sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A382045
Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into at most k parts with 0 <= k <= n.
[ "1", "0", "3", "0", "6", "12", "0", "10", "28", "38", "0", "15", "66", "102", "117", "0", "21", "126", "249", "309", "330", "0", "28", "236", "562", "788", "878", "906", "0", "36", "396", "1167", "1845", "2205", "2331", "2367", "0", "45", "651", "2292", "4128", "5289", "5814", "5982", "6027", "0", "55", "1001", "4272", "8703", "12106", "13881", "14602", "14818", "14873", "0", "66", "1512", "7608", "17634", "26616", "32088", "34608", "35556", "35826", "35892" ]
[ "nonn", "tabl" ]
18
0
3
[ "A000217", "A026820", "A217093", "A381891", "A382045" ]
null
Peter Dolland, Mar 13 2025
2025-04-01T19:58:03
oeisdata/seq/A382/A382045.seq
35711d75a443905710a929aa586361df
A382046
Connected domination number of the n-Lucas cube graph.
[ "1", "1", "1", "3", "4", "7", "10", "14", "20" ]
[ "nonn", "more" ]
4
1
4
null
null
Eric W. Weisstein, Mar 13 2025
2025-03-13T09:52:23
oeisdata/seq/A382/A382046.seq
80aa3971cb7fac62e70c82c6dc74a8b2
A382047
Connected domination number of the n X n knight graph.
[ "7", "7", "8", "11", "15", "19", "23", "26" ]
[ "nonn", "more" ]
13
4
1
[ "A382047", "A382207" ]
null
Eric W. Weisstein, Mar 13 2025
2025-03-21T07:00:24
oeisdata/seq/A382/A382047.seq
be50eb44fbce29e6686d482ce0bd278f
A382048
Starting from n and decrement, d = 1 we repeatedly subtract d until we reach a multiple of d+1. Whereupon we set d := d+1 and continue the process. a(n) is the total number of subtractions required to reduce n to 0.
[ "1", "2", "2", "3", "3", "4", "4", "5", "4", "5", "5", "6", "6", "7", "6", "7", "7", "8", "8", "9", "7", "8", "8", "9", "9", "10", "9", "10", "10", "11", "11", "12", "9", "10", "10", "11", "11", "12", "11", "12", "12", "13", "13", "14", "12", "13", "13", "14", "14", "15", "14", "15", "15", "16", "16", "17", "13", "14", "14", "15", "15", "16", "15", "16", "16", "17", "17", "18", "16", "17", "17", "18", "18", "19", "18", "19", "19", "20", "20", "21", "18", "19", "19" ]
[ "nonn" ]
29
1
2
null
null
Howard J. Bradley, Mar 13 2025
2025-03-30T00:16:59
oeisdata/seq/A382/A382048.seq
d0f55d4b586820594f5addc0f61b87d9
A382049
Numbers k such that k +- 2 and k +- 3 are all semiprimes.
[ "12", "36", "216", "540", "1044", "4284", "6336", "11304", "17640", "30276", "31284", "34056", "35496", "35820", "37836", "41796", "46080", "47664", "50940", "57240", "62244", "71064", "75096", "80856", "84924", "98820", "100044", "103536", "106344", "143100", "143424", "144936", "149220", "159264", "159804", "162036", "168120", "172584", "175176", "177624", "194760", "195300" ]
[ "nonn" ]
7
1
1
[ "A001358", "A105571", "A382049" ]
null
Zak Seidov and Robert Israel, Mar 13 2025
2025-03-14T20:23:19
oeisdata/seq/A382/A382049.seq
6083ec80381b8acf7b3ff4f896840c6a
A382050
a(n) = least positive integer m such that when m*(m+1) is written in base n, it is zeroless and contains every single nonzero digit exactly once, or 0 if no such number exists.
[ "0", "0", "5", "0", "79", "0", "650", "2716", "17846", "0", "277166", "1472993", "8233003", "0", "286485314", "1797613432", "11675780880", "0", "538954048563", "3821844010905", "27824692448867", "0", "1587841473665581", "12417635018180828", "99246128296767625", "0", "6742930364132819544", "57228575814672196977", "494789896551823383745", "0", "38997607084561562847324" ]
[ "nonn", "base" ]
16
2
3
[ "A381266", "A382050" ]
null
Chai Wah Wu, Mar 13 2025
2025-03-17T22:15:44
oeisdata/seq/A382/A382050.seq
c248c727586953e7fb6e05587f923a02
A382051
Primes prime(k) such that k*log(k)/prime(k) < (k-1)*log(k-1)/prime(k-1).
[ "11", "17", "23", "29", "37", "53", "59", "67", "79", "89", "97", "127", "137", "149", "157", "163", "173", "179", "191", "211", "223", "239", "251", "257", "263", "269", "277", "293", "307", "331", "347", "367", "397", "409", "419", "431", "457", "479", "487", "499", "521", "541", "557", "587", "631", "641", "673", "691", "701", "709", "719", "727", "751", "769", "787", "797" ]
[ "nonn" ]
23
1
1
[ "A001113", "A060769", "A068985", "A382051", "A382052" ]
null
Alain Rocchelli, Mar 13 2025
2025-04-08T10:20:03
oeisdata/seq/A382/A382051.seq
ff0b03569294479d8b2af9109b5f5d1e
A382052
Primes prime(k) such that k*log(k)/prime(k) > (k-1)*log(k-1)/prime(k-1).
[ "3", "5", "7", "13", "19", "31", "41", "43", "47", "61", "71", "73", "83", "101", "103", "107", "109", "113", "131", "139", "151", "167", "181", "193", "197", "199", "227", "229", "233", "241", "271", "281", "283", "311", "313", "317", "337", "349", "353", "359", "373", "379", "383", "389", "401", "421", "433", "439", "443", "449", "461", "463", "467", "491", "503", "509", "523", "547", "563", "569", "571", "577", "593", "599" ]
[ "nonn", "new" ]
27
1
1
[ "A060770", "A068996", "A185393", "A382051", "A382052" ]
null
Alain Rocchelli, Mar 13 2025
2025-04-16T09:02:51
oeisdata/seq/A382/A382052.seq
24a231abfb01a0915605c74da54c0aea
A382053
Numbers k such that Fibonacci(k) has a Fibonacci number of 1's in its binary representation.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "13", "16", "19", "20", "22", "30", "33", "46", "47", "56", "85", "105", "109", "150", "173", "254", "266", "279", "413", "416", "444", "624", "651", "690", "713", "746", "1031", "1110", "2841", "2864", "2867", "2892", "2895", "2994", "4516", "4523", "4543", "4559", "7452", "7491", "7532", "11840", "11852", "11863", "19297", "19311", "19442", "19462" ]
[ "nonn", "base" ]
14
1
3
[ "A000045", "A381704", "A382053" ]
null
Robert Israel, Mar 13 2025
2025-03-15T11:31:04
oeisdata/seq/A382/A382053.seq
96ba84f87a475e83224ac29ffa628e30
A382054
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digit n-1 and contains every single digit from 0 to n-2 exactly once, or 0 if no such number exists.
[ "0", "0", "14", "54", "0", "616", "2251", "12069", "0", "251085", "1348305", "7619403", "0", "269717049", "1698727527", "11061795398", "0", "513383208454", "3648738866370", "26618719297968", "0", "1524495582671125", "11941193897016731", "95578593301936475", "0", "6510865478836888683", "55324396705324796861", "478855818873249715068", "0", "37817609915967014967822" ]
[ "nonn", "base" ]
19
3
3
[ "A381266", "A382050", "A382054" ]
null
Chai Wah Wu, Mar 13 2025
2025-03-17T22:15:38
oeisdata/seq/A382/A382054.seq
3393d247a710b3260e40b786f94fa8e3
A382055
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digits 0 or n-1 and contains every single digit from 1 to n-2 exactly once, or 0 if no such number exists.
[ "0", "2", "6", "19", "0", "420", "924", "3672", "0", "78880", "431493", "2173950", "0", "71583429", "436726936", "2750336517", "0", "120521201887", "833996387274", "5932255141224", "0", "324116744376715", "2483526997445916", "19463766853506024", "0", "1274294107710603710", "10627079743009611713", "90335862784009245081", "0" ]
[ "nonn", "base" ]
17
3
2
[ "A381266", "A382050", "A382054", "A382055" ]
null
Chai Wah Wu, Mar 13 2025
2025-03-17T22:15:22
oeisdata/seq/A382/A382055.seq
32db728bbc88a404e5aff5fbc94380ff
A382056
Remove every copy of the largest digit of n; if any digits remain, return the number formed by arranging the remaining digits in nondecreasing order. If no digits remain, return 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "2", "2", "2", "2", "2", "2", "2", "0", "1", "2", "0", "3", "3", "3", "3", "3", "3", "0", "1", "2", "3", "0", "4", "4", "4", "4", "4", "0", "1", "2", "3", "4", "0", "5", "5", "5", "5", "0", "1", "2", "3", "4", "5", "0", "6", "6", "6", "0", "1", "2", "3", "4", "5", "6", "0", "7", "7", "0", "1", "2", "3", "4", "5", "6", "7", "0" ]
[ "nonn", "look", "base" ]
24
1
23
[ "A054055", "A125289", "A382056", "A382401" ]
null
Ali Sada, Mar 13 2025
2025-03-23T23:20:02
oeisdata/seq/A382/A382056.seq
39cc60650f816a27ef24a79325a9a292
A382057
Z-sequence for the Riordan triangle A125166.
