sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A382045 | Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into at most k parts with 0 <= k <= n. | [
"1",
"0",
"3",
"0",
"6",
"12",
"0",
"10",
"28",
"38",
"0",
"15",
"66",
"102",
"117",
"0",
"21",
"126",
"249",
"309",
"330",
"0",
"28",
"236",
"562",
"788",
"878",
"906",
"0",
"36",
"396",
"1167",
"1845",
"2205",
"2331",
"2367",
"0",
"45",
"651",
"2292",
"4128",
"5289",
"5814",
"5982",
"6027",
"0",
"55",
"1001",
"4272",
"8703",
"12106",
"13881",
"14602",
"14818",
"14873",
"0",
"66",
"1512",
"7608",
"17634",
"26616",
"32088",
"34608",
"35556",
"35826",
"35892"
] | [
"nonn",
"tabl"
] | 18 | 0 | 3 | [
"A000217",
"A026820",
"A217093",
"A381891",
"A382045"
] | null | Peter Dolland, Mar 13 2025 | 2025-04-01T19:58:03 | oeisdata/seq/A382/A382045.seq | 35711d75a443905710a929aa586361df |
A382046 | Connected domination number of the n-Lucas cube graph. | [
"1",
"1",
"1",
"3",
"4",
"7",
"10",
"14",
"20"
] | [
"nonn",
"more"
] | 4 | 1 | 4 | null | null | Eric W. Weisstein, Mar 13 2025 | 2025-03-13T09:52:23 | oeisdata/seq/A382/A382046.seq | 80aa3971cb7fac62e70c82c6dc74a8b2 |
A382047 | Connected domination number of the n X n knight graph. | [
"7",
"7",
"8",
"11",
"15",
"19",
"23",
"26"
] | [
"nonn",
"more"
] | 13 | 4 | 1 | [
"A382047",
"A382207"
] | null | Eric W. Weisstein, Mar 13 2025 | 2025-03-21T07:00:24 | oeisdata/seq/A382/A382047.seq | be50eb44fbce29e6686d482ce0bd278f |
A382048 | Starting from n and decrement, d = 1 we repeatedly subtract d until we reach a multiple of d+1. Whereupon we set d := d+1 and continue the process. a(n) is the total number of subtractions required to reduce n to 0. | [
"1",
"2",
"2",
"3",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"6",
"6",
"7",
"6",
"7",
"7",
"8",
"8",
"9",
"7",
"8",
"8",
"9",
"9",
"10",
"9",
"10",
"10",
"11",
"11",
"12",
"9",
"10",
"10",
"11",
"11",
"12",
"11",
"12",
"12",
"13",
"13",
"14",
"12",
"13",
"13",
"14",
"14",
"15",
"14",
"15",
"15",
"16",
"16",
"17",
"13",
"14",
"14",
"15",
"15",
"16",
"15",
"16",
"16",
"17",
"17",
"18",
"16",
"17",
"17",
"18",
"18",
"19",
"18",
"19",
"19",
"20",
"20",
"21",
"18",
"19",
"19"
] | [
"nonn"
] | 29 | 1 | 2 | null | null | Howard J. Bradley, Mar 13 2025 | 2025-03-30T00:16:59 | oeisdata/seq/A382/A382048.seq | d0f55d4b586820594f5addc0f61b87d9 |
A382049 | Numbers k such that k +- 2 and k +- 3 are all semiprimes. | [
"12",
"36",
"216",
"540",
"1044",
"4284",
"6336",
"11304",
"17640",
"30276",
"31284",
"34056",
"35496",
"35820",
"37836",
"41796",
"46080",
"47664",
"50940",
"57240",
"62244",
"71064",
"75096",
"80856",
"84924",
"98820",
"100044",
"103536",
"106344",
"143100",
"143424",
"144936",
"149220",
"159264",
"159804",
"162036",
"168120",
"172584",
"175176",
"177624",
"194760",
"195300"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A001358",
"A105571",
"A382049"
] | null | Zak Seidov and Robert Israel, Mar 13 2025 | 2025-03-14T20:23:19 | oeisdata/seq/A382/A382049.seq | 6083ec80381b8acf7b3ff4f896840c6a |
A382050 | a(n) = least positive integer m such that when m*(m+1) is written in base n, it is zeroless and contains every single nonzero digit exactly once, or 0 if no such number exists. | [
"0",
"0",
"5",
"0",
"79",
"0",
"650",
"2716",
"17846",
"0",
"277166",
"1472993",
"8233003",
"0",
"286485314",
"1797613432",
"11675780880",
"0",
"538954048563",
"3821844010905",
"27824692448867",
"0",
"1587841473665581",
"12417635018180828",
"99246128296767625",
"0",
"6742930364132819544",
"57228575814672196977",
"494789896551823383745",
"0",
"38997607084561562847324"
] | [
"nonn",
"base"
] | 16 | 2 | 3 | [
"A381266",
"A382050"
] | null | Chai Wah Wu, Mar 13 2025 | 2025-03-17T22:15:44 | oeisdata/seq/A382/A382050.seq | c248c727586953e7fb6e05587f923a02 |
A382051 | Primes prime(k) such that k*log(k)/prime(k) < (k-1)*log(k-1)/prime(k-1). | [
"11",
"17",
"23",
"29",
"37",
"53",
"59",
"67",
"79",
"89",
"97",
"127",
"137",
"149",
"157",
"163",
"173",
"179",
"191",
"211",
"223",
"239",
"251",
"257",
"263",
"269",
"277",
"293",
"307",
"331",
"347",
"367",
"397",
"409",
"419",
"431",
"457",
"479",
"487",
"499",
"521",
"541",
"557",
"587",
"631",
"641",
"673",
"691",
"701",
"709",
"719",
"727",
"751",
"769",
"787",
"797"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A001113",
"A060769",
"A068985",
"A382051",
"A382052"
] | null | Alain Rocchelli, Mar 13 2025 | 2025-04-08T10:20:03 | oeisdata/seq/A382/A382051.seq | ff0b03569294479d8b2af9109b5f5d1e |
A382052 | Primes prime(k) such that k*log(k)/prime(k) > (k-1)*log(k-1)/prime(k-1). | [
"3",
"5",
"7",
"13",
"19",
"31",
"41",
"43",
"47",
"61",
"71",
"73",
"83",
"101",
"103",
"107",
"109",
"113",
"131",
"139",
"151",
"167",
"181",
"193",
"197",
"199",
"227",
"229",
"233",
"241",
"271",
"281",
"283",
"311",
"313",
"317",
"337",
"349",
"353",
"359",
"373",
"379",
"383",
"389",
"401",
"421",
"433",
"439",
"443",
"449",
"461",
"463",
"467",
"491",
"503",
"509",
"523",
"547",
"563",
"569",
"571",
"577",
"593",
"599"
] | [
"nonn",
"new"
] | 27 | 1 | 1 | [
"A060770",
"A068996",
"A185393",
"A382051",
"A382052"
] | null | Alain Rocchelli, Mar 13 2025 | 2025-04-16T09:02:51 | oeisdata/seq/A382/A382052.seq | 24a231abfb01a0915605c74da54c0aea |
A382053 | Numbers k such that Fibonacci(k) has a Fibonacci number of 1's in its binary representation. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"13",
"16",
"19",
"20",
"22",
"30",
"33",
"46",
"47",
"56",
"85",
"105",
"109",
"150",
"173",
"254",
"266",
"279",
"413",
"416",
"444",
"624",
"651",
"690",
"713",
"746",
"1031",
"1110",
"2841",
"2864",
"2867",
"2892",
"2895",
"2994",
"4516",
"4523",
"4543",
"4559",
"7452",
"7491",
"7532",
"11840",
"11852",
"11863",
"19297",
"19311",
"19442",
"19462"
] | [
"nonn",
"base"
] | 14 | 1 | 3 | [
"A000045",
"A381704",
"A382053"
] | null | Robert Israel, Mar 13 2025 | 2025-03-15T11:31:04 | oeisdata/seq/A382/A382053.seq | 96ba84f87a475e83224ac29ffa628e30 |
A382054 | a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digit n-1 and contains every single digit from 0 to n-2 exactly once, or 0 if no such number exists. | [
"0",
"0",
"14",
"54",
"0",
"616",
"2251",
"12069",
"0",
"251085",
"1348305",
"7619403",
"0",
"269717049",
"1698727527",
