sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A379902
Indices of local maxima in A342042: numbers k such that A342042(k-1) < A342042(k) > A342042(k+1), for k >= 2.
[ "14", "17", "20", "23", "27", "30", "33", "39", "42", "45", "49", "52", "58", "61", "65", "71", "79", "82", "85", "88", "94", "97", "99", "102", "106", "108", "113", "116", "118", "121", "126", "129", "133", "136", "138", "143", "147", "154", "157", "160", "163", "167", "172", "175", "178", "181", "188", "191", "194", "196", "199", "205", "209", "212", "215", "217", "221" ]
[ "nonn", "base" ]
10
1
1
[ "A342042", "A379901", "A379902", "A379903", "A379904" ]
null
Paolo Xausa, Jan 05 2025
2025-01-08T05:55:22
oeisdata/seq/A379/A379902.seq
fe7f30d0b6d24e643f1441f35f06eb65
A379903
Local minima in A342042, in order of appearance: numbers m such that A342042(k-1) > A342042(k) = m < A342042(k+1), for k >= 2.
[ "0", "13", "15", "17", "19", "25", "27", "29", "35", "37", "39", "47", "49", "57", "59", "69", "79", "103", "105", "107", "109", "113", "304", "115", "117", "306", "119", "125", "506", "127", "129", "133", "135", "137", "508", "139", "147", "149", "153", "155", "157", "159", "169", "173", "175", "177", "179", "193", "195", "312", "197", "199", "233", "235", "237", "514" ]
[ "nonn", "base" ]
15
1
2
[ "A342042", "A379901", "A379902", "A379903", "A379904" ]
null
Paolo Xausa, Jan 05 2025
2025-01-08T05:55:19
oeisdata/seq/A379/A379903.seq
3f3ac4dc1da261337a3f5de40b46177d
A379904
Indices of local minima in A342042: numbers k such that A342042(k-1) > A342042(k) < A342042(k+1), for k >= 2.
[ "1", "15", "18", "21", "24", "28", "31", "34", "40", "43", "46", "50", "53", "59", "62", "66", "72", "80", "83", "86", "89", "95", "98", "100", "104", "107", "109", "114", "117", "119", "122", "127", "130", "134", "137", "139", "145", "148", "155", "158", "161", "164", "168", "173", "176", "179", "183", "189", "192", "195", "197", "200", "207", "210", "213", "216", "218", "222" ]
[ "nonn", "base" ]
12
1
2
[ "A342042", "A379901", "A379902", "A379903", "A379904" ]
null
Paolo Xausa, Jan 05 2025
2025-01-08T05:55:15
oeisdata/seq/A379/A379904.seq
692df114975fc4da31431330524463fc
A379905
Rank of the permutation resulting from a pre-order traversal of a binary tree which is complete except for the final row and has vertices numbered 0 to n-1.
[ "0", "0", "0", "1", "3", "8", "30", "222", "1302", "8442", "63570", "545473", "5249163", "55941128", "653682990", "8597126190", "117809490990", "1730350233390", "27183297753390", "454752069221550", "8070074352360750", "151403473011001710", "2993918729983972590", "62232717584055513822", "1356493891878893498262" ]
[ "nonn" ]
39
1
5
[ "A000225", "A000523", "A070939", "A379905", "A380856" ]
null
Darío Clavijo, Jan 05 2025
2025-02-23T09:26:59
oeisdata/seq/A379/A379905.seq
7d7d307ccd572b48b0112b0f43a273b4
A379906
Smallest integer greater than 1 and not ending in 0 whose congruence speed is not constant at height n (see A373387).
[ "2", "2", "5", "307", "807", "72943", "795807", "1295807", "16295807", "166295807", "16666295807", "31666295807", "81666295807", "8581666295807", "26581907922943", "503581666295807", "2003581666295807", "90476581907922943", "140476581907922943", "6847003581666295807", "61847003581666295807", "911847003581666295807" ]
[ "nonn", "base", "hard" ]
18
1
1
[ "A068407", "A290372", "A290373", "A290374", "A290375", "A317905", "A370211", "A370775", "A371129", "A371671", "A372490", "A373387", "A379906" ]
null
Marco Ripà, Jan 05 2025
2025-01-18T09:26:44
oeisdata/seq/A379/A379906.seq
ada5763749ae3f4d9def67ae0e6cda0e
A379907
Triangle read by rows: T(n, k) = Sum_{i=0..n-k} (-1)^(n - k - i) * binomial(n - k, i) * binomial(k + 2*i, i) * (k + 1) / (k + 1 + i).
[ "1", "0", "1", "1", "1", "1", "1", "2", "2", "1", "3", "4", "4", "3", "1", "6", "9", "9", "7", "4", "1", "15", "21", "21", "17", "11", "5", "1", "36", "51", "51", "42", "29", "16", "6", "1", "91", "127", "127", "106", "76", "46", "22", "7", "1", "232", "323", "323", "272", "200", "128", "69", "29", "8", "1", "603", "835", "835", "708", "530", "352", "204", "99", "37", "9", "1", "1585", "2188", "2188", "1865", "1415", "965", "587", "311", "137", "46", "10", "1" ]
[ "nonn", "easy", "tabl" ]
16
0
8
[ "A000108", "A001006", "A005043", "A102071", "A342912", "A379823", "A379824", "A379907" ]
null
Werner Schulte, Jan 05 2025
2025-01-06T13:15:49
oeisdata/seq/A379/A379907.seq
3aa3c7fe9405821558c8f99b2ec028ea
A379908
a(n) is number of n-digit positive integers in which the product of the digits in the even positions equals the product of the digits in the odd positions.
[ "1", "9", "32", "380", "4097", "54054", "700099", "8742818", "108476326", "1285917070", "15207121743", "173726013062", "1982695287783", "22061642063204", "245374194718713", "2677923173095450", "29219674883924922", "314236528160399298", "3379020617685021774", "35924502411735093750", "381913758547904774763" ]
[ "nonn", "base" ]
11
1
2
[ "A067042", "A379908" ]
null
Stefano Spezia, Jan 05 2025
2025-01-09T19:18:24
oeisdata/seq/A379/A379908.seq
e4794ab581ecf03be3e8301f735a3b8a
A379909
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^2) + x*A(x).
[ "1", "0", "1", "-4", "41", "-456", "6817", "-120044", "2497105", "-59445136", "1599030881", "-47923901268", "1584315183673", "-57269439049304", "2247345360390145", "-95147690776024636", "4323183446836151201", "-209835113176652954400", "10835768876261196612673", "-593183387438256595660964" ]
[ "sign" ]
7
0
4
[ "A379856", "A379868", "A379877", "A379909" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-06T04:21:26
oeisdata/seq/A379/A379909.seq
8d73600500cd75f65c705521c2868327
A379910
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^3) + x*A(x).
[ "1", "0", "1", "-7", "93", "-1531", "32053", "-805659", "23747545", "-803011879", "30657419361", "-1304526138895", "61227806142517", "-3142500604364811", "175099735351517005", "-10526856054032137891", "679212922630849128753", "-46816385951481961302991", "3433289231599510254603193" ]
[ "sign" ]
10
0
4
[ "A379858", "A379871", "A379910", "A379911" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-06T04:21:53
oeisdata/seq/A379/A379910.seq
a17b37e958eb23e4b7f073c019c24922
A379911
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^3) + x*A(x)^2.
[ "1", "0", "1", "-4", "53", "-656", "11917", "-244896", "6080265", "-171274240", "5480682041", "-195121452032", "7672945614589", "-329902678161408", "15405361461450885", "-776248476561903616", "41985495698339969681", "-2426188309657908936704", "149180887282915274036977", "-9725086440331395237937152" ]
[ "sign" ]
9
0
4
[ "A377859", "A379858", "A379868", "A379871", "A379879", "A379910", "A379911" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-06T04:22:25
oeisdata/seq/A379/A379911.seq
5acb092226cb7cd722b8a4e61e1f69c2
A379912
E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^3) - x*A(x)).
[ "1", "2", "23", "541", "19585", "962901", "59969227", "4526706661", "401724516641", "40994441922169", "4729721311570411", "608827327842480825", "86507217246635276065", "13448830748996370988885", "2270847762050485928361227", "413849998079530364443224781", "80967576778854924208520130241" ]
[ "nonn" ]
17
0
2
[ "A377890", "A377892", "A377893", "A379870", "A379885", "A379897", "A379912" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-08T02:40:45
oeisdata/seq/A379/A379912.seq
a919607d5b051618b2090effe6f96702
A379913
Let M_n be the n X n matrix M_(i,j)=1/(3^i+3^j), then a(n) is the denominator of det(M_n).
[ "6", "432", "145800", "28934010000", "36195844320916875", "8087414520398390420149816875", "14739121497834560950873288612087606246265625", "24111787175394014554749263306909156210251310885835206605812890625", "30311902674167553291682092445492621447523310843996437232420613554400185533411542126171875" ]
[ "nonn" ]
11
1
1
[ "A069743", "A379913" ]
null
Robert Israel, Jan 06 2025
2025-01-06T04:26:00
oeisdata/seq/A379/A379913.seq
55d77a741283cc03c2723fec4bef2590
A379914
Length of longest sequence over {0,1,...,n-1} containing no two consecutive blocks with the same average.