[ "8", "-37", "181", "-865", "4105", "-19441", "92017", "-435457", "2060641", "-9751105", "46142785", "-218350081", "1033243777", "-4889362177", "23136710401", "-109484089345", "518084273665", "-2451601105921", "11601100993537", "-54896999325697", "259775389992961", "-1229270344003585", "5816969724063745", "-27526196280360961" ]
[ "sign", "easy" ]
12
0
1
[ "A006232", "A125166", "A382057" ]
null
Wolfdieter Lang, Mar 25 2025
2025-04-01T22:38:20
oeisdata/seq/A382/A382057.seq
0e630c378c1fbf67902b0b287f058d3f
A382058
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "5", "67", "1465", "44541", "1735681", "82527439", "4632741905", "299875704697", "21989097804961", "1801520077445331", "163092373817762137", "16168084561101716725", "1741946677697976052577", "202668693570279026375671", "25324088113475137179021601", "3382305512670022948599733233", "480858973986045019386825360577" ]
[ "nonn" ]
15
0
3
[ "A001764", "A161629", "A161635", "A377546", "A382032", "A382033", "A382058", "A382059" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-14T09:00:26
oeisdata/seq/A382/A382058.seq
83b283bdae3416c0a347b467a48b04d3
A382059
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "7", "127", "3733", "152161", "7939261", "505087843", "37920697753", "3281899787137", "321700411900441", "35227497466867531", "4262151791317099285", "564639582580738851265", "81290104199287214904037", "12637400195063381931755731", "2109868901338065949399370161", "376504852688521502050554789889" ]
[ "nonn" ]
15
0
3
[ "A002293", "A161629", "A364938", "A377548", "A382033", "A382034", "A382058", "A382059" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-14T09:00:31
oeisdata/seq/A382/A382059.seq
1de6de6ba667c57ab36bd4c4ff046bd3
A382060
Number of rooted ordered trees with n nodes such that the degree of each node is less than or equal to its depth plus one.
[ "1", "1", "1", "1", "2", "4", "10", "27", "77", "231", "719", "2302", "7541", "25177", "85405", "293635", "1021272", "3587674", "12713796", "45402113", "163244197", "590529759", "2147915920", "7851127319", "28826079193", "106268313333", "393218951710", "1459969448090", "5437679646441", "20311366912839", "76072367645347", "285623120079865", "1074888308119285" ]
[ "nonn" ]
28
0
5
[ "A000081", "A000108", "A000957", "A036765", "A288942", "A358586", "A358590", "A380761", "A382060" ]
null
John Tyler Rascoe, Mar 14 2025
2025-03-20T06:01:29
oeisdata/seq/A382/A382060.seq
87fc8a20e77b5fa9bc55887a0c1b11b3
A382061
Numbers whose number of divisors is divisible by their number of unitary divisors.
[ "1", "2", "3", "5", "6", "7", "8", "10", "11", "13", "14", "15", "17", "19", "21", "22", "23", "24", "26", "27", "29", "30", "31", "32", "33", "34", "35", "37", "38", "39", "40", "41", "42", "43", "46", "47", "51", "53", "54", "55", "56", "57", "58", "59", "61", "62", "65", "66", "67", "69", "70", "71", "72", "73", "74", "77", "78", "79", "82", "83", "85", "86", "87", "88", "89", "91", "93", "94", "95", "96", "97" ]
[ "nonn", "easy" ]
9
1
2
[ "A000005", "A005117", "A013661", "A034444", "A057521", "A065463", "A268335", "A382061", "A382062", "A382063" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:16:44
oeisdata/seq/A382/A382061.seq
13e6bb1fa72bf8583cb76e764acffff0
A382062
Powerful numbers whose number of divisors is divisible by their number of unitary divisors.
[ "1", "8", "27", "32", "72", "108", "125", "128", "200", "216", "243", "343", "392", "432", "500", "512", "648", "675", "864", "968", "1000", "1125", "1152", "1323", "1331", "1352", "1372", "1728", "1944", "2000", "2048", "2187", "2197", "2312", "2744", "2888", "3087", "3125", "3200", "3267", "3375", "3456", "4000", "4232", "4563", "4913", "5000", "5324", "5400" ]
[ "nonn", "easy" ]
9
1
2
[ "A000005", "A001694", "A034444", "A382061", "A382062", "A382064" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:16:50
oeisdata/seq/A382/A382062.seq
5bb09ab800a82cbe9672b55b26ec9832
A382063
Numbers whose number of coreful divisors is divisible by their number of exponential divisors.
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "25", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79" ]
[ "nonn", "easy" ]
9
1
2
[ "A000005", "A002117", "A004709", "A005361", "A036966", "A049419", "A344742", "A360540", "A377019", "A382061", "A382063", "A382064", "A382065" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:16:56
oeisdata/seq/A382/A382063.seq
fbef558b8b1191b4d901f87f30b130b2
A382064
Cubefull numbers whose number of coreful divisors is divisible by their number of exponential divisors.
[ "1", "256", "432", "512", "648", "2000", "4096", "5000", "5184", "5488", "6561", "6912", "10125", "11664", "16875", "19208", "19683", "21296", "27783", "32000", "35152", "40000", "41472", "52488", "54000", "62208", "64827", "78608", "81000", "87808", "107811", "109744", "110592", "117128", "135000", "148176", "153664", "177957", "186624" ]
[ "nonn" ]
11
1
2
[ "A004709", "A005361", "A036966", "A049419", "A382062", "A382063", "A382064" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:17:04
oeisdata/seq/A382/A382064.seq
6c9245238d60dd058d201c6160ffbce0
A382065
Exponentially refactorable numbers: numbers whose exponents in their canonical prime factorization are all refactorable numbers (A033950).
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "25", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79" ]
[ "nonn", "easy" ]
8
1
2
[ "A004709", "A033950", "A138302", "A197680", "A209061", "A268335", "A344742", "A361177", "A377019", "A382063", "A382065" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:17:12
oeisdata/seq/A382/A382065.seq
a8344ef96acb8e63ad8b97e664ba920f
A382066
a(n) = Sum_{k=1..prime(n)-1} (-k/prime(n)) * 3^(k-1) / 2, where (p/q) is the Legendre symbol of p and q.
[ "1", "8", "151", "8083", "70568", "8910416", "39392803", "7701058213", "2325990648824", "43563061207573", "19999898090377928", "2566793589644124992", "10627327735475477203", "2179055220073884519235", "630486036620986837882904", "646895254841829205782412249", "5802709167332592724735012664" ]
[ "nonn" ]
19
2
2
null
null
Steven Lu, Mar 14 2025
2025-03-31T21:19:51
oeisdata/seq/A382/A382066.seq
ec89e8639d9038a7c04f4d5f369ecfd7
A382067
Lexicographically earliest sequence of distinct positive integers such that the product of two consecutive terms is always a factorial number.
[ "1", "2", "3", "8", "15", "48", "105", "384", "945", "3840", "10395", "46080", "135135", "645120", "2027025", "3072", "155925", "256", "14175", "2816", "170100", "36608", "2381400", "549120", "11340", "32", "1260", "4", "6", "20", "36", "140", "288", "12600", "3168", "151200", "24", "5", "144", "35", "1152", "315", "16", "45", "112", "360", "14", "2880" ]
[ "nonn" ]
12
1
2
[ "A000142", "A375579", "A382067", "A382072", "A382083", "A382085" ]
null
Rémy Sigrist, Mar 14 2025
2025-03-17T22:19:57
oeisdata/seq/A382/A382067.seq
1e9ead9b29c5559db606ffe13b51200f
A382068
Array read by ascending antidiagonals: A(n,m) is obtained by concatenating the digits of floor(n/m) with those of its fractional part up to the digits of the first period, where the leading and trailing 0's are omitted.
[ "1", "2", "5", "3", "1", "3", "4", "15", "6", "25", "5", "2", "1", "5", "2", "6", "25", "13", "75", "4", "16", "7", "3", "16", "1", "6", "3", "142857", "8", "35", "2", "125", "8", "5", "285714", "125", "9", "4", "23", "15", "1", "6", "428571", "25", "1", "10", "45", "26", "175", "12", "83", "571428", "375", "2", "1", "11", "5", "3", "2", "14", "1", "714285", "5", "3", "2", "9" ]
[ "nonn", "base", "tabl" ]
13
1
2
[ "A000012", "A000027", "A266385", "A382068" ]
null
Stefano Spezia, Mar 14 2025
2025-03-14T21:06:17
oeisdata/seq/A382/A382068.seq
4a64f7cd896420442f1f6289cd087d51
A382069
Row sums of the triangular array in A199408.
[ "1", "4", "10", "18", "31", "42", "64", "80", "105", "128", "166", "182", "235", "262", "300", "344", "409", "432", "514", "538", "607", "674", "760", "776", "885", "952", "1026", "1086", "1219", "1230", "1396", "1440", "1545", "1652", "1738", "1794", "1999", "2074", "2176", "2240", "2461", "2472", "2710", "2758", "2871", "3062", "3244", "3240", "3493" ]
[ "nonn" ]
15
1
2
[ "A000040", "A000217", "A000290", "A001248", "A006093", "A018804", "A040976", "A087397", "A199408", "A382069" ]
null
Ctibor O. Zizka, Mar 14 2025
2025-03-14T21:16:05
oeisdata/seq/A382/A382069.seq
4f0db93c0211043e25acdc27342c659f
A382070
Semiperimeter of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.