"11061795398",
"0",
"513383208454",
"3648738866370",
"26618719297968",
"0",
"1524495582671125",
"11941193897016731",
"95578593301936475",
"0",
"6510865478836888683",
"55324396705324796861",
"478855818873249715068",
"0",
"37817609915967014967822"
] | [
"nonn",
"base"
] | 19 | 3 | 3 | [
"A381266",
"A382050",
"A382054"
] | null | Chai Wah Wu, Mar 13 2025 | 2025-03-17T22:15:38 | oeisdata/seq/A382/A382054.seq | 3393d247a710b3260e40b786f94fa8e3 |
A382055 | a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digits 0 or n-1 and contains every single digit from 1 to n-2 exactly once, or 0 if no such number exists. | [
"0",
"2",
"6",
"19",
"0",
"420",
"924",
"3672",
"0",
"78880",
"431493",
"2173950",
"0",
"71583429",
"436726936",
"2750336517",
"0",
"120521201887",
"833996387274",
"5932255141224",
"0",
"324116744376715",
"2483526997445916",
"19463766853506024",
"0",
"1274294107710603710",
"10627079743009611713",
"90335862784009245081",
"0"
] | [
"nonn",
"base"
] | 17 | 3 | 2 | [
"A381266",
"A382050",
"A382054",
"A382055"
] | null | Chai Wah Wu, Mar 13 2025 | 2025-03-17T22:15:22 | oeisdata/seq/A382/A382055.seq | 32db728bbc88a404e5aff5fbc94380ff |
A382056 | Remove every copy of the largest digit of n; if any digits remain, return the number formed by arranging the remaining digits in nondecreasing order. If no digits remain, return 0. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"1",
"2",
"0",
"3",
"3",
"3",
"3",
"3",
"3",
"0",
"1",
"2",
"3",
"0",
"4",
"4",
"4",
"4",
"4",
"0",
"1",
"2",
"3",
"4",
"0",
"5",
"5",
"5",
"5",
"0",
"1",
"2",
"3",
"4",
"5",
"0",
"6",
"6",
"6",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"0",
"7",
"7",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"0"
] | [
"nonn",
"look",
"base"
] | 24 | 1 | 23 | [
"A054055",
"A125289",
"A382056",
"A382401"
] | null | Ali Sada, Mar 13 2025 | 2025-03-23T23:20:02 | oeisdata/seq/A382/A382056.seq | 39cc60650f816a27ef24a79325a9a292 |
A382057 | Z-sequence for the Riordan triangle A125166. | [
"8",
"-37",
"181",
"-865",
"4105",
"-19441",
"92017",
"-435457",
"2060641",
"-9751105",
"46142785",
"-218350081",
"1033243777",
"-4889362177",
"23136710401",
"-109484089345",
"518084273665",
"-2451601105921",
"11601100993537",
"-54896999325697",
"259775389992961",
"-1229270344003585",
"5816969724063745",
"-27526196280360961"
] | [
"sign",
"easy"
] | 12 | 0 | 1 | [
"A006232",
"A125166",
"A382057"
] | null | Wolfdieter Lang, Mar 25 2025 | 2025-04-01T22:38:20 | oeisdata/seq/A382/A382057.seq | 0e630c378c1fbf67902b0b287f058d3f |
A382058 | E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764. | [
"1",
"1",
"5",
"67",
"1465",
"44541",
"1735681",
"82527439",
"4632741905",
"299875704697",
"21989097804961",
"1801520077445331",
"163092373817762137",
"16168084561101716725",
"1741946677697976052577",
"202668693570279026375671",
"25324088113475137179021601",
"3382305512670022948599733233",
"480858973986045019386825360577"
] | [
"nonn"
] | 15 | 0 | 3 | [
"A001764",
"A161629",
"A161635",
"A377546",
"A382032",
"A382033",
"A382058",
"A382059"
] | null | Seiichi Manyama, Mar 13 2025 | 2025-03-14T09:00:26 | oeisdata/seq/A382/A382058.seq | 83b283bdae3416c0a347b467a48b04d3 |
A382059 | E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293. | [
"1",
"1",
"7",
"127",
"3733",
"152161",
"7939261",
"505087843",
"37920697753",
"3281899787137",
"321700411900441",
"35227497466867531",
"4262151791317099285",
"564639582580738851265",
"81290104199287214904037",
"12637400195063381931755731",
"2109868901338065949399370161",
"376504852688521502050554789889"
] | [
"nonn"
] | 15 | 0 | 3 | [
"A002293",
"A161629",
"A364938",
"A377548",
"A382033",
"A382034",
"A382058",
"A382059"
] | null | Seiichi Manyama, Mar 13 2025 | 2025-03-14T09:00:31 | oeisdata/seq/A382/A382059.seq | 1de6de6ba667c57ab36bd4c4ff046bd3 |
A382060 | Number of rooted ordered trees with n nodes such that the degree of each node is less than or equal to its depth plus one. | [
"1",
"1",
"1",
"1",
"2",
"4",
"10",
"27",
"77",
"231",
"719",
"2302",
"7541",
"25177",
"85405",
"293635",
"1021272",
"3587674",
"12713796",
"45402113",
"163244197",
"590529759",
"2147915920",
"7851127319",
"28826079193",
"106268313333",
"393218951710",
"1459969448090",
"5437679646441",
"20311366912839",
"76072367645347",
"285623120079865",
"1074888308119285"
] | [
"nonn"
] | 28 | 0 | 5 | [
"A000081",
"A000108",
"A000957",
"A036765",
"A288942",
"A358586",
"A358590",
"A380761",
"A382060"
] | null | John Tyler Rascoe, Mar 14 2025 | 2025-03-20T06:01:29 | oeisdata/seq/A382/A382060.seq | 87fc8a20e77b5fa9bc55887a0c1b11b3 |
A382061 | Numbers whose number of divisors is divisible by their number of unitary divisors. | [
"1",
"2",
"3",
"5",
"6",
"7",
"8",
"10",
"11",
"13",
"14",
"15",
"17",
"19",
"21",
"22",
"23",
"24",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"46",
"47",
"51",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"65",
"66",
"67",
"69",
"70",
"71",
"72",
"73",
"74",
"77",
"78",
"79",
"82",
"83",
"85",
"86",
"87",
"88",
"89",
"91",
"93",
"94",
"95",
"96",
"97"
] | [
"nonn",
"easy"
] | 9 | 1 | 2 | [
"A000005",
"A005117",
"A013661",
"A034444",
"A057521",
"A065463",
"A268335",
"A382061",
"A382062",
"A382063"
] | null | Amiram Eldar, Mar 14 2025 | 2025-03-14T21:16:44 | oeisdata/seq/A382/A382061.seq | 13e6bb1fa72bf8583cb76e764acffff0 |
A382062 | Powerful numbers whose number of divisors is divisible by their number of unitary divisors. | [
"1",
"8",
"27",
"32",
"72",
"108",
"125",
"128",
"200",
"216",
"243",
"343",
"392",
"432",
"500",
"512",
"648",
"675",
"864",
"968",
"1000",
"1125",
"1152",
"1323",
"1331",
"1352",
"1372",
"1728",
"1944",
"2000",
"2048",
"2187",
"2197",
"2312",
"2744",
"2888",
"3087",
"3125",
"3200",
"3267",
"3375",
"3456",
"4000",
"4232",
"4563",
"4913",
"5000",
"5324",
"5400"
] | [
"nonn",
"easy"
] | 9 | 1 | 2 | [
"A000005",
"A001694",
"A034444",
"A382061",
"A382062",
"A382064"
] | null | Amiram Eldar, Mar 14 2025 | 2025-03-14T21:16:50 | oeisdata/seq/A382/A382062.seq | 5bb09ab800a82cbe9672b55b26ec9832 |
A382063 | Numbers whose number of coreful divisors is divisible by their number of exponential divisors. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79"
] | [
"nonn",
"easy"