[ "1", "3", "3", "7", "9", "19", "20", "31", "37" ]
[ "nonn", "more" ]
28
1
2
[ "A379914", "A379998", "A379999", "A380000" ]
null
Jeffrey Shallit, Jan 06 2025
2025-01-09T12:18:34
oeisdata/seq/A379/A379914.seq
046285d80fbb581f7c25582bcca4741b
A379915
a(n) is the deficiency of the odd squarefree semiprime A046388(n), divided by 2.
[ "3", "5", "9", "11", "11", "15", "19", "17", "23", "21", "29", "31", "27", "35", "29", "35", "35", "43", "47", "39", "41", "53", "45", "59", "55", "59", "51", "65", "57", "59", "71", "79", "65", "83", "79", "89", "69", "83", "89", "71", "95", "91", "77", "107", "81", "109", "107", "103", "87", "119", "95", "115", "131", "125", "99", "119", "101", "139", "105", "143", "107", "137", "131" ]
[ "nonn" ]
13
1
1
[ "A000203", "A033879", "A046388", "A379915", "A379916", "A379917" ]
null
Hugo Pfoertner, Jan 06 2025
2025-03-31T22:59:02
oeisdata/seq/A379/A379915.seq
6bea02448551982d205515848cb4dc6a
A379916
a(n) is the deficiency of A046389(n), divided by 2.
[ "9", "21", "27", "39", "39", "49", "45", "57", "69", "97", "79", "93", "75", "119", "81", "99", "99", "129", "163", "129", "111", "147", "117", "139", "159", "185", "129", "211", "181", "183", "169", "147", "229", "189", "165", "225", "199", "171", "287", "237", "249", "219", "329", "189", "295", "255", "325", "201", "317", "207", "349", "249", "291", "309", "225", "313" ]
[ "nonn" ]
14
1
1
[ "A000203", "A033879", "A046389", "A379915", "A379916", "A379917" ]
null
Hugo Pfoertner, Jan 06 2025
2025-03-31T22:58:37
oeisdata/seq/A379/A379916.seq
27d8af66383ef87eff0c1aeba115c85d
A379917
a(n) is the deficiency of A046390(n), divided by 2.
[ "3", "21", "57", "75", "129", "111", "213", "315", "165", "255", "183", "291", "345", "339", "237", "471", "273", "549", "453", "291", "609", "465", "525", "327", "973", "507", "707", "705", "381", "615", "681", "669", "633", "435", "903", "453", "1361", "795", "939", "717", "1023", "507", "759", "1017", "831", "1245", "1555", "915", "543", "561", "1687", "843", "993" ]
[ "nonn", "look" ]
22
1
1
[ "A000203", "A033879", "A046390", "A378717", "A379915", "A379916", "A379917" ]
null
Hugo Pfoertner, Jan 06 2025
2025-03-31T22:58:21
oeisdata/seq/A379/A379917.seq
1368d8547ae5c560813f626e72ffb6bf
A379918
Numbers k that are the maximum of integers |k3|, |k5|, |k7| with |k3| + |k5| + |k7| > 0, and |k3*sqrt(3) + k5*sqrt(5) + k7*sqrt(7)| is smaller than for any smaller value of k.
[ "1", "2", "3", "23", "48", "71", "1766", "1837", "2387", "3103", "3152", "10963", "26353", "53533", "101626", "122825", "258586", "331933", "590519", "920650" ]
[ "nonn", "more" ]
8
1
2
[ "A379918", "A379919" ]
null
Hugo Pfoertner, Jan 10 2025
2025-01-12T07:57:01
oeisdata/seq/A379/A379918.seq
9fda633f022bd7bac61d17b0afe58a37
A379919
Numbers k that are the maximum of integers |k2|, |k3|, |k5| with |k2| + |k3| + |k5| > 0, and |k2*sqrt(2) + k3*sqrt(3) + k5*sqrt(5)| is smaller than for any smaller value of k.
[ "1", "2", "4", "5", "10", "27", "94", "151", "245", "296", "349", "396", "435", "1835", "10235", "18708", "31637", "53519", "160958", "535529", "643427" ]
[ "nonn", "more" ]
19
1
2
[ "A142238", "A379919" ]
null
Hugo Pfoertner, Jan 07 2025
2025-01-10T02:04:00
oeisdata/seq/A379/A379919.seq
ec8f35e556115c435c7a23707d5781e8
A379920
Number of irreducible conic curves containing 6 points of a cyclic order n-torsion subgroup of an elliptic curve.
[ "1", "2", "7", "13", "36", "67", "113", "196", "312", "455", "693", "984", "1353", "1869", "2508", "3261", "4284", "5478", "6898", "8684", "10780", "13174", "16146", "19516", "23381", "27976", "33201", "39041", "45936", "53601", "62187", "72048", "83028", "95109", "108927", "124068", "140749", "159467", "179998", "202321", "227304", "254380", "283844", "316360" ]
[ "nonn" ]
51
9
2
null
null
Xavier Roulleau, Jan 17 2025
2025-03-06T08:48:44
oeisdata/seq/A379/A379920.seq
639d2f3b5c8866599ae5aa6a2c20a4aa
A379921
Partial alternating sums of the sigma_2 function: a(n) = Sum_{k=1..n} (-1)^(k+1) * sigma_2(k).
[ "1", "-4", "6", "-15", "11", "-39", "11", "-74", "17", "-113", "9", "-201", "-31", "-281", "-21", "-362", "-72", "-527", "-165", "-711", "-211", "-821", "-291", "-1141", "-490", "-1340", "-520", "-1570", "-728", "-2028", "-1066", "-2431", "-1211", "-2661", "-1361", "-3272", "-1902", "-3712", "-2012", "-4222", "-2540", "-5040", "-3190", "-5752", "-3386" ]
[ "sign", "easy" ]
10
1
2
[ "A001157", "A002117", "A064602", "A068762", "A307704", "A379921" ]
null
Amiram Eldar, Jan 06 2025
2025-01-06T10:55:04
oeisdata/seq/A379/A379921.seq
62e11d6dc848e9892f6cb3df0e9f11a7
A379922
Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^(k+1) * sigma_2(k).
[ "1", "2", "3", "42", "329", "633", "1039", "5689", "26621", "39245", "1101875", "1216075", "40088584", "67244920", "104332211", "549673265", "777631064", "19879301756" ]
[ "nonn", "more" ]
8
1
2
[ "A001157", "A048290", "A050226", "A056550", "A064605", "A067929", "A067931", "A379921", "A379922", "A379923", "A379924" ]
null
Amiram Eldar, Jan 06 2025
2025-01-06T10:55:29
oeisdata/seq/A379/A379922.seq
7bf5bf34c9cfc7098a5191acbcc9c240
A379923
Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^k * A000005(k).
[ "1", "5", "18", "22", "25", "29", "197", "1350", "1360", "1362", "1368", "1381", "1391", "1395", "10200", "75486", "75490", "557768", "557843", "557853", "557898", "4121846", "4122064", "4122112", "4122222", "30457732", "30457773", "30457835", "30458040", "30458133", "30458138", "30458140", "30458335", "225056911", "225056919", "225056925", "225056989" ]
[ "nonn" ]
7
1
2
[ "A000005", "A048290", "A050226", "A056550", "A064605", "A067929", "A067931", "A307704", "A379922", "A379923", "A379924" ]
null
Amiram Eldar, Jan 06 2025
2025-01-06T10:55:16
oeisdata/seq/A379/A379923.seq
fce0e757d10c9edeb82eb66eeb7022f7
A379924
Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^(k+1) * usigma(k).
[ "1", "2", "9", "54", "101", "178", "189", "2071", "3070", "9171", "11450", "12794", "21405", "27553", "35285", "251974", "2069863", "2395894", "155931488", "387586437", "758519827", "1202435693", "9859113494", "42703260442" ]
[ "nonn", "more", "changed" ]
14
1
2
[ "A034448", "A048290", "A050226", "A056550", "A064605", "A067929", "A067931", "A370898", "A379922", "A379923", "A379924" ]
null
Amiram Eldar, Jan 06 2025
2025-04-26T05:31:27
oeisdata/seq/A379/A379924.seq
6fb56bee395cab4834d6a5c997bd1009
A379925
Numbers k for which nonnegative integers x and y exist such that x^2 + y^2 = k and x + y is a square.
[ "0", "1", "8", "10", "16", "41", "45", "53", "65", "81", "128", "130", "136", "146", "160", "178", "200", "226", "256", "313", "317", "325", "337", "353", "373", "397", "425", "457", "493", "533", "577", "625", "648", "650", "656", "666", "680", "698", "720", "746", "776", "810", "848", "890", "936", "986", "1040", "1098", "1160", "1201", "1205", "1213", "1225", "1226" ]
[ "easy", "nonn" ]
13
1
3
[ "A000161", "A000290", "A001481", "A004018", "A025284", "A025320", "A091072", "A118882", "A125022", "A125110", "A379925", "A380072", "A380073", "A380074" ]
null
Felix Huber, Jan 25 2025
2025-02-10T15:15:18
oeisdata/seq/A379/A379925.seq
728a0f0d32254e44884357358ec751f5
A379926
Numbers with a record number of proper factorizations for which the sum of the squares of the factors is a square.