[ "15", "28", "66", "120", "276", "378", "630", "780", "1128", "1770", "2016", "2850", "3486", "3828", "4560", "5778", "7140", "7626", "9180", "10296", "10878", "12720", "14028", "16110", "19110", "20706", "21528", "23220", "24090", "25878", "32640", "34716", "37950", "39060", "44850", "46056", "49770", "53628", "56280", "60378" ]
[ "nonn", "easy" ]
36
1
1
[ "A034953", "A098996", "A367573", "A382070", "A382097" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 15 2025
2025-03-24T02:03:57
oeisdata/seq/A382/A382070.seq
70c539175b5fb6fa261bca20353ece97
A382071
Connected domination number of the n X n zebra graph.
[ "21", "20", "19", "20", "21", "25", "31", "37" ]
[ "nonn", "more" ]
6
6
1
null
null
Eric W. Weisstein, Mar 14 2025
2025-03-14T15:06:16
oeisdata/seq/A382/A382071.seq
acb7f573c94b430ae6912dcf717e7ea6
A382072
Lexicographically earliest sequence of distinct positive integers such that for any n > 0, n*a(n) is a factorial number.
[ "1", "3", "2", "6", "24", "4", "720", "15", "80", "12", "3628800", "10", "479001600", "360", "8", "45", "20922789888000", "40", "6402373705728000", "36", "240", "1814400", "1124000727777607680000", "5", "145152", "239500800", "13440", "180", "304888344611713860501504000000", "168", "265252859812191058636308480000000" ]
[ "nonn" ]
6
1
2
[ "A000142", "A007672", "A382067", "A382072" ]
null
Rémy Sigrist, Mar 14 2025
2025-03-17T22:19:30
oeisdata/seq/A382/A382072.seq
4f5049ec1c72eab9d2cd9c137f628bf5
A382073
Semiprimes with sum of digits 4.
[ "4", "22", "121", "202", "301", "1003", "1111", "2101", "10003", "10021", "10102", "10201", "11002", "11101", "12001", "30001", "100021", "100102", "100201", "101011", "110002", "110101", "111001", "200011", "200101", "1000021", "1000111", "1000201", "1001002", "1001101", "1110001", "2001001", "3000001", "10000003", "10000021", "10000201", "10010002", "10020001" ]
[ "nonn", "base" ]
8
1
1
[ "A001358", "A052218", "A062339", "A382073" ]
null
Zak Seidov and Robert Israel, Mar 14 2025
2025-03-14T20:23:29
oeisdata/seq/A382/A382073.seq
2a193f5e3b1022e62fe553e7dd37a13f
A382074
a(n) is the number of solutions to phi(x) + phi(n-x) = phi(n) where 1 <= x <= floor(n/2).
[ "0", "0", "1", "1", "0", "0", "0", "1", "1", "1", "0", "1", "0", "2", "2", "1", "0", "1", "0", "3", "2", "2", "0", "2", "2", "2", "2", "4", "0", "0", "0", "1", "3", "1", "1", "2", "0", "3", "1", "4", "0", "1", "0", "5", "3", "2", "0", "2", "0", "2", "3", "5", "0", "2", "1", "5", "2", "1", "0", "1", "0", "2", "2", "1", "2", "2", "0", "5", "2", "2", "0", "3", "0", "2", "4", "5", "1", "3", "0", "4", "0", "1", "0", "2", "2", "2", "4", "5" ]
[ "nonn", "changed" ]
13
1
14
[ "A000010", "A065381", "A211225", "A381747", "A382074" ]
null
Felix Huber, Mar 22 2025
2025-04-26T03:32:51
oeisdata/seq/A382/A382074.seq
2a2075c91e96ae0c5aea2b7a55b92889
A382075
Numbers whose prime indices can be partitioned into a set of sets with distinct sums.
[ "1", "2", "3", "5", "6", "7", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79", "82", "83", "84" ]
[ "nonn" ]
9
1
2
[ "A000720", "A001055", "A001222", "A005117", "A045778", "A050320", "A050326", "A050345", "A055396", "A056239", "A061395", "A089259", "A112798", "A270995", "A279785", "A292432", "A293243", "A293511", "A300383", "A302494", "A317141", "A318360", "A321469", "A358914", "A381078", "A381441", "A381633", "A381634", "A381635", "A381636", "A381716", "A381718", "A381806", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200", "A382201", "A382214", "A382216" ]
null
Gus Wiseman, Mar 19 2025
2025-03-20T22:35:20
oeisdata/seq/A382/A382075.seq
966ac18ef642372f816b3f78958c54b2
A382076
Number of integer partitions of n whose run-sums are not all equal.
[ "0", "0", "0", "1", "1", "5", "6", "13", "15", "27", "37", "54", "64", "99", "130", "172", "220", "295", "372", "488", "615", "788", "997", "1253", "1547", "1955", "2431", "3005", "3706", "4563", "5586", "6840", "8332", "10139", "12305", "14879", "17933", "21635", "26010", "31181", "37314", "44581", "53156", "63259", "75163", "89124", "105553", "124752", "147210" ]
[ "nonn", "changed" ]
18
0
6
[ "A000688", "A005117", "A006171", "A047966", "A050361", "A279784", "A300383", "A304405", "A304406", "A304428", "A304430", "A304442", "A317141", "A326534", "A353833", "A353837", "A354584", "A355743", "A357861", "A357862", "A357864", "A357875", "A381453", "A381455", "A381635", "A381636", "A381715", "A381717", "A381871", "A381993", "A381994", "A381995", "A382076", "A382204" ]
null
Gus Wiseman, Apr 02 2025
2025-04-26T08:06:14
oeisdata/seq/A382/A382076.seq
6d02d7189310cba20ba754aff4841124
A382077
Number of integer partitions of n that can be partitioned into a set of sets.
[ "1", "1", "1", "2", "3", "5", "6", "9", "13", "17", "25", "33", "44", "59", "77", "100", "134", "171", "217", "283", "361", "449", "574", "721", "900", "1126", "1397", "1731", "2143", "2632", "3223", "3961", "4825", "5874", "7131", "8646", "10452", "12604", "15155", "18216", "21826", "26108", "31169", "37156", "44202", "52492", "62233", "73676", "87089", "102756", "121074" ]
[ "nonn" ]
12
0
4
[ "A000009", "A000041", "A050320", "A050326", "A050345", "A089259", "A116539", "A116540", "A265947", "A270995", "A292432", "A292444", "A293243", "A293511", "A296119", "A299202", "A302494", "A317142", "A318360", "A358914", "A381441", "A381454", "A381717", "A381718", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200", "A382214" ]
null
Gus Wiseman, Mar 18 2025
2025-03-29T13:49:13
oeisdata/seq/A382/A382077.seq
8b7e20bf14e03ed4b373f9862240d5cd
A382078
Number of integer partitions of n that cannot be partitioned into a set of sets.
[ "0", "0", "1", "1", "2", "2", "5", "6", "9", "13", "17", "23", "33", "42", "58", "76", "97", "126", "168", "207", "266", "343", "428", "534", "675", "832", "1039", "1279", "1575", "1933", "2381", "2881", "3524", "4269", "5179", "6237", "7525", "9033", "10860", "12969", "15512", "18475", "22005", "26105", "30973", "36642", "43325", "51078", "60184", "70769", "83152" ]
[ "nonn" ]
11
0
5
[ "A000009", "A000041", "A050320", "A050326", "A050345", "A089259", "A116539", "A116540", "A265947", "A270995", "A292432", "A292444", "A293243", "A293511", "A296119", "A299202", "A302494", "A317142", "A318360", "A358914", "A381441", "A381454", "A381717", "A381718", "A381806", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200" ]
null
Gus Wiseman, Mar 18 2025
2025-03-29T13:40:24
oeisdata/seq/A382/A382078.seq
a97ec1497ed59d4ba71bb5f9b5f12204
A382079
Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.
[ "1", "1", "1", "1", "2", "3", "3", "4", "6", "5", "10", "9", "13", "14", "21", "20", "32", "31", "42", "47", "63", "62", "90", "94", "117", "138", "170", "186", "235", "260", "315", "363", "429", "493", "588", "674", "795", "901", "1060", "1209", "1431", "1608", "1896", "2152", "2515", "2854", "3310", "3734", "4368", "4905", "5686" ]
[ "nonn", "more" ]
14
0
5
[ "A000009", "A000041", "A002846", "A050320", "A050326", "A089259", "A116539", "A116540", "A213427", "A265947", "A270995", "A279785", "A293243", "A293511", "A296119", "A299202", "A302478", "A302494", "A317142", "A318360", "A358914", "A381078", "A381441", "A381454", "A381633", "A381636", "A381718", "A381806", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200", "A382201", "A382460" ]
null
Gus Wiseman, Mar 20 2025
2025-03-29T17:25:18
oeisdata/seq/A382/A382079.seq
7e6077b71254357cfe9de02e226432d7
A382080
Number of ways to partition the prime indices of n into sets with a common sum.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "2", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1" ]
[ "nonn" ]
6
1
30
[ "A000688", "A000720", "A000961", "A001055", "A001222", "A006171", "A045778", "A050320", "A050326", "A050361", "A055396", "A056239", "A061395", "A112798", "A279784", "A279788", "A300383", "A302478", "A317141", "A321455", "A326534", "A353866", "A381633", "A381635", "A381719", "A381871", "A381994", "A381995", "A382080" ]
null
Gus Wiseman, Mar 20 2025
2025-03-22T08:38:53
oeisdata/seq/A382/A382080.seq
31db704db164b3d227eb209ab75ba15a
A382081
a(n) = binomial(n,3) + 6*binomial(n,4) + 15*binomial(n,5) + 15*binomial(n,6).