] | 9 | 1 | 2 | [
"A000005",
"A002117",
"A004709",
"A005361",
"A036966",
"A049419",
"A344742",
"A360540",
"A377019",
"A382061",
"A382063",
"A382064",
"A382065"
] | null | Amiram Eldar, Mar 14 2025 | 2025-03-14T21:16:56 | oeisdata/seq/A382/A382063.seq | fbef558b8b1191b4d901f87f30b130b2 |
A382064 | Cubefull numbers whose number of coreful divisors is divisible by their number of exponential divisors. | [
"1",
"256",
"432",
"512",
"648",
"2000",
"4096",
"5000",
"5184",
"5488",
"6561",
"6912",
"10125",
"11664",
"16875",
"19208",
"19683",
"21296",
"27783",
"32000",
"35152",
"40000",
"41472",
"52488",
"54000",
"62208",
"64827",
"78608",
"81000",
"87808",
"107811",
"109744",
"110592",
"117128",
"135000",
"148176",
"153664",
"177957",
"186624"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A004709",
"A005361",
"A036966",
"A049419",
"A382062",
"A382063",
"A382064"
] | null | Amiram Eldar, Mar 14 2025 | 2025-03-14T21:17:04 | oeisdata/seq/A382/A382064.seq | 6c9245238d60dd058d201c6160ffbce0 |
A382065 | Exponentially refactorable numbers: numbers whose exponents in their canonical prime factorization are all refactorable numbers (A033950). | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79"
] | [
"nonn",
"easy"
] | 8 | 1 | 2 | [
"A004709",
"A033950",
"A138302",
"A197680",
"A209061",
"A268335",
"A344742",
"A361177",
"A377019",
"A382063",
"A382065"
] | null | Amiram Eldar, Mar 14 2025 | 2025-03-14T21:17:12 | oeisdata/seq/A382/A382065.seq | a8344ef96acb8e63ad8b97e664ba920f |
A382066 | a(n) = Sum_{k=1..prime(n)-1} (-k/prime(n)) * 3^(k-1) / 2, where (p/q) is the Legendre symbol of p and q. | [
"1",
"8",
"151",
"8083",
"70568",
"8910416",
"39392803",
"7701058213",
"2325990648824",
"43563061207573",
"19999898090377928",
"2566793589644124992",
"10627327735475477203",
"2179055220073884519235",
"630486036620986837882904",
"646895254841829205782412249",
"5802709167332592724735012664"
] | [
"nonn"
] | 19 | 2 | 2 | null | null | Steven Lu, Mar 14 2025 | 2025-03-31T21:19:51 | oeisdata/seq/A382/A382066.seq | ec89e8639d9038a7c04f4d5f369ecfd7 |
A382067 | Lexicographically earliest sequence of distinct positive integers such that the product of two consecutive terms is always a factorial number. | [
"1",
"2",
"3",
"8",
"15",
"48",
"105",
"384",
"945",
"3840",
"10395",
"46080",
"135135",
"645120",
"2027025",
"3072",
"155925",
"256",
"14175",
"2816",
"170100",
"36608",
"2381400",
"549120",
"11340",
"32",
"1260",
"4",
"6",
"20",
"36",
"140",
"288",
"12600",
"3168",
"151200",
"24",
"5",
"144",
"35",
"1152",
"315",
"16",
"45",
"112",
"360",
"14",
"2880"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A000142",
"A375579",
"A382067",
"A382072",
"A382083",
"A382085"
] | null | Rémy Sigrist, Mar 14 2025 | 2025-03-17T22:19:57 | oeisdata/seq/A382/A382067.seq | 1e9ead9b29c5559db606ffe13b51200f |
A382068 | Array read by ascending antidiagonals: A(n,m) is obtained by concatenating the digits of floor(n/m) with those of its fractional part up to the digits of the first period, where the leading and trailing 0's are omitted. | [
"1",
"2",
"5",
"3",
"1",
"3",
"4",
"15",
"6",
"25",
"5",
"2",
"1",
"5",
"2",
"6",
"25",
"13",
"75",
"4",
"16",
"7",
"3",
"16",
"1",
"6",
"3",
"142857",
"8",
"35",
"2",
"125",
"8",
"5",
"285714",
"125",
"9",
"4",
"23",
"15",
"1",
"6",
"428571",
"25",
"1",
"10",
"45",
"26",
"175",
"12",
"83",
"571428",
"375",
"2",
"1",
"11",
"5",
"3",
"2",
"14",
"1",
"714285",
"5",
"3",
"2",
"9"
] | [
"nonn",
"base",
"tabl"
] | 13 | 1 | 2 | [
"A000012",
"A000027",
"A266385",
"A382068"
] | null | Stefano Spezia, Mar 14 2025 | 2025-03-14T21:06:17 | oeisdata/seq/A382/A382068.seq | 4a64f7cd896420442f1f6289cd087d51 |
A382069 | Row sums of the triangular array in A199408. | [
"1",
"4",
"10",
"18",
"31",
"42",
"64",
"80",
"105",
"128",
"166",
"182",
"235",
"262",
"300",
"344",
"409",
"432",
"514",
"538",
"607",
"674",
"760",
"776",
"885",
"952",
"1026",
"1086",
"1219",
"1230",
"1396",
"1440",
"1545",
"1652",
"1738",
"1794",
"1999",
"2074",
"2176",
"2240",
"2461",
"2472",
"2710",
"2758",
"2871",
"3062",
"3244",
"3240",
"3493"
] | [
"nonn"
] | 15 | 1 | 2 | [
"A000040",
"A000217",
"A000290",
"A001248",
"A006093",
"A018804",
"A040976",
"A087397",
"A199408",
"A382069"
] | null | Ctibor O. Zizka, Mar 14 2025 | 2025-03-14T21:16:05 | oeisdata/seq/A382/A382069.seq | 4f0db93c0211043e25acdc27342c659f |
A382070 | Semiperimeter of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number. | [
"15",
"28",
"66",
"120",
"276",
"378",
"630",
"780",
"1128",
"1770",
"2016",
"2850",
"3486",
"3828",
"4560",
"5778",
"7140",
"7626",
"9180",
"10296",
"10878",
"12720",
"14028",
"16110",
"19110",
"20706",
"21528",
"23220",
"24090",
"25878",
"32640",
"34716",
"37950",
"39060",
"44850",
"46056",
"49770",
"53628",
"56280",
"60378"
] | [
"nonn",
"easy"
] | 36 | 1 | 1 | [
"A034953",
"A098996",
"A367573",
"A382070",
"A382097"
] | null | Miguel-Ángel Pérez García-Ortega, Mar 15 2025 | 2025-03-24T02:03:57 | oeisdata/seq/A382/A382070.seq | 70c539175b5fb6fa261bca20353ece97 |
A382071 | Connected domination number of the n X n zebra graph. | [
"21",
"20",
"19",
"20",
"21",
"25",
"31",
"37"
] | [
"nonn",
"more"
] | 6 | 6 | 1 | null | null | Eric W. Weisstein, Mar 14 2025 | 2025-03-14T15:06:16 | oeisdata/seq/A382/A382071.seq | acb7f573c94b430ae6912dcf717e7ea6 |
A382072 | Lexicographically earliest sequence of distinct positive integers such that for any n > 0, n*a(n) is a factorial number. | [
"1",
"3",
"2",
"6",
"24",
"4",
"720",
"15",
"80",
"12",
"3628800",
"10",
"479001600",
"360",
"8",
"45",
"20922789888000",
"40",
"6402373705728000",
"36",
"240",
"1814400",
"1124000727777607680000",
"5",
"145152",
"239500800",
"13440",
"180",
"304888344611713860501504000000",
"168",
"265252859812191058636308480000000"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A000142",
"A007672",
"A382067",
"A382072"
] | null | Rémy Sigrist, Mar 14 2025 | 2025-03-17T22:19:30 | oeisdata/seq/A382/A382072.seq | 4f5049ec1c72eab9d2cd9c137f628bf5 |
A382073 | Semiprimes with sum of digits 4. | [
"4",
"22",
"121",
"202",
"301",
"1003",
"1111",
"2101",
"10003",
"10021",
"10102",
"10201",
"11002",
"11101",
"12001",
"30001",
"100021",
"100102",
"100201",
"101011",
"110002",
"110101",