[ "1", "12", "48", "108", "240", "864", "1152", "6912", "23040", "34560", "43200", "55296", "57600", "103680", "138240", "241920", "311040", "414720", "552960", "645120", "691200", "829440", "907200", "967680", "1209600", "1814400", "2177280", "2903040", "3628800", "4838400", "7257600", "8709120", "10886400", "14515200", "19353600" ]
[ "nonn" ]
19
1
2
[ "A033833", "A379926" ]
null
Charles L. Hohn, Jan 06 2025
2025-03-14T19:57:22
oeisdata/seq/A379/A379926.seq
fd7c9ad5bc28daaaf43cb2bafa9f5411
A379927
Replacing each term of this sequence S with its digitsum produces a new sequence S' such that S and S' share the same succession of nonzero digits.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "19", "18", "28", "17", "11", "26", "37", "16", "29", "20", "15", "12", "25", "46", "24", "101", "27", "110", "55", "14", "39", "200", "23", "13", "33", "299", "22", "38", "389", "34", "47", "32", "41", "59", "21", "36", "398", "479", "30", "49", "102", "111", "488", "45", "54", "497", "569", "120", "35", "201", "44", "63", "210", "31" ]
[ "nonn", "base" ]
7
1
2
[ "A004719", "A302656", "A379927" ]
null
Rémy Sigrist, Jan 06 2025
2025-01-09T08:48:18
oeisdata/seq/A379/A379927.seq
828b31d7bb97ce33dd1246eedabeff36
A379928
Numbers m such that A379742(m) is a multiple of A027423(m).
[ "0", "1", "2", "10", "17", "26", "30", "36", "43", "57", "58", "67", "73", "74", "82", "99", "103", "105", "114", "125", "129", "138", "147", "161", "165", "173", "186", "194", "201", "237", "239", "261", "269", "275", "291", "299", "314", "315", "317", "345", "347", "375", "377", "381", "383", "387", "402", "411", "413", "437", "447", "458", "467", "485", "495", "506", "513", "515", "519" ]
[ "nonn" ]
23
1
3
[ "A000142", "A000178", "A027423", "A379742", "A379928" ]
null
Michel Marcus, Jan 06 2025
2025-01-16T02:39:06
oeisdata/seq/A379/A379928.seq
e4b31e4ddd955f972478e5b50b8395ff
A379929
Numbers that have the same number of prime factors, counted with multiplicity, as there are runs in their base-10 representation.
[ "2", "3", "5", "7", "10", "11", "14", "15", "21", "25", "26", "34", "35", "38", "39", "46", "49", "51", "57", "58", "62", "65", "69", "74", "82", "85", "86", "87", "91", "93", "94", "95", "102", "105", "115", "118", "119", "122", "124", "125", "130", "133", "138", "147", "148", "153", "154", "155", "164", "165", "166", "170", "171", "172", "174", "175", "177", "182", "186", "190", "195", "207", "212", "221", "226", "230", "231" ]
[ "nonn", "base" ]
15
1
1
[ "A001222", "A043562", "A379929", "A379930", "A379931" ]
null
Robert Israel, Jan 06 2025
2025-01-09T19:17:22
oeisdata/seq/A379/A379929.seq
c25bde1d4bc1be6e49a938b57f6bbb35
A379930
Numbers that have the same number of divisors as there are runs in their base-10 representation.
[ "1", "13", "17", "19", "23", "29", "31", "37", "41", "43", "47", "53", "59", "61", "67", "71", "73", "79", "83", "89", "97", "113", "121", "169", "199", "211", "223", "227", "229", "233", "277", "289", "311", "331", "337", "361", "433", "443", "449", "499", "529", "557", "577", "599", "661", "677", "733", "773", "811", "841", "877", "881", "883", "887", "911", "961", "977", "991", "997", "1018", "1027", "1037", "1041" ]
[ "nonn", "base" ]
11
1
2
[ "A000005", "A043562", "A379929", "A379930", "A379931" ]
null
Robert Israel, Jan 06 2025
2025-01-09T19:17:32
oeisdata/seq/A379/A379930.seq
5fc34cb187eb920dbd658edde80e5847
A379931
Numbers whose maximum exponent in their prime factorization is the number of runs in their base-10 representation.
[ "2", "3", "5", "6", "7", "11", "12", "18", "20", "22", "25", "28", "33", "36", "45", "49", "50", "52", "55", "60", "63", "66", "68", "75", "76", "77", "84", "90", "92", "98", "100", "104", "108", "111", "116", "117", "120", "125", "135", "136", "152", "168", "184", "188", "189", "216", "220", "222", "225", "228", "232", "244", "248", "250", "264", "270", "280", "296", "297", "300", "312", "328", "332", "338", "343", "351" ]
[ "nonn", "base" ]
13
1
1
[ "A043562", "A051903", "A379929", "A379930", "A379931" ]
null
Robert Israel, Jan 06 2025
2025-01-09T19:17:42
oeisdata/seq/A379/A379931.seq
abf9def395833a5f119f26213c7a0b73
A379932
E.g.f. A(x) satisfies A(x) = ( exp(-x) + x*A(x) )^2.
[ "1", "0", "2", "10", "88", "978", "13468", "221338", "4233584", "92458018", "2271283684", "62012911530", "1863436238728", "61124896911154", "2173660174175228", "83304031307483962", "3423089366607304672", "150143469737701318722", "7001969736087834197716", "345972733119776006045386" ]
[ "nonn" ]
9
0
3
[ "A130102", "A379866", "A379879", "A379932", "A379937" ]
null
Seiichi Manyama, Jan 06 2025
2025-01-07T06:55:58
oeisdata/seq/A379/A379932.seq
6c2cbf3f0fb6054ad28a2d507299fccd
A379933
Expansion of e.g.f. 1/( exp(-x) - x )^2.
[ "1", "4", "22", "158", "1408", "15002", "186100", "2634998", "41937136", "741170834", "14402727484", "305225470046", "7005711916840", "173134991854970", "4583675648417044", "129424786945875398", "3882446011526729440", "123304773913531035170", "4133369745467043807340", "145840627118145774415214" ]
[ "nonn" ]
21
0
2
[ "A072597", "A358738", "A377529", "A379933", "A379934", "A379936", "A379942", "A379943" ]
null
Seiichi Manyama, Jan 06 2025
2025-01-08T02:42:58
oeisdata/seq/A379/A379933.seq
11ef0001e61365235ce8c4fb24a97cda
A379934
E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)) - x )^2.
[ "1", "4", "38", "626", "15008", "476122", "18864124", "898099526", "49988162672", "3187006372466", "229091274174404", "18335328399262030", "1617287276785929928", "155893591123924724618", "16304903025947743812476", "1839154613521698544945238", "222562344165125395485931232", "28763041177430039602579211746" ]
[ "nonn" ]
11
0
2
[ "A379864", "A379884", "A379933", "A379934", "A379936" ]
null
Seiichi Manyama, Jan 06 2025
2025-01-07T06:54:55
oeisdata/seq/A379/A379934.seq
7d29b01fe869b9790905b01a91f5c69f
A379935
E.g.f. A(x) satisfies A(x) = 1/( exp(-x) - x*A(x) )^2.
[ "1", "4", "38", "674", "17744", "623362", "27480844", "1460031610", "90862627184", "6485745312098", "522469881832964", "46895105170999978", "4641403797239576392", "502226056825606487506", "58985555898802967473820", "7473459685930447455067418", "1016083115772085962460442336", "147559760656716707828287356610" ]
[ "nonn" ]
9
0
2
[ "A379864", "A379886", "A379933", "A379935" ]
null
Seiichi Manyama, Jan 06 2025
2025-01-07T06:57:09
oeisdata/seq/A379/A379935.seq
c523bc230331337fa3394511d63f8515
A379936
E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)^(1/2)) - x )^2.
[ "1", "4", "30", "344", "5400", "108492", "2667952", "77811120", "2629399680", "101122817300", "4363964377344", "208925612290056", "10992411683169280", "630611992509716700", "39182624685283891200", "2621745777377998537568", "187969244952968687812608", "14377545994804829244970020" ]
[ "nonn" ]
11
0
2
[ "A088690", "A379933", "A379934", "A379936" ]
null
Seiichi Manyama, Jan 06 2025
2025-01-07T07:20:21
oeisdata/seq/A379/A379936.seq
9ee3d4463c78071fee88bc45f03ffe1c
A379937
E.g.f. A(x) satisfies A(x) = ( exp(-x*A(x)^(1/2)) + x*A(x) )^2.
[ "1", "0", "2", "4", "48", "328", "4240", "52092", "842240", "14598352", "294741504", "6501719860", "159434125312", "4248764847000", "123112522876928", "3840463241458732", "128576024097914880", "4594095412384753312", "174592522399006720000", "7030376888543624506212", "299062278252922180468736" ]
[ "nonn" ]
11
0
3
[ "A377859", "A379866", "A379932", "A379937" ]
null
Seiichi Manyama, Jan 06 2025
2025-01-07T07:00:28
oeisdata/seq/A379/A379937.seq
24092c2f8b6f1b5f107423aceec26cd1
A379938
Numbers k such that the k-th prime is a power of two reversed.