[ "0", "0", "0", "1", "10", "55", "215", "665", "1736", "3990", "8310", "16005", "28930", "49621", "81445", "128765", "197120", "293420", "426156", "605625", "844170", "1156435", "1559635", "2073841", "2722280", "3531650", "4532450", "5759325", "7251426", "9052785", "11212705", "13786165", "16834240", "20424536", "24631640", "29537585" ]
[ "nonn", "easy" ]
15
0
5
[ "A382081", "A382084" ]
null
Enrique Navarrete, Mar 15 2025
2025-03-24T05:21:25
oeisdata/seq/A382/A382081.seq
217c2cb923c4bd723094bf3fc0c330cb
A382082
F(k) such that F(k) + (F(k) reversed) is a palindrome, where F(k) is a Fibonacci number.
[ "0", "1", "2", "3", "13", "21", "34", "144", "233", "610", "4181", "832040", "102334155", "1134903170", "20365011074", "12200160415121876738" ]
[ "nonn", "base" ]
39
1
3
[ "A000045", "A002113", "A004086", "A004091", "A015976", "A352124", "A382082" ]
null
Vincenzo Librandi, Mar 21 2025
2025-03-24T13:01:57
oeisdata/seq/A382/A382082.seq
a750eaaec6b39ff6ef25a22c0c3e4722
A382083
a(n) is the ratio between A382067(n) and A382067(n+2).
[ "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "210", "13", "12", "11", "11", "12", "13", "14", "15", "210", "17160", "9", "8", "210", "5", "6", "7", "8", "90", "11", "12", "132", "30240", "6", "7", "8", "9", "72", "7", "7", "8", "8", "8", "9", "72", "7", "7", "72", "10", "11", "12", "132", "10", "9", "336", "6", "7", "8", "9", "9", "9", "10", "90", "8", "7", "7", "72", "10" ]
[ "nonn" ]
6
1
1
[ "A382067", "A382083" ]
null
Rémy Sigrist, Mar 15 2025
2025-03-17T22:19:23
oeisdata/seq/A382/A382083.seq
16bd289f33c8732852399f5ab542ddec
A382084
a(n) = 90*binomial(n,6) + 18*binomial(n,4) + 3*binomial(n,2) + 1.
[ "1", "1", "4", "10", "37", "121", "406", "1324", "3865", "9937", "22816", "47686", "92269", "167545", "288562", "475336", "753841", "1157089", "1726300", "2512162", "3576181", "4992121", "6847534", "9245380", "12305737", "16167601", "20990776", "26957854", "34276285", "43180537", "53934346", "66833056", "82206049", "100419265" ]
[ "nonn", "easy", "changed" ]
15
0
3
[ "A382081", "A382084" ]
null
Enrique Navarrete, Mar 15 2025
2025-04-25T21:11:45
oeisdata/seq/A382/A382084.seq
df987b12b82b3dc2533602c0774110a3
A382085
a(n) is the unique k such that A382067(n) * A382067(n+1) = k!.
[ "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "13", "12", "11", "10", "11", "12", "13", "14", "15", "13", "9", "8", "7", "4", "5", "6", "7", "8", "10", "11", "12", "10", "5", "6", "7", "8", "9", "7", "6", "7", "8", "7", "8", "9", "7", "6", "7", "9", "10", "11", "12", "10", "9", "8", "5", "6", "7", "8", "9", "8", "9", "10", "8", "7", "6", "7", "9", "10", "11", "12", "10", "9", "10" ]
[ "nonn" ]
7
1
1
[ "A084558", "A382067", "A382085" ]
null
Rémy Sigrist, Mar 15 2025
2025-03-17T22:19:18
oeisdata/seq/A382/A382085.seq
1483b9a3ff4fff1ae9c5d6efa6fa96d3
A382086
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "5", "52", "845", "18816", "533617", "18404800", "748039833", "35016198400", "1855389108221", "109781344134144", "7174844881882405", "513331696318615552", "39905830821183755625", "3349445733955326754816", "301886246619209909215793", "29080090017105458412257280", "2981488457660004727761477493" ]
[ "nonn" ]
10
0
3
[ "A000108", "A377831", "A382036", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:11:19
oeisdata/seq/A382/A382086.seq
2aa35e4a678b5326920c1d899b43517a
A382087
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^2) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "7", "106", "2525", "82536", "3436867", "174045376", "10385025849", "713599868800", "55498397386751", "4819444051348224", "462246012357060373", "48531686994029295616", "5536163290789601602875", "681824639839489261060096", "90168540044259473683829873", "12744019609725371553920876544" ]
[ "nonn" ]
10
0
3
[ "A001764", "A377832", "A382037", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:12:34
oeisdata/seq/A382/A382087.seq
9ae82b19d46dd81eb74f8ec56aa4d4af
A382088
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "9", "178", "5549", "237456", "12945037", "858203872", "67035559257", "6029839290880", "613862192499281", "69777500840918784", "8760124051527691141", "1203852634738613966848", "179746834136205848167125", "28975042890917781500747776", "5015346425440407318539964593", "927775677566572703009955053568" ]
[ "nonn" ]
11
0
3
[ "A002293", "A377833", "A382038", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:13:27
oeisdata/seq/A382/A382088.seq
451bd0db5a7cde1927d45daaa209e35c
A382089
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^5 is the g.f. of A002294.
[ "1", "1", "11", "268", "10301", "543576", "36542527", "2987431168", "287751180537", "31916479461760", "4006558784401811", "561568192339405824", "86932015931716588789", "14730649112418719484928", "2711977587454133506904775", "539042371050858695696121856", "115046065096051639979478349553" ]
[ "nonn" ]
9
0
3
[ "A002294", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:14:27
oeisdata/seq/A382/A382089.seq
3e56f582d674cdb5848000139757546f
A382090
Connected domination number of the n-triangular honeycomb obtuse knight graph.
[ "10", "9", "9", "10", "13", "15", "18", "20" ]
[ "nonn", "more" ]
8
6
1
null
null
Eric W. Weisstein, Mar 15 2025
2025-03-15T11:29:35
oeisdata/seq/A382/A382090.seq
836fa5675a3bbf4543c2e87dd655dad4
A382091
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number such that a(n) shares a factor with a(n-1) while the total number of prime terms of the form 4*k + 1 is never less than those of the form 4*k + 3.
[ "1", "2", "4", "6", "8", "10", "5", "15", "3", "9", "12", "14", "16", "18", "20", "22", "24", "21", "27", "30", "25", "35", "28", "26", "13", "39", "33", "11", "44", "32", "34", "17", "51", "36", "38", "19", "57", "42", "40", "45", "48", "46", "50", "52", "54", "56", "49", "63", "60", "55", "65", "70", "58", "29", "87", "66", "62", "31", "93", "69", "72", "64", "68", "74", "37", "111" ]
[ "nonn" ]
10
1
2
[ "A007350", "A027748", "A038698", "A064413", "A382091" ]
null
Scott R. Shannon, Mar 15 2025
2025-03-15T11:29:29
oeisdata/seq/A382/A382091.seq
e453e88afda621acd92c56871029e5c7
A382092
Values taken by gcd(a^2 + b^2 + c^2, a*b*c), where a, b, c are positive integers.
[ "1", "2", "4", "5", "8", "9", "10", "13", "16", "17", "18", "20", "25", "26", "27", "29", "32", "34", "36", "37", "40", "41", "45", "49", "50", "52", "53", "54", "58", "61", "64", "65", "68", "72", "73", "74", "80", "81", "82", "85", "89", "90", "97", "98", "100", "101", "104", "106", "108", "109", "113", "116", "117", "121", "122", "125", "128", "130", "135", "136", "137" ]
[ "nonn", "easy" ]
26
1
2
[ "A001481", "A002145", "A072437", "A382092" ]
null
Yifan Xie, Mar 29 2025
2025-04-02T15:04:50
oeisdata/seq/A382/A382092.seq
b9d7c13ad93884ab6f189226c8e9c153
A382093
Sequence where k is appended after every (k-1)! occurrences of 1, with multiple values following a 1 listed in order.
[ "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "5", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2" ]
[ "nonn" ]
21
1
2
[ "A381522", "A381900", "A382093", "A382095" ]
null
Jwalin Bhatt, Mar 25 2025
2025-04-01T15:03:46
oeisdata/seq/A382/A382093.seq
15d03e5aa31b194b5f28a9217f207ad3
A382094
Integers k such that k*2^k + 3 is prime.