"111001",
"200011",
"200101",
"1000021",
"1000111",
"1000201",
"1001002",
"1001101",
"1110001",
"2001001",
"3000001",
"10000003",
"10000021",
"10000201",
"10010002",
"10020001"
] | [
"nonn",
"base"
] | 8 | 1 | 1 | [
"A001358",
"A052218",
"A062339",
"A382073"
] | null | Zak Seidov and Robert Israel, Mar 14 2025 | 2025-03-14T20:23:29 | oeisdata/seq/A382/A382073.seq | 2a193f5e3b1022e62fe553e7dd37a13f |
A382074 | a(n) is the number of solutions to phi(x) + phi(n-x) = phi(n) where 1 <= x <= floor(n/2). | [
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"1",
"0",
"1",
"0",
"3",
"2",
"2",
"0",
"2",
"2",
"2",
"2",
"4",
"0",
"0",
"0",
"1",
"3",
"1",
"1",
"2",
"0",
"3",
"1",
"4",
"0",
"1",
"0",
"5",
"3",
"2",
"0",
"2",
"0",
"2",
"3",
"5",
"0",
"2",
"1",
"5",
"2",
"1",
"0",
"1",
"0",
"2",
"2",
"1",
"2",
"2",
"0",
"5",
"2",
"2",
"0",
"3",
"0",
"2",
"4",
"5",
"1",
"3",
"0",
"4",
"0",
"1",
"0",
"2",
"2",
"2",
"4",
"5"
] | [
"nonn",
"changed"
] | 13 | 1 | 14 | [
"A000010",
"A065381",
"A211225",
"A381747",
"A382074"
] | null | Felix Huber, Mar 22 2025 | 2025-04-26T03:32:51 | oeisdata/seq/A382/A382074.seq | 2a2075c91e96ae0c5aea2b7a55b92889 |
A382075 | Numbers whose prime indices can be partitioned into a set of sets with distinct sums. | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"82",
"83",
"84"
] | [
"nonn"
] | 9 | 1 | 2 | [
"A000720",
"A001055",
"A001222",
"A005117",
"A045778",
"A050320",
"A050326",
"A050345",
"A055396",
"A056239",
"A061395",
"A089259",
"A112798",
"A270995",
"A279785",
"A292432",
"A293243",
"A293511",
"A300383",
"A302494",
"A317141",
"A318360",
"A321469",
"A358914",
"A381078",
"A381441",
"A381633",
"A381634",
"A381635",
"A381636",
"A381716",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382214",
"A382216"
] | null | Gus Wiseman, Mar 19 2025 | 2025-03-20T22:35:20 | oeisdata/seq/A382/A382075.seq | 966ac18ef642372f816b3f78958c54b2 |
A382076 | Number of integer partitions of n whose run-sums are not all equal. | [
"0",
"0",
"0",
"1",
"1",
"5",
"6",
"13",
"15",
"27",
"37",
"54",
"64",
"99",
"130",
"172",
"220",
"295",
"372",
"488",
"615",
"788",
"997",
"1253",
"1547",
"1955",
"2431",
"3005",
"3706",
"4563",
"5586",
"6840",
"8332",
"10139",
"12305",
"14879",
"17933",
"21635",
"26010",
"31181",
"37314",
"44581",
"53156",
"63259",
"75163",
"89124",
"105553",
"124752",
"147210"
] | [
"nonn",
"changed"
] | 18 | 0 | 6 | [
"A000688",
"A005117",
"A006171",
"A047966",
"A050361",
"A279784",
"A300383",
"A304405",
"A304406",
"A304428",
"A304430",
"A304442",
"A317141",
"A326534",
"A353833",
"A353837",
"A354584",
"A355743",
"A357861",
"A357862",
"A357864",
"A357875",
"A381453",
"A381455",
"A381635",
"A381636",
"A381715",
"A381717",
"A381871",
"A381993",
"A381994",
"A381995",
"A382076",
"A382204"
] | null | Gus Wiseman, Apr 02 2025 | 2025-04-26T08:06:14 | oeisdata/seq/A382/A382076.seq | 6d02d7189310cba20ba754aff4841124 |
A382077 | Number of integer partitions of n that can be partitioned into a set of sets. | [
"1",
"1",
"1",
"2",
"3",
"5",
"6",
"9",
"13",
"17",
"25",
"33",
"44",
"59",
"77",
"100",
"134",
"171",
"217",
"283",
"361",
"449",
"574",
"721",
"900",
"1126",
"1397",
"1731",
"2143",
"2632",
"3223",
"3961",
"4825",
"5874",
"7131",
"8646",
"10452",
"12604",
"15155",
"18216",
"21826",
"26108",
"31169",
"37156",
"44202",
"52492",
"62233",
"73676",
"87089",
"102756",
"121074"
] | [
"nonn"
] | 12 | 0 | 4 | [
"A000009",
"A000041",
"A050320",
"A050326",
"A050345",
"A089259",
"A116539",
"A116540",
"A265947",
"A270995",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A299202",
"A302494",
"A317142",
"A318360",
"A358914",
"A381441",
"A381454",
"A381717",
"A381718",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382214"
] | null | Gus Wiseman, Mar 18 2025 | 2025-03-29T13:49:13 | oeisdata/seq/A382/A382077.seq | 8b7e20bf14e03ed4b373f9862240d5cd |
A382078 | Number of integer partitions of n that cannot be partitioned into a set of sets. | [
"0",
"0",
"1",
"1",
"2",
"2",
"5",
"6",
"9",
"13",
"17",
"23",
"33",
"42",
"58",
"76",
"97",
"126",
"168",
"207",
"266",
"343",
"428",
"534",
"675",
"832",
"1039",
"1279",
"1575",
"1933",
"2381",
"2881",
"3524",
"4269",
"5179",
"6237",
"7525",
"9033",
"10860",
"12969",
"15512",
"18475",
"22005",
"26105",
"30973",
"36642",
"43325",
"51078",
"60184",
"70769",
"83152"
] | [
"nonn"
] | 11 | 0 | 5 | [
"A000009",
"A000041",
"A050320",
"A050326",
"A050345",
"A089259",
"A116539",
"A116540",
"A265947",
"A270995",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A299202",
"A302494",
"A317142",
"A318360",
"A358914",
"A381441",
"A381454",
"A381717",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200"
] | null | Gus Wiseman, Mar 18 2025 | 2025-03-29T13:40:24 | oeisdata/seq/A382/A382078.seq | a97ec1497ed59d4ba71bb5f9b5f12204 |
A382079 | Number of integer partitions of n that can be partitioned into a set of sets in exactly one way. | [
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"6",
"5",
"10",
"9",
"13",
"14",
"21",
"20",
"32",
"31",
"42",
"47",
"63",
"62",
"90",
"94",
"117",
"138",
"170",
"186",
"235",
"260",
"315",
"363",
"429",
"493",
"588",
"674",
"795",
"901",
"1060",
"1209",
"1431",
"1608",
"1896",
"2152",
"2515",
"2854",
"3310",
"3734",
"4368",
"4905",
"5686"
] | [
"nonn",
"more"
] | 14 | 0 | 5 | [
"A000009",
"A000041",
"A002846",
"A050320",
"A050326",
"A089259",
"A116539",
"A116540",
"A213427",
"A265947",
"A270995",
"A279785",
"A293243",
"A293511",
"A296119",
"A299202",
"A302478",
"A302494",
"A317142",
"A318360",
"A358914",
"A381078",
"A381441",
"A381454",
"A381633",
"A381636",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382460"
] | null | Gus Wiseman, Mar 20 2025 | 2025-03-29T17:25:18 | oeisdata/seq/A382/A382079.seq | 7e6077b71254357cfe9de02e226432d7 |
A382080 | Number of ways to partition the prime indices of n into sets with a common sum. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1"
] | [
"nonn"
] | 6 | 1 | 30 | [
"A000688",
"A000720",
"A000961",
"A001055",
"A001222",
"A006171",
"A045778",
"A050320",
"A050326",
"A050361",
"A055396",
"A056239",
"A061395",
"A112798",
"A279784",
"A279788",
"A300383",
"A302478",
"A317141",
"A321455",
"A326534",
"A353866",
"A381633",
"A381635",
"A381719",
"A381871",
"A381994",