[ "1", "9", "18", "142", "575", "23652", "3633466", "10846595429", "802467018101", "2289255503212477" ]
[ "base", "nonn", "more" ]
14
1
2
[ "A000040", "A000079", "A004087", "A004094", "A057708", "A102385", "A379938" ]
null
Kalle Siukola, Jan 06 2025
2025-01-07T09:52:04
oeisdata/seq/A379/A379938.seq
729d9a74b89f14f9db983803587cce2e
A379939
E.g.f. A(x) satisfies A(x) = ( exp(-x*A(x)^(2/3)) + x*A(x) )^3.
[ "1", "0", "3", "6", "117", "852", "16335", "231354", "5169801", "109149768", "2929053339", "81073827150", "2593779841917", "87970941597276", "3298932148606887", "131818125152516418", "5692856683050644625", "261303806858004143376", "12794600152539073620531", "662722202747157809616918" ]
[ "nonn" ]
7
0
3
[ "A379877", "A379937", "A379939" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-07T08:44:48
oeisdata/seq/A379/A379939.seq
a4245769d4a00a204d1da61141aef026
A379940
E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)^(2/3)) - x*A(x)^(1/3) )^3.
[ "1", "6", "81", "1788", "55785", "2267298", "114015825", "6848257272", "478929874257", "38253577287870", "3437561332041969", "343381977748134900", "37755068758105209849", "4531920849132497127258", "589779214651388664049905", "82722149483353129407482352", "12440903535778778244423710625", "1997259670949248788135594940278" ]
[ "nonn" ]
9
0
2
[ "A377892", "A379936", "A379940" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-07T08:21:32
oeisdata/seq/A379/A379940.seq
033c00707d4a11b6054a856e1df51b9b
A379941
Lexicographically earliest infinite sequence of integers such that no two subsequences have the same final value at the bottom of their difference triangle.
[ "1", "2", "1", "3", "17", "1", "7", "1", "11", "1", "8", "1", "9", "4", "17", "8", "19", "1", "22", "5", "24", "16", "5", "40", "1", "27", "3", "26", "1", "31", "5", "32", "13", "58", "5", "37", "2", "36", "4", "44", "1", "42", "1", "39", "2", "45", "12", "45", "192", "11", "55", "10", "61", "2", "56", "2", "59", "7", "57", "10", "68", "3", "59", "178", "75", "60", "194", "5", "72", "11", "82", "2", "72" ]
[ "nonn" ]
10
1
2
[ "A327460", "A327743", "A379941" ]
null
Neal Gersh Tolunsky, Jan 07 2025
2025-01-07T08:48:09
oeisdata/seq/A379/A379941.seq
525f62ad87687acb3c68f44ea3a43e7c
A379942
Expansion of e.g.f. 1/( exp(-x) - x )^3.
[ "1", "6", "45", "411", "4449", "55803", "796581", "12757503", "226588257", "4420898595", "94001021589", "2163619250895", "53598352999905", "1421924243354787", "40221778417553637", "1208471542554184767", "38434396264371831873", "1289995362325669726659", "45567027291743788320405" ]
[ "nonn" ]
14
0
2
[ "A072597", "A377530", "A379933", "A379942", "A379943" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-07T08:44:59
oeisdata/seq/A379/A379942.seq
e6f694df5fd40a7a8c3c5f231ae7055d
A379943
Expansion of e.g.f. 1/( exp(-x) - x )^4.
[ "1", "8", "76", "844", "10776", "155844", "2520856", "45125924", "886037216", "18938440324", "437820992136", "10886467502244", "289738784758096", "8218731027307844", "247539834718198136", "7889896358130120484", "265325716114102815936", "9388476560982511842564", "348703400008471862936296" ]
[ "nonn" ]
10
0
2
[ "A072597", "A379933", "A379942", "A379943" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-07T08:45:18
oeisdata/seq/A379/A379943.seq
9ff87b3498c0f1edf8c47e8eb7ba8d21
A379944
Smallest number of leading digits of n! that form a prime (or 0 if none exist).
[ "0", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "2", "0", "0", "2", "1", "1", "0", "7", "1", "1", "2", "1", "0", "5", "0", "0", "1", "8", "1", "0", "1", "6", "1", "3", "1", "2", "1", "1", "0", "1", "8", "38", "1", "2", "1", "1", "5", "34", "1", "5", "6", "0", "1", "0", "1", "6", "1", "2", "2", "1", "1", "2", "8", "9", "1", "1", "1", "2", "2", "0", "2", "5", "1", "1", "0", "4", "2", "2", "1", "1", "2", "1", "1", "1", "1" ]
[ "nonn", "base" ]
30
0
13
[ "A000040", "A000142", "A046277", "A379944" ]
null
Carson R. Smith, Jan 07 2025
2025-01-17T03:38:36
oeisdata/seq/A379/A379944.seq
383d0233598bb587d348ea6aaa0023e2
A379945
Irregular triangle read by rows: T(n, k) is the numerator of the harmonic mean of all positive divisors of n except the k-th of them.
[ "2", "1", "3", "1", "8", "8", "4", "5", "1", "3", "2", "9", "18", "7", "1", "24", "24", "24", "12", "9", "9", "3", "15", "30", "15", "30", "11", "1", "15", "30", "5", "12", "30", "20", "13", "1", "21", "42", "21", "42", "5", "45", "15", "45", "64", "64", "64", "64", "32", "17", "1", "30", "3", "30", "5", "90", "45", "19", "1", "50", "25", "100", "50", "5", "100", "63", "63", "63", "63", "33", "66", "33", "66", "23", "1" ]
[ "nonn", "frac", "tabf" ]
14
2
1
[ "A000005", "A000203", "A001599", "A027750", "A099377", "A379945", "A379946" ]
null
Stefano Spezia, Jan 07 2025
2025-01-09T19:18:50
oeisdata/seq/A379/A379945.seq
cc274ce609e809e265550e22b6ff3266
A379946
Irregular triangle read by rows: T(n, k) is the denominator of the harmonic mean of all positive divisors of n except the k-th of them.
[ "1", "1", "1", "1", "3", "5", "3", "1", "1", "1", "1", "5", "11", "1", "1", "7", "11", "13", "7", "2", "5", "2", "4", "13", "8", "17", "1", "1", "4", "11", "2", "5", "13", "9", "1", "1", "5", "17", "11", "23", "1", "19", "7", "23", "15", "23", "27", "29", "15", "1", "1", "7", "1", "11", "2", "37", "19", "1", "1", "11", "8", "37", "19", "2", "41", "11", "25", "29", "31", "7", "25", "17", "35", "1", "1", "3", "2", "13", "9", "1", "19", "29", "59" ]
[ "nonn", "frac", "tabf" ]
13
2
5
[ "A000005", "A000203", "A001599", "A027750", "A099378", "A379945", "A379946" ]
null
Stefano Spezia, Jan 07 2025
2025-01-09T19:18:59
oeisdata/seq/A379/A379946.seq
a45874be1db3d8c0fec52896968e95f4
A379947
Positive integers k such that k*(tau(k) - 1)/(sigma(k) - k/d) is not an integer for all the divisors d of k.
[ "4", "8", "9", "10", "12", "14", "16", "20", "21", "22", "25", "26", "27", "32", "33", "34", "35", "36", "38", "39", "42", "44", "46", "49", "50", "51", "52", "54", "55", "56", "57", "58", "62", "63", "64", "65", "66", "68", "69", "70", "72", "74", "75", "76", "77", "78", "80", "81", "82", "84", "85", "86", "87", "88", "90", "92", "93", "94", "95", "96", "98", "99", "100", "102", "104", "105", "106", "108", "110" ]
[ "nonn", "easy" ]
13
1
1
[ "A000005", "A000203", "A001599", "A027750", "A379945", "A379946", "A379947", "A379948" ]
null
Stefano Spezia, Jan 07 2025
2025-01-09T19:19:30
oeisdata/seq/A379/A379947.seq
9c07278b38d86f7653d3ff85d6fd7cd0
A379948
Positive integers k such that k*(tau(k) - 1)/(sigma(k) - k/d) is an integer for at least one divisor d of k.
[ "2", "3", "5", "6", "7", "11", "13", "15", "17", "18", "19", "23", "24", "28", "29", "30", "31", "37", "40", "41", "43", "45", "47", "48", "53", "59", "60", "61", "67", "71", "73", "79", "83", "89", "91", "97", "101", "103", "107", "109", "113", "117", "120", "127", "131", "135", "137", "139", "140", "149", "151", "157", "163", "167", "173", "179", "180", "181", "191", "193", "196", "197", "199", "200" ]
[ "nonn", "easy" ]
14
1
1
[ "A000005", "A000203", "A001599", "A027750", "A379945", "A379946", "A379947", "A379948" ]
null
Stefano Spezia, Jan 07 2025
2025-01-09T19:20:54
oeisdata/seq/A379/A379948.seq
73b7c50853582e0933826bb38827c33a
A379949
Primitive abundant numbers (A091191) that are odd squares.