[ "0", "1", "2", "4", "5", "10", "11", "28", "40", "110", "124", "826", "871", "1355", "1540", "2285", "8908", "20824", "31715", "61655", "75920", "96274", "195871", "233125", "242594" ]
[ "nonn", "more", "hard", "changed" ]
23
1
3
[ "A182373", "A182375", "A265121", "A382094" ]
null
Juri-Stepan Gerasimov, Mar 15 2025
2025-04-15T06:04:39
oeisdata/seq/A382/A382094.seq
f2e8d3bfa96b50f76272249179824f73
A382095
Decimal expansion of exp((Sum_{k>=2} log(k)/(k-1)!)/e).
[ "1", "7", "7", "4", "2", "9", "4", "3", "7", "5", "7", "8", "8", "8", "1", "3", "0", "6", "3", "4", "0", "6", "2", "8", "6", "5", "7", "3", "1", "9", "7", "1", "0", "8", "9", "4", "2", "9", "2", "4", "2", "2", "2", "9", "1", "4", "2", "9", "7", "5", "4", "2", "1", "8", "0", "1", "4", "8", "0", "8", "5", "1", "7", "2", "5", "1", "0", "0", "4", "1", "3", "1", "8", "2", "1", "1", "5", "7", "6", "3", "9", "1", "0", "6", "3", "8", "7", "2", "7", "4", "9", "6", "0", "8", "5", "1", "4", "2", "6", "7", "7", "5", "3", "8", "9", "4", "3", "3", "0", "3", "6", "2", "7", "5", "3", "0", "0", "6", "8", "2" ]
[ "nonn", "cons" ]
31
1
2
[ "A193424", "A381456", "A381898", "A382093", "A382095" ]
null
Jwalin Bhatt, Mar 25 2025
2025-04-01T23:11:23
oeisdata/seq/A382/A382095.seq
91ea4ca8a6410d5d2969097c38233cf3
A382097
Sum of the legs of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.
[ "17", "31", "71", "127", "287", "391", "647", "799", "1151", "1799", "2047", "2887", "3527", "3871", "4607", "5831", "7199", "7687", "9247", "10367", "10951", "12799", "14111", "16199", "19207", "20807", "21631", "23327", "24199", "25991", "32767", "34847", "38087", "39199", "44999", "46207", "49927", "53791", "56447", "60551" ]
[ "nonn", "easy" ]
37
1
1
[ "A034953", "A098996", "A367573", "A382070", "A382097" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 15 2025
2025-03-24T02:02:53
oeisdata/seq/A382/A382097.seq
b7cbbaf052bfd21b6dd02faee7b2d18d
A382098
a(n) is the numerator of the square of the n-th Lagrange number.
[ "5", "8", "221", "1517", "7565", "2600", "71285", "257045", "84680", "488597", "1687397", "837224", "8732021", "15800621", "22953677", "75533477", "157326845", "296631725", "94070600", "514518485", "741527357", "269583560", "1945074605", "7391012837", "10076746685", "3192137000", "16843627085", "24001135925", "8707689224" ]
[ "nonn", "frac" ]
7
1
1
[ "A002163", "A002559", "A010466", "A200991", "A305308", "A382098", "A382099" ]
null
Stefano Spezia, Mar 15 2025
2025-03-19T10:03:06
oeisdata/seq/A382/A382098.seq
5d780e7a57bb458a1da680ef5f7f4736
A382099
a(n) is the denominator of the square of the n-th Lagrange number.
[ "1", "1", "25", "169", "841", "289", "7921", "28561", "9409", "54289", "187489", "93025", "970225", "1755625", "2550409", "8392609", "17480761", "32959081", "10452289", "57168721", "82391929", "29953729", "216119401", "821223649", "1119638521", "354681889", "1871514121", "2666792881", "967521025", "5628750625", "9323254249" ]
[ "nonn", "frac" ]
6
1
3
[ "A002163", "A002559", "A010466", "A200991", "A305308", "A382098", "A382099" ]
null
Stefano Spezia, Mar 15 2025
2025-03-19T10:03:14
oeisdata/seq/A382/A382099.seq
dabf0688a7b43510f56a44975a4af7c8
A382100
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "3", "4", "1", "1", "1", "4", "10", "8", "1", "1", "1", "5", "19", "35", "16", "1", "1", "1", "6", "31", "98", "126", "32", "1", "1", "1", "7", "46", "213", "531", "462", "64", "1", "1", "1", "8", "64", "396", "1556", "2974", "1716", "128", "1", "1", "1", "9", "85", "663", "3651", "11843", "17060", "6435", "256", "1" ]
[ "nonn", "tabl" ]
24
0
9
[ "A000012", "A011782", "A047099", "A088218", "A107026", "A107027", "A107030", "A304979", "A355262", "A382100", "A382101" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-16T12:20:09
oeisdata/seq/A382/A382100.seq
a9eed280b4ca18691e011d3a8c9b3382
A382101
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(B_k(x) - 1), where B_k(x) = 1 + x*B_k(x)^k.
[ "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "5", "13", "1", "1", "1", "7", "43", "73", "1", "1", "1", "9", "91", "529", "501", "1", "1", "1", "11", "157", "1753", "8501", "4051", "1", "1", "1", "13", "241", "4129", "45001", "169021", "37633", "1", "1", "1", "15", "343", "8041", "146001", "1447471", "4010455", "394353", "1", "1", "1", "17", "463", "13873", "362501", "6502681", "56041987", "110676833", "4596553", "1" ]
[ "nonn", "tabl" ]
19
0
9
[ "A000012", "A000262", "A251568", "A355262", "A380512", "A380516", "A382100", "A382101" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-16T12:42:09
oeisdata/seq/A382/A382101.seq
46e92172ec74d57d088153683c69cc2d
A382102
Remove all occurrences of a digit from n such that the resulting number, formed by the remaining digits in their original order, is as small as possible. If no digits remain, a(n)=0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "2", "2", "2", "2", "2", "2", "2", "0", "1", "2", "0", "3", "3", "3", "3", "3", "3", "0", "1", "2", "3", "0", "4", "4", "4", "4", "4", "0", "1", "2", "3", "4", "0", "5", "5", "5", "5", "0", "1", "2", "3", "4", "5", "0", "6", "6", "6", "0", "1", "2", "3", "4", "5", "6", "0", "7", "7", "0", "1", "2", "3", "4", "5", "6", "7" ]
[ "nonn", "base", "look", "nice" ]
26
1
23
[ "A382056", "A382102" ]
null
Ali Sada, Mar 15 2025
2025-03-23T23:21:18
oeisdata/seq/A382/A382102.seq
ca6fafa360c1c48c257fff45197e0a7b
A382103
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372267.
[ "3", "4", "7", "8", "5", "4", "8", "4", "5", "1", "3", "7", "4", "5", "3", "8", "5", "7", "3", "7", "3", "0", "6", "3", "9", "4", "9", "2", "2", "1", "9", "9", "9", "4", "0", "7", "2", "3", "5", "3", "4", "8", "6", "9", "5", "8", "3", "3", "8", "9", "3", "5", "4", "0", "4", "9", "2", "5", "2", "9", "3", "1", "9", "5", "1", "8", "7", "5", "1", "8", "6", "7", "4", "6", "5", "9", "1", "0", "3", "5", "1", "7", "2", "1", "9", "8", "3" ]
[ "nonn", "cons" ]
29
0
1
[ "A372267", "A382103" ]
null
A.H.M. Smeets, Mar 15 2025
2025-04-12T12:19:00
oeisdata/seq/A382/A382103.seq
16ea76b962ad0d528ec12095337f8928
A382104
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268.
[ "6", "5", "2", "1", "4", "5", "1", "5", "4", "8", "6", "2", "5", "4", "6", "1", "4", "2", "6", "2", "6", "9", "3", "6", "0", "5", "0", "7", "7", "8", "0", "0", "0", "5", "9", "2", "7", "6", "4", "6", "5", "1", "3", "0", "4", "1", "6", "6", "1", "0", "6", "4", "5", "9", "5", "0", "7", "4", "7", "0", "6", "8", "0", "4", "8", "1", "2", "4", "8", "1", "3", "2", "5", "3", "4", "0", "8", "9", "6", "4", "8", "2", "7", "8", "0", "1", "6" ]
[ "nonn", "cons" ]
23
0
1
[ "A372268", "A382104" ]
null
A.H.M. Smeets, Mar 15 2025
2025-04-12T12:19:15
oeisdata/seq/A382/A382104.seq
d6504ef4d45deb6526a85844d662b4e7
A382105
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372269.
[ "4", "7", "8", "6", "2", "8", "6", "7", "0", "4", "9", "9", "3", "6", "6", "4", "6", "8", "0", "4", "1", "2", "9", "1", "5", "1", "4", "8", "3", "5", "6", "3", "8", "1", "9", "2", "9", "1", "2", "2", "9", "5", "5", "5", "3", "3", "4", "3", "1", "4", "1", "5", "3", "9", "9", "7", "2", "7", "2", "7", "6", "6", "7", "3", "3", "3", "8", "3", "8", "2", "6", "7", "1", "5", "2", "5", "1", "2", "4", "5", "6", "9", "7", "5", "5", "6", "2" ]
[ "nonn", "cons" ]
18
0
1
[ "A372269", "A382105" ]
null
A.H.M. Smeets, Mar 27 2025
2025-04-12T09:50:13
oeisdata/seq/A382/A382105.seq
4423d0d2add3f190fd9deee5d491b6c2
A382106
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372270.