"A381995",
"A382080"
] | null | Gus Wiseman, Mar 20 2025 | 2025-03-22T08:38:53 | oeisdata/seq/A382/A382080.seq | 31db704db164b3d227eb209ab75ba15a |
A382081 | a(n) = binomial(n,3) + 6*binomial(n,4) + 15*binomial(n,5) + 15*binomial(n,6). | [
"0",
"0",
"0",
"1",
"10",
"55",
"215",
"665",
"1736",
"3990",
"8310",
"16005",
"28930",
"49621",
"81445",
"128765",
"197120",
"293420",
"426156",
"605625",
"844170",
"1156435",
"1559635",
"2073841",
"2722280",
"3531650",
"4532450",
"5759325",
"7251426",
"9052785",
"11212705",
"13786165",
"16834240",
"20424536",
"24631640",
"29537585"
] | [
"nonn",
"easy"
] | 15 | 0 | 5 | [
"A382081",
"A382084"
] | null | Enrique Navarrete, Mar 15 2025 | 2025-03-24T05:21:25 | oeisdata/seq/A382/A382081.seq | 217c2cb923c4bd723094bf3fc0c330cb |
A382082 | F(k) such that F(k) + (F(k) reversed) is a palindrome, where F(k) is a Fibonacci number. | [
"0",
"1",
"2",
"3",
"13",
"21",
"34",
"144",
"233",
"610",
"4181",
"832040",
"102334155",
"1134903170",
"20365011074",
"12200160415121876738"
] | [
"nonn",
"base"
] | 39 | 1 | 3 | [
"A000045",
"A002113",
"A004086",
"A004091",
"A015976",
"A352124",
"A382082"
] | null | Vincenzo Librandi, Mar 21 2025 | 2025-03-24T13:01:57 | oeisdata/seq/A382/A382082.seq | a750eaaec6b39ff6ef25a22c0c3e4722 |
A382083 | a(n) is the ratio between A382067(n) and A382067(n+2). | [
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"210",
"13",
"12",
"11",
"11",
"12",
"13",
"14",
"15",
"210",
"17160",
"9",
"8",
"210",
"5",
"6",
"7",
"8",
"90",
"11",
"12",
"132",
"30240",
"6",
"7",
"8",
"9",
"72",
"7",
"7",
"8",
"8",
"8",
"9",
"72",
"7",
"7",
"72",
"10",
"11",
"12",
"132",
"10",
"9",
"336",
"6",
"7",
"8",
"9",
"9",
"9",
"10",
"90",
"8",
"7",
"7",
"72",
"10"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A382067",
"A382083"
] | null | Rémy Sigrist, Mar 15 2025 | 2025-03-17T22:19:23 | oeisdata/seq/A382/A382083.seq | 16bd289f33c8732852399f5ab542ddec |
A382084 | a(n) = 90*binomial(n,6) + 18*binomial(n,4) + 3*binomial(n,2) + 1. | [
"1",
"1",
"4",
"10",
"37",
"121",
"406",
"1324",
"3865",
"9937",
"22816",
"47686",
"92269",
"167545",
"288562",
"475336",
"753841",
"1157089",
"1726300",
"2512162",
"3576181",
"4992121",
"6847534",
"9245380",
"12305737",
"16167601",
"20990776",
"26957854",
"34276285",
"43180537",
"53934346",
"66833056",
"82206049",
"100419265"
] | [
"nonn",
"easy",
"changed"
] | 15 | 0 | 3 | [
"A382081",
"A382084"
] | null | Enrique Navarrete, Mar 15 2025 | 2025-04-25T21:11:45 | oeisdata/seq/A382/A382084.seq | df987b12b82b3dc2533602c0774110a3 |
A382085 | a(n) is the unique k such that A382067(n) * A382067(n+1) = k!. | [
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"13",
"12",
"11",
"10",
"11",
"12",
"13",
"14",
"15",
"13",
"9",
"8",
"7",
"4",
"5",
"6",
"7",
"8",
"10",
"11",
"12",
"10",
"5",
"6",
"7",
"8",
"9",
"7",
"6",
"7",
"8",
"7",
"8",
"9",
"7",
"6",
"7",
"9",
"10",
"11",
"12",
"10",
"9",
"8",
"5",
"6",
"7",
"8",
"9",
"8",
"9",
"10",
"8",
"7",
"6",
"7",
"9",
"10",
"11",
"12",
"10",
"9",
"10"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A084558",
"A382067",
"A382085"
] | null | Rémy Sigrist, Mar 15 2025 | 2025-03-17T22:19:18 | oeisdata/seq/A382/A382085.seq | 1483b9a3ff4fff1ae9c5d6efa6fa96d3 |
A382086 | Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108. | [
"1",
"1",
"5",
"52",
"845",
"18816",
"533617",
"18404800",
"748039833",
"35016198400",
"1855389108221",
"109781344134144",
"7174844881882405",
"513331696318615552",
"39905830821183755625",
"3349445733955326754816",
"301886246619209909215793",
"29080090017105458412257280",
"2981488457660004727761477493"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A000108",
"A377831",
"A382036",
"A382086",
"A382087",
"A382088",
"A382089"
] | null | Seiichi Manyama, Mar 15 2025 | 2025-03-15T10:11:19 | oeisdata/seq/A382/A382086.seq | 2aa35e4a678b5326920c1d899b43517a |
A382087 | Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^2) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764. | [
"1",
"1",
"7",
"106",
"2525",
"82536",
"3436867",
"174045376",
"10385025849",
"713599868800",
"55498397386751",
"4819444051348224",
"462246012357060373",
"48531686994029295616",
"5536163290789601602875",
"681824639839489261060096",
"90168540044259473683829873",
"12744019609725371553920876544"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A001764",
"A377832",
"A382037",
"A382086",
"A382087",
"A382088",
"A382089"
] | null | Seiichi Manyama, Mar 15 2025 | 2025-03-15T10:12:34 | oeisdata/seq/A382/A382087.seq | 9ae82b19d46dd81eb74f8ec56aa4d4af |
A382088 | Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293. | [
"1",
"1",
"9",
"178",
"5549",
"237456",
"12945037",
"858203872",
"67035559257",
"6029839290880",
"613862192499281",
"69777500840918784",
"8760124051527691141",
"1203852634738613966848",
"179746834136205848167125",
"28975042890917781500747776",
"5015346425440407318539964593",
"927775677566572703009955053568"
] | [
"nonn"
] | 11 | 0 | 3 | [
"A002293",
"A377833",
"A382038",
"A382086",
"A382087",
"A382088",
"A382089"
] | null | Seiichi Manyama, Mar 15 2025 | 2025-03-15T10:13:27 | oeisdata/seq/A382/A382088.seq | 451bd0db5a7cde1927d45daaa209e35c |
A382089 | Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^5 is the g.f. of A002294. | [
"1",
"1",
"11",
"268",
"10301",
"543576",
"36542527",
"2987431168",
"287751180537",
"31916479461760",
"4006558784401811",
"561568192339405824",
"86932015931716588789",
"14730649112418719484928",
"2711977587454133506904775",
"539042371050858695696121856",
"115046065096051639979478349553"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A002294",
"A382086",
"A382087",
"A382088",
"A382089"
] | null | Seiichi Manyama, Mar 15 2025 | 2025-03-15T10:14:27 | oeisdata/seq/A382/A382089.seq | 3e56f582d674cdb5848000139757546f |
A382090 | Connected domination number of the n-triangular honeycomb obtuse knight graph. | [
"10",
"9",
"9",
"10",
"13",
"15",
"18",
"20"
] | [
"nonn",
"more"
] | 8 | 6 | 1 | null | null | Eric W. Weisstein, Mar 15 2025 | 2025-03-15T11:29:35 | oeisdata/seq/A382/A382090.seq | 836fa5675a3bbf4543c2e87dd655dad4 |
A382091 | a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number such that a(n) shares a factor with a(n-1) while the total number of prime terms of the form 4*k + 1 is never less than those of the form 4*k + 3. | [