[ "342225", "1029447225", "1757705625", "2177622225", "14787776025", "18114198921", "32871503025", "45018230625", "150897287025", "245485566225", "296006724225", "705373218225", "1126920249225", "1329226832241", "1358425215225", "1545732725625", "1555265892609", "1783322538921", "2811755495241", "4627123655625", "5248080775161", "6140855705625", "7683069267225" ]
[ "nonn" ]
35
1
1
[ "A006038", "A016754", "A091191", "A103977", "A156942", "A306796", "A363176", "A379503", "A379504", "A379949", "A379950" ]
null
Antti Karttunen, Jan 07 2025
2025-03-12T04:44:37
oeisdata/seq/A379/A379949.seq
371ccf8496fff22463a824da21e811a4
A379950
Numbers k such that k^2 is an odd primitive abundant number (A006038).
[ "585", "32085", "41925", "46665", "121605", "134589", "181305", "212175", "388455", "495465", "544065", "839865", "1061565", "1152921", "1165515", "1243275", "1247103", "1335411", "1676829", "2151075", "2290869", "2478075", "2771835", "2838165", "3016725", "3122847", "3156795", "4571415", "4738041", "5153841", "5558985", "6125049", "7471425", "7676775", "7780101", "7822425", "8259867" ]
[ "nonn" ]
14
1
1
[ "A000196", "A006038", "A174830", "A379949", "A379950" ]
null
Antti Karttunen, Jan 07 2025
2025-03-12T04:44:30
oeisdata/seq/A379/A379950.seq
e1d5a53b5d525ce6d3d5b59ae282062f
A379951
a(n) = A379504(A156942(n)).
[ "816", "28471698", "714837", "8719965", "5969", "4385405", "830994029375", "241550466668344580" ]
[ "nonn", "more" ]
6
1
1
[ "A156942", "A379504", "A379951" ]
null
Antti Karttunen, Jan 09 2025
2025-01-09T08:00:59
oeisdata/seq/A379/A379951.seq
8b1921d9d70d58d5134737297c8b4bcf
A379952
a(n) = 1 if n is an odd number or a perfect square, otherwise 0.
[ "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1" ]
[ "nonn", "easy" ]
11
0
null
[ "A128201", "A323158", "A379952" ]
null
Antti Karttunen, Jan 15 2025
2025-01-15T22:46:34
oeisdata/seq/A379/A379952.seq
55647e60108d0dfe1ad3b7c6719000ed
A379953
Largest k >= 0 such that (n*k)^3/(n^3+k^3) is an integer.
[ "0", "2", "6", "4", "0", "12", "0", "8", "18", "10", "0", "24", "0", "42", "30", "16", "0", "36", "0", "20", "42", "22", "0", "48", "0", "26", "54", "84", "0", "60", "0", "32", "66", "34", "0", "72", "0", "38", "78", "40", "0", "210", "0", "44", "90", "46", "0", "96", "0", "50", "102", "52", "0", "108", "0", "168", "456", "58", "0", "120", "0", "62", "126", "64", "260", "132", "0", "68", "138", "1330", "0", "144", "0", "74", "150", "76", "0", "1794", "0", "80", "162", "82", "0", "420" ]
[ "nonn" ]
24
1
2
[ "A119612", "A379953", "A379954" ]
null
Antti Karttunen, Jan 16 2025
2025-01-19T17:50:43
oeisdata/seq/A379/A379953.seq
bcf97a68ede10d258fca57bf1ab33d19
A379954
Smallest positive k such that (n*k)^3/(n^3+k^3) is an integer, or 0 if no such k exists.
[ "0", "2", "6", "4", "0", "3", "0", "8", "18", "10", "0", "6", "0", "14", "30", "16", "0", "9", "0", "20", "42", "22", "0", "12", "0", "26", "54", "28", "0", "15", "0", "32", "66", "34", "0", "18", "0", "38", "78", "40", "0", "14", "0", "44", "90", "46", "0", "24", "0", "50", "102", "52", "0", "27", "0", "56", "114", "58", "0", "30", "0", "62", "126", "64", "260", "33", "0", "68", "138", "70", "0", "36", "0", "74", "150", "76", "0", "39", "0", "80", "162", "82", "0", "28", "0", "86" ]
[ "nonn" ]
16
1
2
[ "A119612", "A379953", "A379954" ]
null
Antti Karttunen, Jan 16 2025
2025-01-19T16:16:52
oeisdata/seq/A379/A379954.seq
19b9a2324fd2bceb97281dfecdcfcdaf
A379955
a(n) = 1 if n = floor(prime(i)/2) * prime(i)^e, for some e, i > 0, otherwise 0, where prime(i) = A000040(i).
[ "0", "1", "1", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
6
1
null
[ "A000040", "A130290", "A217983", "A379955", "A379956" ]
null
Antti Karttunen, Jan 16 2025
2025-01-16T21:10:03
oeisdata/seq/A379/A379955.seq
899345580a4062d78c90063f6cdb64c0
A379956
Numbers k that can be expressed in the form k = floor(prime(i)/2) * prime(i)^e, for some e, i > 0, where prime(i) = A000040(i).
[ "2", "3", "4", "8", "9", "10", "16", "21", "27", "32", "50", "55", "64", "78", "81", "128", "136", "147", "171", "243", "250", "253", "256", "406", "465", "512", "605", "666", "729", "820", "903", "1014", "1024", "1029", "1081", "1250", "1378", "1711", "1830", "2048", "2187", "2211", "2312", "2485", "2628", "3081", "3249", "3403", "3916", "4096", "4656", "5050", "5253", "5671", "5819", "5886", "6250", "6328", "6561", "6655", "7203", "8001" ]
[ "nonn" ]
10
1
1
[ "A000040", "A000079", "A000244", "A130290", "A217983", "A379955", "A379956" ]
null
Antti Karttunen, Jan 16 2025
2025-01-17T02:41:28
oeisdata/seq/A379/A379956.seq
b42545d445a389c86cdf4061c1886df5
A379957
Number of partitions of n where the smallest part is a divisor d > 1 of n, and the other parts are positive powers of that divisor.
[ "0", "1", "1", "2", "1", "4", "1", "4", "2", "6", "1", "9", "1", "8", "4", "9", "1", "15", "1", "15", "5", "16", "1", "23", "2", "22", "5", "25", "1", "37", "1", "31", "7", "38", "4", "49", "1", "48", "9", "55", "1", "73", "1", "66", "12", "76", "1", "93", "2", "99", "11", "101", "1", "129", "5", "124", "14", "142", "1", "167", "1", "168", "17", "174", "5", "223", "1", "211", "17", "247", "1", "269", "1", "286", "24", "293", "4", "355", "1", "347", "21", "392", "1", "432", "6", "452", "25" ]
[ "nonn" ]
20
1
4
[ "A072721", "A322900", "A322968", "A379957" ]
null
Antti Karttunen, Jan 22 2025
2025-01-23T17:43:50
oeisdata/seq/A379/A379957.seq
c96f106818597ade15e1e85463dd14c6
A379958
a(n) = 1 if n has more semiprime divisors than distinct prime factors, otherwise 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
11
1
null
[ "A001221", "A001222", "A086971", "A320632", "A322437", "A322438", "A379958" ]
null
Antti Karttunen, Jan 24 2025
2025-01-24T13:26:14
oeisdata/seq/A379/A379958.seq
230aab205f5c351b2f58d424d99b6d9e
A379959
a(n) = 1 if sigma(phi(n)) < n, otherwise 0.
[ "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
9
1
null
[ "A000010", "A000203", "A062402", "A230201", "A295302", "A379959" ]
null
Antti Karttunen, Jan 24 2025
2025-01-24T18:29:40
oeisdata/seq/A379/A379959.seq
be5c4065c4ec920d57de01a5cd44b018
A379960
Numbers k such that A276086(k)-1 or A276086(k)+1 is a perfect power (A001597), where A276086 is the primorial base exp-function.
[ "1", "2", "4", "6", "7", "8", "13", "30", "34", "35", "36", "212", "214", "248", "254", "421", "2311", "2316", "2318", "2322", "2329", "2350", "2520", "2550", "2564", "2776", "4654", "5076", "9241", "30030", "30037", "30038", "30092", "30120", "30480", "32341", "32347", "32374", "34662", "60066", "510515", "510542", "510547", "510728", "510746", "512850", "512886", "515134", "540540", "540818", "542862", "542888", "1021442" ]
[ "nonn" ]
17
1
2
[ "A001597", "A002110", "A276086", "A379960", "A379961", "A379962", "A379963" ]
null
Antti Karttunen, Jan 22 2025
2025-01-24T11:59:21
oeisdata/seq/A379/A379960.seq
955bf01b2ecdbabea599bac0e0df244a
A379961
Numbers k such that A276086(k)-1 is a perfect power (A001597), where A276086 is the primorial base exp-function.
[ "1", "4", "6", "7", "13", "35", "212", "2311", "2316", "2322", "2329", "2550", "9241", "30030", "30037", "32341", "32347", "34662", "60066", "512850", "1023367", "223092876", "223092877", "223095199", "223097490", "223097491", "223122913", "446185741", "6469693260", "6479392984" ]
[ "nonn", "more" ]
9
1
2
[ "A001597", "A276086", "A379960", "A379961", "A379962" ]
null
Antti Karttunen, Jan 24 2025
2025-01-24T11:59:25
oeisdata/seq/A379/A379961.seq
f9c5b8128a3c7f45383c7003e126365c
A379962
Numbers k such that A276086(k)+1 is a perfect power (A001597), where A276086 is the primorial base exp-function.