[ "2", "3", "6", "9", "2", "6", "8", "8", "5", "0", "5", "6", "1", "8", "9", "0", "8", "7", "5", "1", "4", "2", "6", "4", "0", "4", "0", "7", "1", "9", "9", "1", "7", "3", "6", "2", "6", "4", "3", "2", "6", "0", "0", "0", "2", "2", "1", "2", "4", "1", "4", "0", "1", "5", "5", "8", "2", "8", "2", "7", "8", "8", "8", "2", "2", "1", "7", "1", "7", "2", "8", "8", "4", "0", "3", "0", "4", "3", "0", "9", "8", "5", "7", "9", "9", "9", "3" ]
[ "nonn", "cons" ]
13
0
1
[ "A372270", "A382106" ]
null
A.H.M. Smeets, Mar 27 2025
2025-04-12T09:50:17
oeisdata/seq/A382/A382106.seq
0daf619572ef9e5ec00f27e0cb2fa54a
A382107
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372271.
[ "4", "6", "7", "9", "1", "3", "9", "3", "4", "5", "7", "2", "6", "9", "1", "0", "4", "7", "3", "8", "9", "8", "7", "0", "3", "4", "3", "9", "8", "9", "5", "5", "0", "9", "9", "4", "8", "1", "1", "6", "5", "5", "6", "0", "5", "7", "6", "9", "2", "1", "0", "5", "3", "5", "3", "1", "1", "6", "2", "5", "3", "1", "9", "9", "6", "3", "9", "1", "4", "2", "0", "1", "6", "2", "0", "3", "9", "8", "1", "2", "7", "0", "3", "1", "1", "1", "0" ]
[ "nonn", "cons", "changed" ]
11
0
1
[ "A372271", "A382107" ]
null
A.H.M. Smeets, Mar 27 2025
2025-04-24T17:43:28
oeisdata/seq/A382/A382107.seq
850965d97f2b9657567e644300d73159
A382108
Number of zeros (counted with multiplicity) on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
[ "0", "1", "2", "3", "4", "5", "6", "3", "4", "3", "6", "5", "6", "5", "6", "7", "8", "9", "10", "3", "8", "7", "10", "9", "10", "7", "10", "11", "8", "11", "12", "9", "10", "11", "14", "11", "14", "11", "12", "13", "12", "13", "12", "15", "12", "7", "18", "19", "16", "11", "14", "11", "14", "11", "18", "11", "18", "15", "18", "19", "22", "7", "16", "21", "20", "17", "22", "15", "18", "21", "20", "25", "20" ]
[ "nonn" ]
7
0
3
[ "A007318", "A214292", "A382019", "A382108" ]
null
Michel Lagneau, Mar 15 2025
2025-03-25T14:03:04
oeisdata/seq/A382/A382108.seq
4557e3f0493bc28ddf6eda42b1a67cee
A382109
a(n) is the index of the first Issai Schur additive sequence that will accept n.
[ "1", "1", "2", "1", "2", "2", "1", "3", "3", "1", "3", "2", "1", "2", "3", "1", "4", "3", "1", "4", "2", "1", "2", "4", "1", "4", "4", "1", "4", "2", "1", "2", "4", "1", "3", "3", "1", "3", "2", "1", "2", "3", "1", "5", "4", "1", "5", "2", "1", "2", "5", "1", "5", "4", "1", "5", "2", "1", "2", "5", "1", "3", "3", "1", "3", "2", "1", "2", "3", "1", "5", "5", "1", "5", "2", "1", "2", "5", "1", "5", "5", "1", "5", "2", "1", "2", "5", "1", "3", "3" ]
[ "nonn" ]
48
1
3
[ "A033627", "A382109" ]
null
Gordon Hamilton, Mar 24 2025
2025-03-31T01:59:41
oeisdata/seq/A382/A382109.seq
b5be8a1e7e27de7ff74c2b0d13eddde8
A382110
Smallest number k such that k-n and k+n are consecutive primes and k has exactly n distinct prime factors.
[ "4", "15", "154", "3045", "22386", "2467465", "3015870", "368961285", "6326289970", "2313524242029", "1568018377380", "5808562826801735", "1575649493651310", "6177821212870783905", "171718219950879367766", "2039004035049368722335", "13156579658122684173390", "112733682549950000276753015" ]
[ "nonn" ]
27
1
1
[ "A001221", "A087378", "A382110" ]
null
Jean-Marc Rebert, Mar 16 2025
2025-03-25T16:39:08
oeisdata/seq/A382/A382110.seq
34ed81569fa2ef882ad556be2e41ef36
A382111
Maximum number of moves required to transition from the initial configuration (all disks on the first peg) to any possible configuration in the Towers of Hanoi puzzle with 4 pegs and n disks.
[ "0", "1", "3", "5", "9", "13", "17", "25", "33", "41", "49", "65", "81", "97", "113", "130", "161", "193", "225", "257", "294" ]
[ "nonn", "more" ]
16
0
3
[ "A007664", "A382111" ]
null
Geethan Pfeifer, Mar 16 2025
2025-03-31T02:02:38
oeisdata/seq/A382/A382111.seq
75d186cf9d3a81d55d4e98dcb571dbb2
A382112
Distinct elements of A105774.
[ "0", "1", "2", "4", "7", "6", "12", "11", "9", "20", "19", "17", "14", "15", "33", "32", "30", "27", "28", "22", "23", "25", "54", "53", "51", "48", "49", "43", "44", "46", "35", "36", "38", "41", "40", "88", "87", "85", "82", "83", "77", "78", "80", "69", "70", "72", "75", "74", "56", "57", "59", "62", "61", "67", "66", "64", "143", "142", "140", "137", "138", "132", "133", "135", "124" ]
[ "nonn" ]
9
0
3
[ "A105774", "A382112", "A382113" ]
null
Jeffrey Shallit, Mar 16 2025
2025-03-16T12:42:38
oeisdata/seq/A382/A382112.seq
48646720ab70abe75c88f43ad178499f
A382113
Gray code transformation of the Zeckendorf representation of n.
[ "0", "1", "3", "6", "5", "11", "10", "8", "19", "18", "16", "13", "14", "32", "31", "29", "26", "27", "21", "22", "24", "53", "52", "50", "47", "48", "42", "43", "45", "34", "35", "37", "40", "39", "87", "86", "84", "81", "82", "76", "77", "79", "68", "69", "71", "74", "73", "55", "56", "58", "61", "60", "66", "65", "63", "142", "141", "139", "136", "137", "131", "132", "134", "123", "124" ]
[ "nonn", "easy" ]
19
0
3
[ "A003714", "A006068", "A022290", "A382112", "A382113", "A382116" ]
null
Jeffrey Shallit, Mar 16 2025
2025-03-18T07:22:10
oeisdata/seq/A382/A382113.seq
75b41bc181e481cc5846136e83b3a2b6
A382115
a(n) is the smallest positive number not already used and whose binary expansion occurs, ending at position n, in the binary Champernowne word.
[ "1", "3", "2", "5", "11", "7", "6", "4", "9", "18", "37", "75", "23", "14", "13", "27", "55", "15", "30", "12", "8", "17", "34", "68", "137", "19", "38", "77", "10", "21", "42", "85", "43", "87", "47", "94", "28", "25", "51", "102", "205", "155", "311", "111", "222", "29", "59", "119", "239", "31", "62", "60", "24", "16", "33", "66", "132", "264", "529", "35", "70", "140", "281", "50" ]
[ "nonn", "base" ]
34
1
2
[ "A030190", "A083652", "A382115" ]
null
Ruud H.G. van Tol, Mar 16 2025
2025-03-27T20:28:32
oeisdata/seq/A382/A382115.seq
688e696ce5907527a9a301492f2394a5
A382116
a(n) = floor(n*g+(g-1)/2), where g is the golden ratio.
[ "0", "1", "3", "5", "6", "8", "10", "11", "13", "14", "16", "18", "19", "21", "22", "24", "26", "27", "29", "31", "32", "34", "35", "37", "39", "40", "42", "43", "45", "47", "48", "50", "52", "53", "55", "56", "58", "60", "61", "63", "65", "66", "68", "69", "71", "73", "74", "76", "77", "79", "81", "82", "84", "86", "87", "89", "90", "92", "94", "95", "97", "99", "100", "102", "103", "105" ]
[ "nonn", "easy" ]
13
0
3
[ "A001622", "A382113", "A382116" ]
null
Jeffrey Shallit, Mar 16 2025
2025-03-23T20:52:28
oeisdata/seq/A382/A382116.seq
c29e57dc07a339f58997cf9a307d8bd5
A382118
Prime indices k such that prime(k) and prime(k) + 9 are anagrams.
[ "19", "73", "79", "163", "197", "241", "269", "281", "431", "439", "619", "647", "691", "739", "751", "761", "823", "877", "953", "1019", "1051", "1109", "1223", "1259", "1291", "1307", "1423", "1471", "1723", "1741", "1747", "1847", "1949", "1979", "2213", "2371", "2473", "2503", "2647", "2789", "2803", "2819", "2879", "2903", "2909", "3019", "3163", "3361" ]
[ "nonn", "base", "new" ]
14
1
1
[ "A140353", "A228157", "A379208", "A382118" ]
null
Vincenzo Librandi, Apr 15 2025
2025-04-22T08:01:50
oeisdata/seq/A382/A382118.seq
b5f532426a7fa80cb23ec42ef60d8d54
A382119
Numbers k = x*y such that (x*2^k - 1)*(y*2^k - 1) is semiprime.