"1",
"2",
"4",
"6",
"8",
"10",
"5",
"15",
"3",
"9",
"12",
"14",
"16",
"18",
"20",
"22",
"24",
"21",
"27",
"30",
"25",
"35",
"28",
"26",
"13",
"39",
"33",
"11",
"44",
"32",
"34",
"17",
"51",
"36",
"38",
"19",
"57",
"42",
"40",
"45",
"48",
"46",
"50",
"52",
"54",
"56",
"49",
"63",
"60",
"55",
"65",
"70",
"58",
"29",
"87",
"66",
"62",
"31",
"93",
"69",
"72",
"64",
"68",
"74",
"37",
"111"
] | [
"nonn"
] | 10 | 1 | 2 | [
"A007350",
"A027748",
"A038698",
"A064413",
"A382091"
] | null | Scott R. Shannon, Mar 15 2025 | 2025-03-15T11:29:29 | oeisdata/seq/A382/A382091.seq | e453e88afda621acd92c56871029e5c7 |
A382092 | Values taken by gcd(a^2 + b^2 + c^2, a*b*c), where a, b, c are positive integers. | [
"1",
"2",
"4",
"5",
"8",
"9",
"10",
"13",
"16",
"17",
"18",
"20",
"25",
"26",
"27",
"29",
"32",
"34",
"36",
"37",
"40",
"41",
"45",
"49",
"50",
"52",
"53",
"54",
"58",
"61",
"64",
"65",
"68",
"72",
"73",
"74",
"80",
"81",
"82",
"85",
"89",
"90",
"97",
"98",
"100",
"101",
"104",
"106",
"108",
"109",
"113",
"116",
"117",
"121",
"122",
"125",
"128",
"130",
"135",
"136",
"137"
] | [
"nonn",
"easy"
] | 26 | 1 | 2 | [
"A001481",
"A002145",
"A072437",
"A382092"
] | null | Yifan Xie, Mar 29 2025 | 2025-04-02T15:04:50 | oeisdata/seq/A382/A382092.seq | b9d7c13ad93884ab6f189226c8e9c153 |
A382093 | Sequence where k is appended after every (k-1)! occurrences of 1, with multiple values following a 1 listed in order. | [
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"5",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2"
] | [
"nonn"
] | 21 | 1 | 2 | [
"A381522",
"A381900",
"A382093",
"A382095"
] | null | Jwalin Bhatt, Mar 25 2025 | 2025-04-01T15:03:46 | oeisdata/seq/A382/A382093.seq | 15d03e5aa31b194b5f28a9217f207ad3 |
A382094 | Integers k such that k*2^k + 3 is prime. | [
"0",
"1",
"2",
"4",
"5",
"10",
"11",
"28",
"40",
"110",
"124",
"826",
"871",
"1355",
"1540",
"2285",
"8908",
"20824",
"31715",
"61655",
"75920",
"96274",
"195871",
"233125",
"242594"
] | [
"nonn",
"more",
"hard",
"changed"
] | 23 | 1 | 3 | [
"A182373",
"A182375",
"A265121",
"A382094"
] | null | Juri-Stepan Gerasimov, Mar 15 2025 | 2025-04-15T06:04:39 | oeisdata/seq/A382/A382094.seq | f2e8d3bfa96b50f76272249179824f73 |
A382095 | Decimal expansion of exp((Sum_{k>=2} log(k)/(k-1)!)/e). | [
"1",
"7",
"7",
"4",
"2",
"9",
"4",
"3",
"7",
"5",
"7",
"8",
"8",
"8",
"1",
"3",
"0",
"6",
"3",
"4",
"0",
"6",
"2",
"8",
"6",
"5",
"7",
"3",
"1",
"9",
"7",
"1",
"0",
"8",
"9",
"4",
"2",
"9",
"2",
"4",
"2",
"2",
"2",
"9",
"1",
"4",
"2",
"9",
"7",
"5",
"4",
"2",
"1",
"8",
"0",
"1",
"4",
"8",
"0",
"8",
"5",
"1",
"7",
"2",
"5",
"1",
"0",
"0",
"4",
"1",
"3",
"1",
"8",
"2",
"1",
"1",
"5",
"7",
"6",
"3",
"9",
"1",
"0",
"6",
"3",
"8",
"7",
"2",
"7",
"4",
"9",
"6",
"0",
"8",
"5",
"1",
"4",
"2",
"6",
"7",
"7",
"5",
"3",
"8",
"9",
"4",
"3",
"3",
"0",
"3",
"6",
"2",
"7",
"5",
"3",
"0",
"0",
"6",
"8",
"2"
] | [
"nonn",
"cons"
] | 31 | 1 | 2 | [
"A193424",
"A381456",
"A381898",
"A382093",
"A382095"
] | null | Jwalin Bhatt, Mar 25 2025 | 2025-04-01T23:11:23 | oeisdata/seq/A382/A382095.seq | 91ea4ca8a6410d5d2969097c38233cf3 |
A382097 | Sum of the legs of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number. | [
"17",
"31",
"71",
"127",
"287",
"391",
"647",
"799",
"1151",
"1799",
"2047",
"2887",
"3527",
"3871",
"4607",
"5831",
"7199",
"7687",
"9247",
"10367",
"10951",
"12799",
"14111",
"16199",
"19207",
"20807",
"21631",
"23327",
"24199",
"25991",
"32767",
"34847",
"38087",
"39199",
"44999",
"46207",
"49927",
"53791",
"56447",
"60551"
] | [
"nonn",
"easy"
] | 37 | 1 | 1 | [
"A034953",
"A098996",
"A367573",
"A382070",
"A382097"
] | null | Miguel-Ángel Pérez García-Ortega, Mar 15 2025 | 2025-03-24T02:02:53 | oeisdata/seq/A382/A382097.seq | b7cbbaf052bfd21b6dd02faee7b2d18d |
A382098 | a(n) is the numerator of the square of the n-th Lagrange number. | [
"5",
"8",
"221",
"1517",
"7565",
"2600",
"71285",
"257045",
"84680",
"488597",
"1687397",
"837224",
"8732021",
"15800621",
"22953677",
"75533477",
"157326845",
"296631725",
"94070600",
"514518485",
"741527357",
"269583560",
"1945074605",
"7391012837",
"10076746685",
"3192137000",
"16843627085",
"24001135925",
"8707689224"
] | [
"nonn",
"frac"
] | 7 | 1 | 1 | [
"A002163",
"A002559",
"A010466",
"A200991",
"A305308",
"A382098",
"A382099"
] | null | Stefano Spezia, Mar 15 2025 | 2025-03-19T10:03:06 | oeisdata/seq/A382/A382098.seq | 5d780e7a57bb458a1da680ef5f7f4736 |
A382099 | a(n) is the denominator of the square of the n-th Lagrange number. | [
"1",
"1",
"25",
"169",
"841",
"289",
"7921",
"28561",
"9409",
"54289",
"187489",
"93025",
"970225",
"1755625",
"2550409",
"8392609",
"17480761",
"32959081",
"10452289",
"57168721",
"82391929",
"29953729",
"216119401",
"821223649",
"1119638521",
"354681889",
"1871514121",
"2666792881",
"967521025",
"5628750625",
"9323254249"
] | [
"nonn",
"frac"
] | 6 | 1 | 3 | [
"A002163",
"A002559",
"A010466",
"A200991",
"A305308",
"A382098",
"A382099"
] | null | Stefano Spezia, Mar 15 2025 | 2025-03-19T10:03:14 | oeisdata/seq/A382/A382099.seq | dabf0688a7b43510f56a44975a4af7c8 |
A382100 | Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"4",
"1",
"1",
"1",
"4",
"10",
"8",
"1",
"1",
"1",
"5",
"19",
"35",
"16",
"1",
"1",
"1",
"6",
"31",
"98",
"126",
"32",
"1",
"1",
"1",
"7",
"46",
"213",
"531",
"462",
"64",
"1",
"1",
"1",
"8",
"64",
"396",
"1556",
"2974",
"1716",
"128",
"1",
"1",
"1",
"9",
"85",
"663",
"3651",
"11843",
"17060",
"6435",
"256",
"1"
] | [
"nonn",
"tabl"
] | 24 | 0 | 9 | [
"A000012",
"A011782",
"A047099",
"A088218",
"A107026",
"A107027",
"A107030",
"A304979",
"A355262",
"A382100",
"A382101"
] | null | Seiichi Manyama, Mar 15 2025 | 2025-03-16T12:20:09 | oeisdata/seq/A382/A382100.seq | a9eed280b4ca18691e011d3a8c9b3382 |
A382101 | Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(B_k(x) - 1), where B_k(x) = 1 + x*B_k(x)^k. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"5",
"13",
"1",
"1",
"1",
"7",
"43",
"73",
"1",
"1",
"1",
"9",
"91",
"529",
"501",
"1",
"1",
"1",
"11",
"157",
"1753",
"8501",
"4051",
"1",
"1",
"1",
"13",
"241",
"4129",
"45001",
"169021",
"37633",