[ "2", "8", "30", "34", "36", "214", "248", "254", "421", "2311", "2318", "2350", "2520", "2564", "2776", "4654", "5076", "30038", "30092", "30120", "30480", "32374", "510515", "510542", "510547", "510728", "510746", "512886", "515134", "540540", "540818", "542862", "542888", "1021442", "9699702", "9699722", "9699772", "9699788", "9702010", "9702256", "9729938", "9734358", "10210414", "10217558", "10240472", "10240724" ]
[ "nonn" ]
10
1
1
[ "A001597", "A276086", "A379960", "A379961", "A379962", "A379963" ]
null
Antti Karttunen, Jan 24 2025
2025-01-24T11:59:31
oeisdata/seq/A379/A379962.seq
e1d8e967906c0cc1ff3f14a89fc8a67e
A379963
Numbers k such that A276086(k)+1 is a perfect square (A000290), where A276086 is the primorial base exp-function.
[ "2", "8", "34", "36", "214", "248", "254", "2318", "2350", "2520", "2564", "2776", "5076", "30038", "30092", "30480", "32374", "510542", "510728", "510746", "512886", "515134", "540540", "540818", "542862", "542888", "1021442", "9699702", "9699722", "9699772", "9699788", "9702010", "9702256", "9729938", "9734358", "10210414", "10217558", "10240472", "10240724", "19401924", "19429870", "19912238" ]
[ "nonn" ]
13
1
1
[ "A000290", "A002110", "A276086", "A328849", "A379962", "A379963", "A379965" ]
null
Antti Karttunen, Jan 24 2025
2025-01-24T11:59:10
oeisdata/seq/A379/A379963.seq
3237c60990c97931071629afdf066444
A379964
a(n) = 1 if (n^2)-1 is not divisible by p^p for any prime p, otherwise 0.
[ "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1" ]
[ "nonn" ]
8
1
null
[ "A048103", "A359550", "A379964", "A379965", "A379971" ]
null
Antti Karttunen, Jan 24 2025
2025-01-24T11:59:15
oeisdata/seq/A379/A379964.seq
4a20daa0d4a9b6e81fa3803ff5c83ae0
A379965
Numbers k such that (k^2)-1 is not divisible by p^p for any prime p.
[ "2", "4", "6", "8", "10", "12", "14", "16", "18", "20", "22", "24", "30", "32", "34", "36", "38", "40", "42", "44", "46", "48", "50", "52", "54", "56", "58", "60", "62", "64", "66", "68", "70", "72", "74", "76", "78", "84", "86", "88", "90", "92", "94", "96", "98", "100", "102", "104", "106", "108", "110", "112", "114", "116", "118", "120", "122", "124", "126", "128", "130", "132", "138", "140", "142", "144", "146", "148", "150", "152", "154", "156", "158", "160" ]
[ "nonn" ]
12
1
1
[ "A048103", "A067874", "A379963", "A379964", "A379965" ]
null
Antti Karttunen, Jan 24 2025
2025-01-25T02:16:38
oeisdata/seq/A379/A379965.seq
5db28649a7a99ab89bb9100662161c65
A379966
a(n) = 1 if n is an even squarefree number, otherwise 0.
[ "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0" ]
[ "nonn" ]
11
1
null
[ "A008966", "A039956", "A059841", "A185197", "A292273", "A323239", "A379966", "A379970" ]
null
Antti Karttunen, Jan 22 2025
2025-01-22T17:32:19
oeisdata/seq/A379/A379966.seq
95870b42bc1e958279df94b27d1c9ef5
A379967
Arithmetic derivative of {n divided by its largest squarefree divisor}: a(n) = A003415(A003557(n)).
[ "0", "0", "0", "1", "0", "0", "0", "4", "1", "0", "0", "1", "0", "0", "0", "12", "0", "1", "0", "1", "0", "0", "0", "4", "1", "0", "6", "1", "0", "0", "0", "32", "0", "0", "0", "5", "0", "0", "0", "4", "0", "0", "0", "1", "1", "0", "0", "12", "1", "1", "0", "1", "0", "6", "0", "4", "0", "0", "0", "1", "0", "0", "1", "80", "0", "0", "0", "1", "0", "0", "0", "16", "0", "0", "1", "1", "0", "0", "0", "12", "27", "0", "0", "1", "0", "0", "0", "4", "0", "1", "0", "1", "0", "0", "0", "32", "0", "1", "1", "7", "0", "0", "0", "4" ]
[ "nonn" ]
7
1
8
[ "A003415", "A003557", "A028235", "A341998", "A342001", "A379967" ]
null
Antti Karttunen, Jan 22 2025
2025-01-22T08:51:54
oeisdata/seq/A379/A379967.seq
29946108d94a8b7efd07a1ccea3f7f7b
A379968
Characteristic function of A279029, numbers k with the property that the smallest and the largest Dyck path of the symmetric representation of sigma(k) do not share line segments.
[ "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1" ]
[ "nonn" ]
18
1
null
[ "A174973", "A237593", "A262259", "A279029", "A279228", "A365429", "A379968" ]
null
Antti Karttunen, Jan 12 2025
2025-02-20T11:46:29
oeisdata/seq/A379/A379968.seq
4fa115c6aecd78bd46617c114e5b414a
A379969
Characteristic function of A239929, numbers k with the property that the symmetric representation of sigma(k) has two parts.
[ "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "1", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0" ]
[ "nonn" ]
13
1
null
[ "A237593", "A239929", "A365429", "A379969" ]
null
Antti Karttunen, Jan 12 2025
2025-01-15T22:42:36
oeisdata/seq/A379/A379969.seq
706ab4c574e3eb0ad0ee76791da0f71a
A379970
a(n) = 1 if n is twice its squarefree kernel (A007949), otherwise 0.
[ "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0" ]
[ "nonn" ]
12
1
null
[ "A007947", "A008966", "A081770", "A092742", "A280292", "A379966", "A379970" ]
null
Antti Karttunen, Jan 22 2025
2025-01-22T17:32:10
oeisdata/seq/A379/A379970.seq
8151461c6526dd84e81866498a5f380a
A379971
a(n) = 1 if n^2-1 is squarefree, otherwise 0.
[ "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
20
1
null
[ "A005117", "A008966", "A065474", "A067874", "A323239", "A379971" ]
null
Antti Karttunen, Jan 22 2025
2025-01-22T17:32:15
oeisdata/seq/A379/A379971.seq
994587ae51324c9318f9f12997520ad3
A379972
Numbers x with 2^(m-1)<x<=2^m which can unambiguously be constructed with given points 0,1 on the x-axis and m circles.
[ "1", "2", "3", "4", "5", "7", "8", "13", "15", "16", "25", "29", "31", "32", "57", "61", "63", "64", "113", "121", "125", "127", "128", "241", "249", "253", "255", "256", "481", "497", "505", "509", "511", "512", "993", "1009", "1017", "1021", "1023", "1024", "1985", "2017", "2033", "2041", "2045", "2047", "2048" ]
[ "nonn" ]
12
1
2
null
null
Gerhard Kirchner, Jan 08 2025
2025-01-15T08:49:09
oeisdata/seq/A379/A379972.seq
28cd1f02e4e1c265d044b7d7b9885f64
A379973
Least k >= 3 such that A373711(n) is both k-gonal and k-gonal pyramidal.
[ "3", "3", "3", "3", "10", "14", "6", "8", "3", "4", "8", "3", "30", "11", "88", "14", "43", "50", "276", "17", "322", "20", "23", "26", "41", "29", "145", "32", "823", "35", "2378", "38", "41", "44", "47", "50", "53", "56", "59", "374", "62", "65", "2386", "68", "71", "74" ]
[ "nonn", "more" ]
5
1
1
[ "A027669", "A057145", "A080851", "A373711", "A379973", "A379974", "A379975" ]
null
Pontus von Brömssen, Jan 08 2025
2025-01-11T03:59:50
oeisdata/seq/A379/A379973.seq
73d2b80bb41266387a9bd4228e14749e
A379974
A373711(n) is equal to the a(n)-th A379973(n)-gonal number.
[ "0", "1", "4", "15", "7", "9", "22", "19", "55", "70", "45", "119", "41", "73", "34", "181", "110", "115", "77", "361", "86", "631", "1009", "1513", "1683", "2161", "1191", "2971", "694", "3961", "604", "5149", "6553", "8191", "10081", "12241", "14689", "17443", "20521", "9000", "23941", "27721", "4970", "31879", "36433", "41401" ]
[ "nonn", "more" ]
6
1
3
[ "A057145", "A373711", "A379973", "A379974", "A379975" ]
null
Pontus von Brömssen, Jan 08 2025
2025-01-11T04:00:04
oeisdata/seq/A379/A379974.seq
e41d09d9a9e58d5dae5b47e64a52a585
A379975
A373711(n) is equal to the a(n)-th A379973(n)-gonal pyramidal number.