[ "2", "3", "4", "6", "16", "126" ]
[ "nonn", "more" ]
27
1
1
[ "A000668", "A001358", "A161904", "A382119" ]
null
Juri-Stepan Gerasimov, Mar 25 2025
2025-04-07T17:46:15
oeisdata/seq/A382/A382119.seq
43cfbafc8c76f1fd37c772f7dd0e6ec4
A382120
Numbers k in A024619 such that there exists a prime p | k for which p^(m+1) == r (mod k), where r is also in A024619, and a prime q | k for which q^(m+1) == r (mod k), where r is a prime power.
[ "10", "18", "20", "21", "22", "26", "28", "30", "34", "36", "38", "40", "42", "46", "48", "50", "52", "54", "55", "57", "58", "60", "68", "72", "74", "78", "82", "84", "86", "93", "94", "96", "98", "100", "106", "108", "110", "111", "114", "116", "117", "118", "122", "124", "126", "129", "132", "134", "136", "142", "146", "147", "148", "150", "156", "158", "162", "164", "165" ]
[ "nonn" ]
20
1
1
[ "A000961", "A024619", "A381750", "A381864", "A382120" ]
null
Michael De Vlieger, Apr 06 2025
2025-04-12T12:46:09
oeisdata/seq/A382/A382120.seq
0bd960f463c002d69a2be6d5c82b0b04
A382121
Minimal polynomials of nimbers *(2^(2^n)-1), evaluated at 2.
[ "7", "25", "425", "101021", "7158330089", "27971386341277386797", "557019405516812760530014815489825522433", "200070165806576462487855236097886014378133571492030310620129377307348366314169" ]
[ "nonn" ]
11
1
1
[ "A051775", "A382121" ]
null
Simon Tatham, Mar 16 2025
2025-03-24T11:54:05
oeisdata/seq/A382/A382121.seq
d49bdc33216fc8e0f11122a9b4281b7f
A382122
G.f. satisfies Sum_{n>=0} x^n * abs(1/A(x)^n) = C(x), where C(x) = 1 + x*C(x)^2 and abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x).
[ "1", "1", "3", "12", "49", "202", "838", "3486", "14575", "60820", "254406", "1061438", "4444802", "18602018", "78066384", "326985608", "1365996909", "5697914836", "23752394338", "99027785702", "413203462516", "1726164299990", "7219911692522", "30228722494504", "126658682953328", "530772842793396", "2224199143900798", "9319843329508200", "39051457052597480" ]
[ "nonn" ]
13
0
3
[ "A000108", "A382122", "A382123" ]
null
Paul D. Hanna, Mar 16 2025
2025-03-28T04:38:23
oeisdata/seq/A382/A382122.seq
d7f16ba4758b9cf431a7ed18f7470656
A382123
a(n) = sigma(n)*sigma(2*n)/3 for n >= 1.
[ "1", "7", "16", "35", "36", "112", "64", "155", "169", "252", "144", "560", "196", "448", "576", "651", "324", "1183", "400", "1260", "1024", "1008", "576", "2480", "961", "1372", "1600", "2240", "900", "4032", "1024", "2667", "2304", "2268", "2304", "5915", "1444", "2800", "3136", "5580", "1764", "7168", "1936", "5040", "6084", "4032", "2304", "10416", "3249", "6727", "5184", "6860" ]
[ "nonn" ]
8
1
2
[ "A000203", "A062731", "A087943", "A329963", "A347108", "A382123", "A382124", "A382125" ]
null
Paul D. Hanna, Apr 06 2025
2025-04-06T16:51:29
oeisdata/seq/A382/A382123.seq
58ba6426ca2eb2ec4a1f76852c817835
A382124
G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n)/3 * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
[ "1", "1", "4", "9", "22", "44", "105", "200", "425", "825", "1634", "3072", "5917", "10846", "20153", "36436", "65882", "116831", "207293", "361502", "629539", "1083068", "1856251", "3150554", "5328137", "8933266", "14920357", "24745481", "40869317", "67089425", "109697089", "178379353", "288953043", "465805681", "748079686", "1196148976", "1905801579", "3024212984" ]
[ "nonn" ]
8
0
3
[ "A000041", "A000203", "A087943", "A156302", "A329963", "A347108", "A382123", "A382124", "A382125" ]
null
Paul D. Hanna, Apr 06 2025
2025-04-06T14:55:22
oeisdata/seq/A382/A382124.seq
f6a4415ba1f547d13106584b564d0314
A382125
G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
[ "1", "3", "15", "52", "180", "555", "1696", "4809", "13410", "35844", "93771", "238305", "594403", "1449441", "3476607", "8190824", "19015548", "43492230", "98197506", "218885763", "482337864", "1051051262", "2266904481", "4840955055", "10242621395", "21479302368", "44666897613", "92139573135", "188617118541", "383280793962", "773395096907" ]
[ "nonn" ]
10
0
2
[ "A000041", "A000203", "A087943", "A156302", "A329963", "A347108", "A382123", "A382124", "A382125" ]
null
Paul D. Hanna, Apr 06 2025
2025-04-06T14:55:34
oeisdata/seq/A382/A382125.seq
b0ed6ed8c3d492650f403b280ea676bb
A382126
G.f. satisfies A(x) = A(x^2)*A(x^3) / (1-x).
[ "1", "1", "2", "3", "5", "6", "11", "13", "20", "26", "36", "44", "66", "78", "106", "132", "174", "208", "282", "332", "430", "520", "656", "774", "1000", "1166", "1456", "1731", "2131", "2486", "3097", "3585", "4374", "5125", "6177", "7144", "8700", "9994", "11966", "13874", "16482", "18908", "22598", "25800", "30472", "35014", "41062", "46802", "55178", "62624", "73094", "83384", "96834" ]
[ "nonn", "new" ]
13
0
3
[ "A003586", "A007814", "A007949", "A382126" ]
null
Paul D. Hanna, Apr 14 2025
2025-04-15T08:56:26
oeisdata/seq/A382/A382126.seq
8b57f8e627f0c46340902bf7d965550a
A382127
Smallest prime p with n distinct digits, such that for each digit of p, 2*p*(digit) + 1 is prime.
[ "3", "131", "173", "4391", "4746616799" ]
[ "nonn", "base", "fini", "full" ]
40
1
1
[ "A000040", "A005384", "A382127", "A382179", "A382198", "A382199" ]
null
Jakub Buczak, Mar 16 2025
2025-03-19T23:20:59
oeisdata/seq/A382/A382127.seq
c11762aa3d5e4754dd33ed25b5b19d02
A382128
Fractalization of the Recamán sequence.
[ "0", "0", "1", "0", "3", "1", "6", "0", "2", "3", "7", "1", "13", "6", "20", "0", "12", "2", "21", "3", "11", "7", "22", "1", "10", "13", "23", "6", "9", "20", "24", "0", "8", "12", "25", "2", "43", "21", "62", "3", "42", "11", "63", "7", "41", "22", "18", "1", "42", "10", "17", "13", "43", "23", "16", "6", "44", "9", "15", "20", "45", "24", "14", "0", "46", "8", "79", "12", "113", "25", "78", "2", "114", "43", "77", "21", "39", "62", "78" ]
[ "nonn", "easy" ]
25
1
5
[ "A003602", "A005132", "A110766", "A110779", "A110812", "A382128", "A382129", "A382130" ]
null
David Cleaver, Mar 16 2025
2025-03-22T22:50:37
oeisdata/seq/A382/A382128.seq
cdd63f2b6c0cd99599156813680c702e
A382129
Fractalization of the prime numbers.
[ "2", "2", "3", "2", "5", "3", "7", "2", "11", "5", "13", "3", "17", "7", "19", "2", "23", "11", "29", "5", "31", "13", "37", "3", "41", "17", "43", "7", "47", "19", "53", "2", "59", "23", "61", "11", "67", "29", "71", "5", "73", "31", "79", "13", "83", "37", "89", "3", "97", "41", "101", "17", "103", "43", "107", "7", "109", "47", "113", "19", "127", "53", "131", "2", "137", "59", "139", "23", "149", "61", "151", "11", "157" ]
[ "nonn", "easy" ]
29
1
1
[ "A000040", "A003602", "A110766", "A110779", "A110812", "A382128", "A382129", "A382130" ]
null
David Cleaver, Mar 16 2025
2025-03-22T22:50:51
oeisdata/seq/A382/A382129.seq
f910ff7a886205a6aec5ca5f39d468c2
A382130
Fractalization of the golden ratio.
[ "1", "1", "6", "1", "1", "6", "8", "1", "0", "1", "3", "6", "3", "8", "9", "1", "8", "0", "8", "1", "7", "3", "4", "6", "9", "3", "8", "8", "9", "9", "4", "1", "8", "8", "4", "0", "8", "8", "2", "1", "0", "7", "4", "3", "5", "4", "8", "6", "6", "9", "8", "3", "3", "8", "4", "8", "3", "9", "6", "9", "5", "4", "6", "1", "3", "8", "8", "8", "1", "4", "1", "0", "7", "8", "7", "8", "2", "2", "0", "1", "3", "0", "0", "7", "9", "4", "1", "3", "7", "5", "9", "4", "8", "8", "0" ]
[ "nonn", "easy", "base" ]
28
1
3
[ "A001622", "A003602", "A110766", "A110779", "A110812", "A382128", "A382129", "A382130" ]
null
David Cleaver, Mar 16 2025
2025-03-22T22:51:21
oeisdata/seq/A382/A382130.seq
9c2fc6000e8d84db8e1690fe2b91f41a
A382132
Centered pentagonal numbers which are semiprimes.