"1",
"1",
"1",
"15",
"343",
"8041",
"146001",
"1447471",
"4010455",
"394353",
"1",
"1",
"1",
"17",
"463",
"13873",
"362501",
"6502681",
"56041987",
"110676833",
"4596553",
"1"
] | [
"nonn",
"tabl"
] | 19 | 0 | 9 | [
"A000012",
"A000262",
"A251568",
"A355262",
"A380512",
"A380516",
"A382100",
"A382101"
] | null | Seiichi Manyama, Mar 15 2025 | 2025-03-16T12:42:09 | oeisdata/seq/A382/A382101.seq | 46e92172ec74d57d088153683c69cc2d |
A382102 | Remove all occurrences of a digit from n such that the resulting number, formed by the remaining digits in their original order, is as small as possible. If no digits remain, a(n)=0. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"1",
"2",
"0",
"3",
"3",
"3",
"3",
"3",
"3",
"0",
"1",
"2",
"3",
"0",
"4",
"4",
"4",
"4",
"4",
"0",
"1",
"2",
"3",
"4",
"0",
"5",
"5",
"5",
"5",
"0",
"1",
"2",
"3",
"4",
"5",
"0",
"6",
"6",
"6",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"0",
"7",
"7",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7"
] | [
"nonn",
"base",
"look",
"nice"
] | 26 | 1 | 23 | [
"A382056",
"A382102"
] | null | Ali Sada, Mar 15 2025 | 2025-03-23T23:21:18 | oeisdata/seq/A382/A382102.seq | ca6fafa360c1c48c257fff45197e0a7b |
A382103 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372267. | [
"3",
"4",
"7",
"8",
"5",
"4",
"8",
"4",
"5",
"1",
"3",
"7",
"4",
"5",
"3",
"8",
"5",
"7",
"3",
"7",
"3",
"0",
"6",
"3",
"9",
"4",
"9",
"2",
"2",
"1",
"9",
"9",
"9",
"4",
"0",
"7",
"2",
"3",
"5",
"3",
"4",
"8",
"6",
"9",
"5",
"8",
"3",
"3",
"8",
"9",
"3",
"5",
"4",
"0",
"4",
"9",
"2",
"5",
"2",
"9",
"3",
"1",
"9",
"5",
"1",
"8",
"7",
"5",
"1",
"8",
"6",
"7",
"4",
"6",
"5",
"9",
"1",
"0",
"3",
"5",
"1",
"7",
"2",
"1",
"9",
"8",
"3"
] | [
"nonn",
"cons"
] | 29 | 0 | 1 | [
"A372267",
"A382103"
] | null | A.H.M. Smeets, Mar 15 2025 | 2025-04-12T12:19:00 | oeisdata/seq/A382/A382103.seq | 16ea76b962ad0d528ec12095337f8928 |
A382104 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268. | [
"6",
"5",
"2",
"1",
"4",
"5",
"1",
"5",
"4",
"8",
"6",
"2",
"5",
"4",
"6",
"1",
"4",
"2",
"6",
"2",
"6",
"9",
"3",
"6",
"0",
"5",
"0",
"7",
"7",
"8",
"0",
"0",
"0",
"5",
"9",
"2",
"7",
"6",
"4",
"6",
"5",
"1",
"3",
"0",
"4",
"1",
"6",
"6",
"1",
"0",
"6",
"4",
"5",
"9",
"5",
"0",
"7",
"4",
"7",
"0",
"6",
"8",
"0",
"4",
"8",
"1",
"2",
"4",
"8",
"1",
"3",
"2",
"5",
"3",
"4",
"0",
"8",
"9",
"6",
"4",
"8",
"2",
"7",
"8",
"0",
"1",
"6"
] | [
"nonn",
"cons"
] | 23 | 0 | 1 | [
"A372268",
"A382104"
] | null | A.H.M. Smeets, Mar 15 2025 | 2025-04-12T12:19:15 | oeisdata/seq/A382/A382104.seq | d6504ef4d45deb6526a85844d662b4e7 |
A382105 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372269. | [
"4",
"7",
"8",
"6",
"2",
"8",
"6",
"7",
"0",
"4",
"9",
"9",
"3",
"6",
"6",
"4",
"6",
"8",
"0",
"4",
"1",
"2",
"9",
"1",
"5",
"1",
"4",
"8",
"3",
"5",
"6",
"3",
"8",
"1",
"9",
"2",
"9",
"1",
"2",
"2",
"9",
"5",
"5",
"5",
"3",
"3",
"4",
"3",
"1",
"4",
"1",
"5",
"3",
"9",
"9",
"7",
"2",
"7",
"2",
"7",
"6",
"6",
"7",
"3",
"3",
"3",
"8",
"3",
"8",
"2",
"6",
"7",
"1",
"5",
"2",
"5",
"1",
"2",
"4",
"5",
"6",
"9",
"7",
"5",
"5",
"6",
"2"
] | [
"nonn",
"cons"
] | 18 | 0 | 1 | [
"A372269",
"A382105"
] | null | A.H.M. Smeets, Mar 27 2025 | 2025-04-12T09:50:13 | oeisdata/seq/A382/A382105.seq | 4423d0d2add3f190fd9deee5d491b6c2 |
A382106 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372270. | [
"2",
"3",
"6",
"9",
"2",
"6",
"8",
"8",
"5",
"0",
"5",
"6",
"1",
"8",
"9",
"0",
"8",
"7",
"5",
"1",
"4",
"2",
"6",
"4",
"0",
"4",
"0",
"7",
"1",
"9",
"9",
"1",
"7",
"3",
"6",
"2",
"6",
"4",
"3",
"2",
"6",
"0",
"0",
"0",
"2",
"2",
"1",
"2",
"4",
"1",
"4",
"0",
"1",
"5",
"5",
"8",
"2",
"8",
"2",
"7",
"8",
"8",
"8",
"2",
"2",
"1",
"7",
"1",
"7",
"2",
"8",
"8",
"4",
"0",
"3",
"0",
"4",
"3",
"0",
"9",
"8",
"5",
"7",
"9",
"9",
"9",
"3"
] | [
"nonn",
"cons"
] | 13 | 0 | 1 | [
"A372270",
"A382106"
] | null | A.H.M. Smeets, Mar 27 2025 | 2025-04-12T09:50:17 | oeisdata/seq/A382/A382106.seq | 0daf619572ef9e5ec00f27e0cb2fa54a |
A382107 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372271. | [
"4",
"6",
"7",
"9",
"1",
"3",
"9",
"3",
"4",
"5",
"7",
"2",
"6",
"9",
"1",
"0",
"4",
"7",
"3",
"8",
"9",
"8",
"7",
"0",
"3",
"4",
"3",
"9",
"8",
"9",
"5",
"5",
"0",
"9",
"9",
"4",
"8",
"1",
"1",
"6",
"5",
"5",
"6",
"0",
"5",
"7",
"6",
"9",
"2",
"1",
"0",
"5",
"3",
"5",
"3",
"1",
"1",
"6",
"2",
"5",
"3",
"1",
"9",
"9",
"6",
"3",
"9",
"1",
"4",
"2",
"0",
"1",
"6",
"2",
"0",
"3",
"9",
"8",
"1",
"2",
"7",
"0",
"3",
"1",
"1",
"1",
"0"
] | [
"nonn",
"cons",
"changed"
] | 11 | 0 | 1 | [
"A372271",
"A382107"
] | null | A.H.M. Smeets, Mar 27 2025 | 2025-04-24T17:43:28 | oeisdata/seq/A382/A382107.seq | 850965d97f2b9657567e644300d73159 |
A382108 | Number of zeros (counted with multiplicity) on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"3",
"4",
"3",
"6",
"5",
"6",
"5",
"6",
"7",
"8",
"9",
"10",
"3",
"8",
"7",
"10",
"9",
"10",
"7",
"10",
"11",
"8",
"11",
"12",
"9",
"10",
"11",
"14",
"11",
"14",
"11",
"12",
"13",
"12",
"13",
"12",
"15",
"12",
"7",
"18",
"19",
"16",
"11",
"14",
"11",
"14",
"11",
"18",
"11",
"18",
"15",
"18",
"19",
"22",
"7",
"16",
"21",
"20",
"17",
"22",
"15",
"18",
"21",
"20",
"25",
"20"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A007318",
"A214292",
"A382019",
"A382108"
] | null | Michel Lagneau, Mar 15 2025 | 2025-03-25T14:03:04 | oeisdata/seq/A382/A382108.seq | 4557e3f0493bc28ddf6eda42b1a67cee |
A382109 | a(n) is the index of the first Issai Schur additive sequence that will accept n. | [
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"3",
"3",
"1",
"3",
"2",
"1",
"2",
"3",
"1",
"4",
"3",
"1",
"4",
"2",
"1",
"2",
"4",
"1",
"4",
"4",
"1",
"4",
"2",
"1",
"2",
"4",
"1",
"3",
"3",
"1",
"3",
"2",
"1",
"2",
"3",
"1",
"5",
"4",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"5",
"4",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"3",
"3",
"1",
"3",
"2",
"1",
"2",
"3",
"1",
"5",
"5",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"5",
"5",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"3",
"3"
] | [
"nonn"
] | 48 | 1 | 3 | [
"A033627",
"A382109"
] | null | Gordon Hamilton, Mar 24 2025 | 2025-03-31T01:59:41 | oeisdata/seq/A382/A382109.seq | b5be8a1e7e27de7ff74c2b0d13eddde8 |