[ "0", "1", "3", "8", "5", "6", "11", "10", "20", "24", "18", "34", "17", "25", "15", "46", "33", "34", "26", "73", "28", "106", "145", "190", "204", "241", "162", "298", "113", "361", "103", "430", "505", "586", "673", "766", "865", "970", "1081", "624", "1198", "1321", "420", "1450", "1585", "1726" ]
[ "nonn", "more" ]
5
1
3
[ "A080851", "A373711", "A379973", "A379974", "A379975" ]
null
Pontus von Brömssen, Jan 08 2025
2025-01-11T04:00:13
oeisdata/seq/A379/A379975.seq
872b86a82598072c11f36ed56a4d6e09
A379976
Absolute value of the minimum coefficient of (1 - x^2) * (1 - x^3) * (1 - x^5) * ... * (1 - x^prime(n)).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "3", "3", "4", "6", "8", "12", "18", "30", "46", "70", "113", "186", "314", "531", "894", "1561", "2705", "4817", "8502", "15030", "26502", "47200", "84698", "151809", "273961", "496807", "900596", "1643185", "2999067", "5498916", "10110030", "18596096", "34300223", "63585519", "118208807", "219235308", "405259618", "752027569", "1400505025" ]
[ "nonn" ]
12
0
12
[ "A046675", "A086394", "A350457", "A350514", "A367843", "A379976" ]
null
Ilya Gutkovskiy, Jan 07 2025
2025-02-07T16:48:08
oeisdata/seq/A379/A379976.seq
f398305ae1e01f90940180c81c93dd5c
A379977
a(n) is the maximum coefficient of (1 + x)^a(1) * (1 + x^2)^a(2) * (1 + x^3)^a(3) * ... * (1 + x^(n-1))^a(n-1).
[ "1", "1", "1", "2", "4", "34", "188817401520" ]
[ "nonn" ]
6
1
4
[ "A004111", "A025591", "A026007", "A369712", "A379977" ]
null
Ilya Gutkovskiy, Jan 07 2025
2025-01-18T09:27:50
oeisdata/seq/A379/A379977.seq
f8a0a9a67ec9f0f36dbbe45ea51c6d2e
A379978
a(n) is the smallest positive integer which can be represented as the sum of its prime divisors in exactly n ways, or -1 if no such integer exists.
[ "1", "2", "6", "12", "18", "24", "50", "36", "98", "48", "54", "100", "242", "72", "338", "196", "225", "96", "578", "108", "722", "30", "441", "484", "1058", "144", "250", "676", "42", "392", "1682", "-1", "1922", "192", "1089", "1156", "1225", "216", "2738", "1444", "1521", "400", "66", "70", "3698", "968", "675", "2116", "4418", "78", "686", "500", "2601", "1352", "5618", "324", "3025", "784", "3249", "3364", "6962", "105", "7442", "102", "1323", "110", "4225" ]
[ "sign" ]
34
0
2
[ "A066882", "A096356", "A379978" ]
null
Ilya Gutkovskiy, Jan 07 2025
2025-01-10T20:47:21
oeisdata/seq/A379/A379978.seq
93a2a07ca48e003611752de4d5f0cdc6
A379979
Number of pairs (m,k), 1 <= m < k <= N such that there exists 1 <= x < y < k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2, N = A355812(n).
[ "1", "3", "5", "7", "8", "10", "12", "14", "16", "17", "19", "21", "23", "25", "27", "28", "30", "32", "34", "36", "38", "40", "42", "44", "45", "47", "49", "51", "53", "55", "57", "60", "62", "64", "65", "67", "69", "71", "75", "76", "78", "82", "84", "86", "89", "91", "93", "95", "97", "99", "101", "105", "108", "110", "112", "116", "118", "119", "121", "123", "129", "131", "133", "137", "139" ]
[ "nonn" ]
11
1
2
[ "A355812", "A355813", "A379895", "A379979" ]
null
Jianing Song, Jan 07 2025
2025-01-08T09:27:19
oeisdata/seq/A379/A379979.seq
0a4955701a382db79c7a2dd95ecfa654
A379980
Numbers that are divisible by the square of the sum of the squares of their digits.
[ "1", "10", "100", "1000", "1100", "1200", "1300", "2000", "2023", "2100", "2400", "3100", "4332", "5000", "10000", "10100", "10200", "10300", "11000", "12000", "13000", "20000", "20100", "20230", "20400", "21000", "24000", "30100", "30324", "31000", "31311", "42000", "43011", "43320", "50000", "52022", "52215", "55000", "71824", "100000" ]
[ "nonn", "base", "easy" ]
21
1
2
[ "A003132", "A005349", "A034087", "A072081", "A180490", "A379980", "A379981", "A379982" ]
null
Amiram Eldar, Jan 07 2025
2025-01-11T03:45:49
oeisdata/seq/A379/A379980.seq
95b5a90e880e5d0edb356c4646a1b8af
A379981
Non-Niven (or non-Harshad) numbers that are divisible by the square of the sum of the squares of their digits.
[ "52022", "71824", "110201", "120472", "131072", "188180", "202312", "244634", "298374", "320305", "327184", "340000", "430000", "502150", "506056", "519168", "520220", "652118", "667815", "680000", "680625", "718240", "765625", "860000", "933156", "1001021", "1001047", "1003313", "1010113", "1035125", "1050232", "1215200" ]
[ "nonn", "base" ]
16
1
1
[ "A005349", "A065877", "A379980", "A379981" ]
null
Amiram Eldar, Jan 07 2025
2025-01-11T03:46:23
oeisdata/seq/A379/A379981.seq
6a581c1674b8b9c7775ffd79393ba56c
A379982
Nonmultiples of 10 that are divisible by the square of the sum of the squares of their digits.
[ "1", "2023", "4332", "30324", "31311", "43011", "52022", "52215", "71824", "101376", "110201", "116964", "120213", "120472", "120612", "131072", "141312", "145152", "202312", "230202", "233928", "244634", "298374", "305252", "320305", "327184", "409374", "506056", "511104", "519168", "565152", "615627", "652118", "667815", "680625" ]
[ "nonn", "base" ]
12
1
2
[ "A067251", "A379980", "A379982" ]
null
Amiram Eldar, Jan 07 2025
2025-01-11T03:46:38
oeisdata/seq/A379/A379982.seq
4f7dbcbadcb4bc247ceb4c11894cd568
A379983
Numbers k such that there exists a number 1 <= m <= k-1 and at least two different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2.
[ "385", "425", "432", "450", "504", "585", "616", "630", "665", "693", "728", "770", "792", "800", "810", "850", "864", "900", "910", "935", "952", "1008", "1015", "1040", "1155", "1170", "1197", "1232", "1260", "1275", "1287", "1296", "1320", "1330", "1350", "1360", "1365", "1386", "1456", "1512", "1540", "1547", "1584", "1600", "1620", "1672", "1680" ]
[ "nonn" ]
20
1
1
[ "A355812", "A355813", "A379895", "A379983", "A380150" ]
null
Jianing Song, Jan 07 2025
2025-01-15T11:14:22
oeisdata/seq/A379/A379983.seq
27fc436130f0684c63d321c04f9fad3e
A379984
Numbers that are divisible by the square of the product of their digits.
[ "1", "11", "12", "111", "112", "1111", "1112", "1116", "2112", "11111", "11112", "11172", "11232", "11711", "12112", "21312", "32112", "111111", "111112", "111132", "111312", "112112", "113112", "114112", "122112", "131112", "218112", "311112", "1111111", "1111112", "1111113", "1111131", "1111311", "1111712", "1112112", "1113111" ]
[ "nonn", "base" ]
10
1
2
[ "A007602", "A379984" ]
null
Amiram Eldar, Jan 07 2025
2025-01-11T03:46:48
oeisdata/seq/A379/A379984.seq
36122f9c42caf57d5dc1eab089876eeb
A379985
Numbers k such that k^2 is of the form b^2 + (4*c)^2 where b*c is squarefree.
[ "5", "13", "17", "25", "29", "37", "61", "65", "85", "109", "137", "145", "149", "157", "169", "173", "193", "197", "205", "221", "229", "241", "265", "269", "293", "305", "325", "365", "377", "401", "409", "421", "433", "445", "485", "505", "533", "541", "557", "565", "569", "629", "673", "685", "689", "701", "709", "725", "761", "773", "797" ]
[ "nonn" ]
33
1
1
[ "A005117", "A009000", "A009003", "A057100", "A084645", "A379985" ]
null
Lei Zhou, Jan 07 2025
2025-02-03T13:51:02
oeisdata/seq/A379/A379985.seq
5c577df3f2ee2f62e6f0cd0f2db0144c
A379986
Numbers k such that (20^k + 3^k)/23 is prime.
[ "3", "19", "271", "577", "977", "1871", "8647", "9479", "34759", "44959", "63149" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A057187", "A057188", "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A228922", "A229542", "A375161", "A375236", "A377031", "A377856", "A379986" ]
null
Robert Price, Jan 07 2025
2025-02-16T08:34:07
oeisdata/seq/A379/A379986.seq
5ec2b6e6081f922a680bf573494ed009
A379987
Numbers k such that (35^k + 2^k)/37 is prime.
[ "5", "1217", "2029", "5171", "5651", "23633", "41179", "71069" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A057187", "A057188", "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A228922", "A229542", "A375161", "A375236", "A377031", "A377856", "A379987" ]
null
Robert Price, Jan 07 2025
2025-02-16T08:34:07
oeisdata/seq/A379/A379987.seq
c15923a46ef331d5b3bd99b11fbc57af
A379988
Numbers k such that (27^k + 2^k)/29 is prime.
