"85",
"374",
"1659",
"7774",
"36876",
"177494",
"867424",
"4285653",
"21373782",
"107475746",
"544244911",
"2773091748",
"14207171278",
"73140904609",
"378184133959",
"1963127909395",
"10226682384980",
"53446907352828",
"280150058149086",
"1472424136948438",
"7758105323877698",
"40970959715619200",
"216830651728330127"
] | [
"nonn"
] | 15 | 0 | 3 | [
"A357797",
"A357798",
"A359720",
"A359721",
"A359723"
] | null | Paul D. Hanna, Dec 22 2022 | 2023-03-14T18:37:40 | oeisdata/seq/A357/A357797.seq | d8ea6515df233f87d72ec9e42d52a640 |
A357798 | a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(n+1) * (2 - x^(n+1))^n * A(x)^n. | [
"1",
"2",
"6",
"20",
"78",
"364",
"1758",
"9144",
"48508",
"264014",
"1457624",
"8158260",
"46134878",
"263312552",
"1514534512",
"8771202984",
"51101608190",
"299306977508",
"1761377916048",
"10409550718692",
"61755225688926",
"367639850029404",
"2195551697108888",
"13149811270786752",
"78967249613057836",
"475373797733460598"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A357797",
"A357798"
] | null | Paul D. Hanna, Dec 22 2022 | 2022-12-24T11:16:59 | oeisdata/seq/A357/A357798.seq | ec498c8fa1133e67746d650351f8cbb7 |
A357799 | a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * (A(x) + x^n)^(n+1). | [
"1",
"1",
"4",
"10",
"33",
"105",
"363",
"1268",
"4600",
"16954",
"63663",
"242180",
"932255",
"3623239",
"14200924",
"56061965",
"222728379",
"889828825",
"3572675122",
"14408128581",
"58338540673",
"237067134533",
"966522205819",
"3952323714926",
"16206324436147",
"66621153183615",
"274505283101713"
] | [
"nonn"
] | 9 | 0 | 3 | null | null | Paul D. Hanna, Dec 23 2022 | 2023-01-01T05:42:35 | oeisdata/seq/A357/A357799.seq | b6d66f045877632e029012b8fdf3ad29 |
A357800 | Coefficients T(n,k) of x^(4*n+1)*r^(4*k)/(4*n+1)! in power series S(x,r) = Integral C(x,r)^3 * D(x,r)^3 dx such that C(x,r)^4 - S(x,r)^4 = 1 and D(x,r)^4 - r^4*S(x,r)^4 = 1, as a symmetric triangle read by rows. | [
"1",
"18",
"18",
"14364",
"58968",
"14364",
"70203672",
"671650056",
"671650056",
"70203672",
"1192064637456",
"20707300240704",
"47530354598496",
"20707300240704",
"1192064637456",
"52269828456672288",
"1437626817559769760",
"5941554215913771840",
"5941554215913771840",
"1437626817559769760",
"52269828456672288",
"4930307288899134335424",
"197041019249105562351744",
"1283341580573615116868160",
"2308585363008068715943680"
] | [
"nonn",
"tabl"
] | 8 | 0 | 2 | [
"A153301",
"A357540",
"A357800",
"A357801",
"A357802",
"A357804"
] | null | Paul D. Hanna, Oct 14 2022 | 2022-10-15T10:37:20 | oeisdata/seq/A357/A357800.seq | 4ac9de9815b5a5456c2cc5b6b57dbb8e |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.