[ "6", "51", "106", "141", "226", "391", "526", "681", "766", "951", "1501", "1891", "2031", "2326", "2481", "2641", "3151", "3901", "4101", "4306", "6631", "6891", "7981", "8266", "8851", "10081", "10401", "11391", "13141", "14631", "15406", "16201", "20931", "22801", "23281", "24751", "27301", "27826", "28891", "29431", "30526", "32206", "33351", "35701", "36301", "38131", "38751" ]
[ "nonn" ]
19
1
1
[ "A001358", "A005891", "A364610", "A382132" ]
null
Massimo Kofler, Mar 17 2025
2025-03-25T18:01:53
oeisdata/seq/A382/A382132.seq
27d1390ab409898c4dce96010e5e4403
A382133
Products of 4 distinct primes that are the average of two consecutive primes.
[ "462", "570", "714", "858", "870", "1190", "1230", "1254", "1290", "1302", "1482", "1590", "1722", "1785", "1806", "1995", "2046", "2130", "2170", "2210", "2470", "2490", "2870", "3030", "3045", "3255", "3390", "3410", "3705", "3774", "3795", "3885", "3930", "4002", "4218", "4242", "4278", "4422", "4510", "4515", "4641", "4785", "4935", "5010", "5110" ]
[ "nonn" ]
21
1
1
[ "A024675", "A046386", "A078443", "A130178", "A382133" ]
null
Massimo Kofler, Mar 17 2025
2025-03-31T21:25:27
oeisdata/seq/A382/A382133.seq
3831b013c27094104ff5be3232f736e9
A382134
Number of completely asymmetric matchings (not containing centered or coupled arcs) of [2n].
[ "1", "0", "0", "8", "48", "384", "4480", "59520", "897792", "15368192", "293769216", "6198589440", "143130972160", "3590253477888", "97214510235648", "2826205634330624", "87801981951344640", "2902989352269250560", "101776549707306237952", "3771425415371470405632", "147285455218020210180096" ]
[ "nonn" ]
18
0
4
[ "A000079", "A001205", "A047974", "A053871", "A382134" ]
null
R. J. Mathar, Mar 17 2025
2025-03-17T16:01:46
oeisdata/seq/A382/A382134.seq
20130d6e1858ae3d922c943062dbabc8
A382135
Square array read by antidiagonals: T(n,k) = S(n+k) - S(n) - S(k) - min(n,k), where S(k) = A000788(k-1).
[ "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "1", "1", "2", "2", "2", "0", "2", "2", "2", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "2", "2", "2", "0", "1", "0", "1", "0", "2", "2", "2", "1", "2", "2", "1", "0", "0", "0", "0", "1", "2", "2", "1", "2", "2", "3", "2", "2", "0", "0", "0", "2" ]
[ "nonn", "easy", "base", "tabl" ]
25
1
22
[ "A000120", "A000788", "A382135" ]
null
Yifan Xie, Mar 17 2025
2025-04-02T15:04:25
oeisdata/seq/A382/A382135.seq
86b45624565919dc216af1a2099bc908
A382136
Number of triples of non-crossing lattice paths from (0,0) to (n,n) using (1,0) and (0,1) as steps.
[ "1", "4", "50", "980", "24696", "731808", "24293412", "877262100", "33803832920", "1371597504992", "58043512597616", "2543610972177184", "114801908084920000", "5313688317073440000", "251370667949555421000", "12120154230252872020500", "594283640753967620247000", "29576997448419995135100000" ]
[ "nonn", "easy" ]
17
0
2
[ "A000108", "A000891", "A382136" ]
null
Yifan Xie, Mar 27 2025
2025-04-02T15:07:27
oeisdata/seq/A382/A382136.seq
23acba42322abd913771b3a1156a0458
A382137
Smallest integer that cannot be be converted to a multiple of n by changing at most one of its decimal digit.
[ "545", "51", "44", "31", "21", "21", "22", "21", "21", "11", "15", "11", "11", "11", "11", "11", "12", "11", "11", "11", "14", "11", "11", "11", "11", "11", "11", "11", "11", "11", "13", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12" ]
[ "nonn", "base" ]
36
11
1
[ "A192545", "A353023", "A382137" ]
null
Mickaël Launay, Mar 27 2025
2025-04-03T02:51:56
oeisdata/seq/A382/A382137.seq
ec97c8319a87155f03fe2c50000ae272
A382138
a(n) = A381800(n) - A381798(n).
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "2", "0", "1", "1", "0", "0", "3", "0", "2", "1", "1", "0", "4", "0", "1", "0", "2", "0", "8", "0", "0", "1", "1", "1", "5", "0", "1", "1", "3", "0", "10", "0", "2", "3", "1", "0", "6", "0", "5", "1", "2", "0", "9", "1", "4", "1", "1", "0", "16", "0", "1", "2", "0", "1", "14", "0", "2", "1", "12", "0", "8", "0", "1", "5", "2", "1", "16", "0", "5", "0", "1", "0", "19", "1" ]
[ "nonn", "new" ]
24
1
12
[ "A000961", "A024619", "A381798", "A381799", "A381800", "A381801", "A382138" ]
null
Michael De Vlieger, Apr 12 2025
2025-04-19T18:06:30
oeisdata/seq/A382/A382138.seq
f589f77a5b810a7ab30a7882931894fb
A382139
Number of matchings of [2n] with no coupled arcs.
[ "1", "1", "1", "9", "81", "705", "7665", "100905", "1524705", "26022465", "496042785", "10445342985", "240779831985", "6030718158465", "163087008669585", "4735950860666025", "146987669673669825", "4855606200012593025", "170101350767940617025", "6298861062893921346825", "245834199405298416337425" ]
[ "nonn" ]
8
0
4
[ "A001147", "A047974", "A053871", "A067994", "A382134", "A382139" ]
null
R. J. Mathar, Mar 17 2025
2025-03-17T14:23:42
oeisdata/seq/A382/A382139.seq
9b24818dba754478c357ab0d997c42af
A382140
Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group A_n.
[ "6", "18", "50", "154", "536" ]
[ "nonn", "more" ]
12
1
1
[ "A382140", "A382141", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:14
oeisdata/seq/A382/A382140.seq
5560db2c80ec7d97a587d413ae6685d1
A382141
Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group A_n.
[ "3", "8", "18", "42", "112" ]
[ "nonn", "more" ]
11
1
1
[ "A382140", "A382141", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:20
oeisdata/seq/A382/A382141.seq
3fdcf9102351c5e32ade165ff78a14ff
A382142
Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n.
[ "24", "102", "486", "2436" ]
[ "nonn", "more" ]
9
2
1
[ "A382140", "A382142", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:26
oeisdata/seq/A382/A382142.seq
f52e77b635cc104d6d2f26a895d6f0e6
A382143
Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n.
[ "12", "51", "237", "1122" ]
[ "nonn", "more" ]
9
2
1
[ "A382140", "A382143", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:31
oeisdata/seq/A382/A382143.seq
4760434196831d0682321e874270e7b3
A382144
Number of Hilbert basis elements for the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n.
[ "13", "58", "302", "1598" ]
[ "nonn", "more" ]
9
2
1
[ "A382140", "A382144", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:43
oeisdata/seq/A382/A382144.seq
b015c5fab2b61cf97bd2c780611f2bcc
A382145
Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n.
[ "50", "306", "1982", "12162" ]
[ "nonn", "more" ]
9
3
1
[ "A382140", "A382145", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:52
oeisdata/seq/A382/A382145.seq
dd55f604347fd17225713eedbce67031
A382146
Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n.
[ "18", "81", "492", "3258" ]
[ "nonn", "more" ]
14
3
1
[ "A382140", "A382146", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:18:08
oeisdata/seq/A382/A382146.seq
428b9287fc747bdaaca263d01e2709a5
A382147
Number of Hilbert basis elements for the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n.
[ "18", "82", "505", "3470" ]
[ "nonn", "more" ]
10
3
1
[ "A382140", "A382146", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:18:14
oeisdata/seq/A382/A382147.seq
0205a705b9b2f9b65d393161a74e5b3f
A382148
Index of first occurrence of n in A381238, or -1 if n does not appear there.
[ "0", "14", "1", "3", "79", "11", "30", "8", "108", "17", "6", "111", "169", "18", "76", "78", "74", "388", "239", "86", "383", "345", "191", "1017", "178", "486", "163", "1828", "209", "364", "484", "582", "160", "289", "436", "878", "174", "320", "37", "1029", "698", "1386", "768", "618", "558", "212", "1318", "2213", "826", "350", "877", "1780", "1033", "407", "188", "229", "1478", "467", "305" ]
[ "nonn" ]
7
1
2
[ "A381238", "A382148" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-18T15:46:37
oeisdata/seq/A382/A382148.seq
e8cf66c1bdeed420b5895b518dabf674