[ "11", "2297", "2707", "3187" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A057187", "A057188", "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A228922", "A229542", "A375161", "A375236", "A377031", "A377856", "A379988" ]
null
Robert Price, Jan 07 2025
2025-02-16T08:34:07
oeisdata/seq/A379/A379988.seq
89f6e8893612e2978f236b012b73228b
A379989
Prime numbers on the x-axis of the Cartesian grid defined in A379643.
[ "2", "3", "588065761", "588065801", "588067729", "588067793", "588067811", "588067849", "588067981", "588068773", "588068783", "588069121", "588069149", "588069173", "588069179", "588069203", "588069211", "588069259", "588069353", "588069367", "588069401", "588069403", "588069413", "588069431", "588069479" ]
[ "nonn" ]
4
1
1
[ "A297447", "A297448", "A379643", "A379731", "A379989" ]
null
Ya-Ping Lu, Jan 07 2025
2025-01-18T09:29:39
oeisdata/seq/A379/A379989.seq
e537816d0a7612c74a477ab7dcf3009b
A379990
Expansion of e.g.f. exp(-2*x)/(exp(-x) - x)^3.
[ "1", "4", "25", "205", "2065", "24601", "337837", "5249581", "91006657", "1740663937", "36402220141", "826159146253", "20220201899377", "530828186303377", "14878044338021677", "443397290411503021", "14000282854007503105", "466866129420834410881", "16395362179348570608205", "604794784980600986425645" ]
[ "nonn", "easy" ]
10
0
2
[ "A092148", "A377529", "A377530", "A379942", "A379990", "A379991" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-08T19:37:32
oeisdata/seq/A379/A379990.seq
b9b31cdbfe39faa814403c97ed66f81b
A379991
Expansion of e.g.f. exp(-x)/(exp(-x) - x)^3.
[ "1", "5", "34", "293", "3052", "37247", "520918", "8211065", "143997160", "2780465147", "58611713434", "1339236707525", "32969142927580", "869913580853735", "24490615055384062", "732751463209179953", "23217990692393685712", "776689510407852177011", "27353286267329098887202" ]
[ "nonn", "easy" ]
7
0
2
[ "A377530", "A379942", "A379990", "A379991" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-08T05:46:33
oeisdata/seq/A379/A379991.seq
67825ab5df35a7f5642a897fc3cc3c23
A379992
Expansion of e.g.f. exp(-3*x)/(exp(-x) - x)^2.
[ "1", "1", "7", "41", "349", "3539", "42451", "585605", "9130297", "158692679", "3041499871", "63712004729", "1447946191957", "35479218963083", "932326476195115", "26153289728300909", "779995883104560241", "24644267406802467215", "822278654588440803511", "28891372907012629446881" ]
[ "nonn", "easy" ]
10
0
3
[ "A358738", "A368266", "A377529", "A377530", "A379933", "A379992", "A379994", "A379997" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-08T05:46:36
oeisdata/seq/A379/A379992.seq
efbee3ef6df448a9ffba1ebe29e2860a
A379993
Expansion of e.g.f. 1/(1 - x * exp(x))^4.
[ "1", "4", "28", "252", "2776", "35940", "533304", "8908228", "165247072", "3368072196", "74782987240", "1796037420804", "46379441090448", "1281203788073092", "37694510810334616", "1176606639075726660", "38833052393329645504", "1351066066253778043908", "49417629820950190273992" ]
[ "nonn", "easy" ]
14
0
2
[ "A006153", "A377529", "A377530", "A379943", "A379993", "A379994", "A379995", "A379996" ]
null
Seiichi Manyama, Jan 07 2025
2025-02-05T22:04:21
oeisdata/seq/A379/A379993.seq
947cc1ac9b5516f2e4ad0ccc6dc11491
A379994
Expansion of e.g.f. exp(-3*x)/(exp(-x) - x)^4.
[ "1", "5", "37", "349", "3969", "52641", "796069", "13502693", "253667297", "5225690017", "117090480021", "2834363683317", "73697918467105", "2048252470006913", "60587779740857573", "1900347489736371301", "62992469337321611073", "2200238756416513719489", "80765631192992760237205" ]
[ "nonn", "easy" ]
11
0
2
[ "A379943", "A379993", "A379994", "A379995", "A379996" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-08T05:47:18
oeisdata/seq/A379/A379994.seq
84543f7ebd5cd61ce035727c6027a04d
A379995
Expansion of e.g.f. exp(-2*x)/(exp(-x) - x)^4.
[ "1", "6", "48", "476", "5608", "76372", "1179016", "20332580", "387225120", "8068825988", "182564048824", "4456476380644", "116724944900272", "3264981100202564", "97130013288324552", "3062011655207131748", "101963095705628194624", "3576126056313566090500", "131762871920106615643480" ]
[ "nonn", "easy" ]
14
0
2
[ "A358738", "A379943", "A379993", "A379994", "A379995", "A379996" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-08T12:20:43
oeisdata/seq/A379/A379995.seq
ca32f0635bac96498303020e62e0323c
A379996
Expansion of e.g.f. exp(-x)/(exp(-x) - x)^4.
[ "1", "7", "61", "639", "7825", "109683", "1731645", "30403495", "587595649", "12395233539", "283385424829", "6979650164391", "184235963026833", "5188528445210035", "155284012799863453", "4921569063327156807", "164672737994453759617", "5800532536265417597571", "214559605389429001486557" ]
[ "nonn", "easy" ]
7
0
2
[ "A379943", "A379993", "A379994", "A379995", "A379996" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-08T05:47:33
oeisdata/seq/A379/A379996.seq
761266fb80789e11a222769c286fb673
A379997
Expansion of e.g.f. 1/(exp(x) - x*exp(2*x))^2.
[ "1", "0", "6", "22", "224", "2138", "25732", "351846", "5458224", "94441042", "1803255404", "37652268014", "853321021192", "20858236815258", "546941712302052", "15313467390967222", "455933682027961184", "14383416438784605602", "479254037890010238172", "16817855455956128823486", "619953003446894086537656" ]
[ "nonn", "easy" ]
9
0
3
[ "A092148", "A358738", "A377529", "A379933", "A379992", "A379997" ]
null
Seiichi Manyama, Jan 07 2025
2025-01-08T05:47:38
oeisdata/seq/A379/A379997.seq
9c53db64cd7d94eafe45aafadfd85c88
A379998
Irregular triangle read by rows: T(n,k) is number of sequences of length k over {0,1,...,n-1} containing no two consecutive blocks with the same average, n >= 1, 0 <= k <= A379914(n).
[ "1", "1", "1", "2", "2", "2", "1", "3", "6", "8", "1", "4", "12", "28", "38", "50", "24", "6", "1", "5", "20", "64", "148", "316", "370", "340", "152", "38", "1", "6", "30", "126", "406", "1142", "2142", "3380", "4022", "3910", "2794", "2048", "988", "496", "234", "82", "14", "10", "4", "2", "1", "7", "42", "216", "898", "3314", "9014", "21760", "41026", "63898", "78204", "87820", "71434", "53984", "34232", "16716", "6400", "2346", "644", "148", "12" ]
[ "nonn", "tabf" ]
9
1
4
[ "A245996", "A379914", "A379998", "A379999", "A380000" ]
null
Pontus von Brömssen, Jan 09 2025
2025-01-09T09:07:55
oeisdata/seq/A379/A379998.seq
769792f3694d2fefcd705a83ae6e4cdc
A379999
Number of longest sequences over {0,1,...,n-1} containing no two consecutive blocks with the same average.
[ "1", "2", "8", "6", "38", "2", "12", "8", "2" ]
[ "nonn", "more" ]
5
1
2
[ "A379914", "A379998", "A379999", "A380000" ]
null
Pontus von Brömssen, Jan 09 2025
2025-01-09T09:08:00
oeisdata/seq/A379/A379999.seq
74c5fcb46c6c637e564eb2c3ceef84d1
A380000
Number of sequences over {0,1,...,n-1} containing no two consecutive blocks with the same average.
[ "2", "7", "18", "163", "1454", "21837", "492116", "23699853", "1507394232" ]
[ "nonn", "more" ]
5
1
1
[ "A379914", "A379998", "A379999", "A380000" ]
null
Pontus von Brömssen, Jan 09 2025
2025-01-09T08:43:00
oeisdata/seq/A380/A380000.seq
899486d0418ed935a75ec226281f4e2a
A380001
Fixed points of A378299.
[ "0", "1", "13", "109", "877", "7021", "56173", "449389", "3595117", "28760941", "230087533", "1840700269", "14725602157", "117804817261", "942438538093", "7539508304749", "60316066437997", "482528531503981", "3860228252031853", "30881826016254829", "247054608130038637", "1976436865040309101", "15811494920322472813" ]
[ "nonn", "base", "easy" ]
9
0
3
[ "A378299", "A380001" ]
null
Paolo Xausa, Jan 10 2025
2025-01-11T04:01:28
oeisdata/seq/A380/A380001.seq
5985e5d81f609075a67cce463d0547ff