A382110 | Smallest number k such that k-n and k+n are consecutive primes and k has exactly n distinct prime factors. | [
"4",
"15",
"154",
"3045",
"22386",
"2467465",
"3015870",
"368961285",
"6326289970",
"2313524242029",
"1568018377380",
"5808562826801735",
"1575649493651310",
"6177821212870783905",
"171718219950879367766",
"2039004035049368722335",
"13156579658122684173390",
"112733682549950000276753015"
] | [
"nonn"
] | 27 | 1 | 1 | [
"A001221",
"A087378",
"A382110"
] | null | Jean-Marc Rebert, Mar 16 2025 | 2025-03-25T16:39:08 | oeisdata/seq/A382/A382110.seq | 34ed81569fa2ef882ad556be2e41ef36 |
A382111 | Maximum number of moves required to transition from the initial configuration (all disks on the first peg) to any possible configuration in the Towers of Hanoi puzzle with 4 pegs and n disks. | [
"0",
"1",
"3",
"5",
"9",
"13",
"17",
"25",
"33",
"41",
"49",
"65",
"81",
"97",
"113",
"130",
"161",
"193",
"225",
"257",
"294"
] | [
"nonn",
"more"
] | 16 | 0 | 3 | [
"A007664",
"A382111"
] | null | Geethan Pfeifer, Mar 16 2025 | 2025-03-31T02:02:38 | oeisdata/seq/A382/A382111.seq | 75d186cf9d3a81d55d4e98dcb571dbb2 |
A382112 | Distinct elements of A105774. | [
"0",
"1",
"2",
"4",
"7",
"6",
"12",
"11",
"9",
"20",
"19",
"17",
"14",
"15",
"33",
"32",
"30",
"27",
"28",
"22",
"23",
"25",
"54",
"53",
"51",
"48",
"49",
"43",
"44",
"46",
"35",
"36",
"38",
"41",
"40",
"88",
"87",
"85",
"82",
"83",
"77",
"78",
"80",
"69",
"70",
"72",
"75",
"74",
"56",
"57",
"59",
"62",
"61",
"67",
"66",
"64",
"143",
"142",
"140",
"137",
"138",
"132",
"133",
"135",
"124"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A105774",
"A382112",
"A382113"
] | null | Jeffrey Shallit, Mar 16 2025 | 2025-03-16T12:42:38 | oeisdata/seq/A382/A382112.seq | 48646720ab70abe75c88f43ad178499f |
A382113 | Gray code transformation of the Zeckendorf representation of n. | [
"0",
"1",
"3",
"6",
"5",
"11",
"10",
"8",
"19",
"18",
"16",
"13",
"14",
"32",
"31",
"29",
"26",
"27",
"21",
"22",
"24",
"53",
"52",
"50",
"47",
"48",
"42",
"43",
"45",
"34",
"35",
"37",
"40",
"39",
"87",
"86",
"84",
"81",
"82",
"76",
"77",
"79",
"68",
"69",
"71",
"74",
"73",
"55",
"56",
"58",
"61",
"60",
"66",
"65",
"63",
"142",
"141",
"139",
"136",
"137",
"131",
"132",
"134",
"123",
"124"
] | [
"nonn",
"easy"
] | 19 | 0 | 3 | [
"A003714",
"A006068",
"A022290",
"A382112",
"A382113",
"A382116"
] | null | Jeffrey Shallit, Mar 16 2025 | 2025-03-18T07:22:10 | oeisdata/seq/A382/A382113.seq | 75b41bc181e481cc5846136e83b3a2b6 |
A382115 | a(n) is the smallest positive number not already used and whose binary expansion occurs, ending at position n, in the binary Champernowne word. | [
"1",
"3",
"2",
"5",
"11",
"7",
"6",
"4",
"9",
"18",
"37",
"75",
"23",
"14",
"13",
"27",
"55",
"15",
"30",
"12",
"8",
"17",
"34",
"68",
"137",
"19",
"38",
"77",
"10",
"21",
"42",
"85",
"43",
"87",
"47",
"94",
"28",
"25",
"51",
"102",
"205",
"155",
"311",
"111",
"222",
"29",
"59",
"119",
"239",
"31",
"62",
"60",
"24",
"16",
"33",
"66",
"132",
"264",
"529",
"35",
"70",
"140",
"281",
"50"
] | [
"nonn",
"base"
] | 34 | 1 | 2 | [
"A030190",
"A083652",
"A382115"
] | null | Ruud H.G. van Tol, Mar 16 2025 | 2025-03-27T20:28:32 | oeisdata/seq/A382/A382115.seq | 688e696ce5907527a9a301492f2394a5 |
A382116 | a(n) = floor(n*g+(g-1)/2), where g is the golden ratio. | [
"0",
"1",
"3",
"5",
"6",
"8",
"10",
"11",
"13",
"14",
"16",
"18",
"19",
"21",
"22",
"24",
"26",
"27",
"29",
"31",
"32",
"34",
"35",
"37",
"39",
"40",
"42",
"43",
"45",
"47",
"48",
"50",
"52",
"53",
"55",
"56",
"58",
"60",
"61",
"63",
"65",
"66",
"68",
"69",
"71",
"73",
"74",
"76",
"77",
"79",
"81",
"82",
"84",
"86",
"87",
"89",
"90",
"92",
"94",
"95",
"97",
"99",
"100",
"102",
"103",
"105"
] | [
"nonn",
"easy"
] | 13 | 0 | 3 | [
"A001622",
"A382113",
"A382116"
] | null | Jeffrey Shallit, Mar 16 2025 | 2025-03-23T20:52:28 | oeisdata/seq/A382/A382116.seq | c29e57dc07a339f58997cf9a307d8bd5 |
A382118 | Prime indices k such that prime(k) and prime(k) + 9 are anagrams. | [
"19",
"73",
"79",
"163",
"197",
"241",
"269",
"281",
"431",
"439",
"619",
"647",
"691",
"739",
"751",
"761",
"823",
"877",
"953",
"1019",
"1051",
"1109",
"1223",
"1259",
"1291",
"1307",
"1423",
"1471",
"1723",
"1741",
"1747",
"1847",
"1949",
"1979",
"2213",
"2371",
"2473",
"2503",
"2647",
"2789",
"2803",
"2819",
"2879",
"2903",
"2909",
"3019",
"3163",
"3361"
] | [
"nonn",
"base",
"new"
] | 14 | 1 | 1 | [
"A140353",
"A228157",
"A379208",
"A382118"
] | null | Vincenzo Librandi, Apr 15 2025 | 2025-04-22T08:01:50 | oeisdata/seq/A382/A382118.seq | b5f532426a7fa80cb23ec42ef60d8d54 |
A382119 | Numbers k = x*y such that (x*2^k - 1)*(y*2^k - 1) is semiprime. | [
"2",
"3",
"4",
"6",
"16",
"126"
] | [
"nonn",
"more"
] | 27 | 1 | 1 | [
"A000668",
"A001358",
"A161904",
"A382119"
] | null | Juri-Stepan Gerasimov, Mar 25 2025 | 2025-04-07T17:46:15 | oeisdata/seq/A382/A382119.seq | 43cfbafc8c76f1fd37c772f7dd0e6ec4 |
A382120 | Numbers k in A024619 such that there exists a prime p | k for which p^(m+1) == r (mod k), where r is also in A024619, and a prime q | k for which q^(m+1) == r (mod k), where r is a prime power. | [
"10",
"18",
"20",
"21",
"22",
"26",
"28",
"30",
"34",
"36",
"38",
"40",
"42",
"46",
"48",
"50",
"52",
"54",
"55",
"57",
"58",
"60",
"68",
"72",
"74",
"78",
"82",
"84",
"86",
"93",
"94",
"96",
"98",
"100",
"106",
"108",
"110",
"111",
"114",
"116",
"117",
"118",
"122",
"124",
"126",
"129",
"132",
"134",
"136",
"142",
"146",
"147",
"148",
"150",
"156",
"158",
"162",
"164",
"165"
] | [
"nonn"
] | 20 | 1 | 1 | [
"A000961",
"A024619",
"A381750",
"A381864",
"A382120"
] | null | Michael De Vlieger, Apr 06 2025 | 2025-04-12T12:46:09 | oeisdata/seq/A382/A382120.seq | 0bd960f463c002d69a2be6d5c82b0b04 |
A382121 | Minimal polynomials of nimbers *(2^(2^n)-1), evaluated at 2. | [
"7",
"25",
"425",
"101021",
"7158330089",
"27971386341277386797",
"557019405516812760530014815489825522433",
"200070165806576462487855236097886014378133571492030310620129377307348366314169"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A051775",
"A382121"
] | null | Simon Tatham, Mar 16 2025 | 2025-03-24T11:54:05 | oeisdata/seq/A382/A382121.seq | d49bdc33216fc8e0f11122a9b4281b7f |
A382122 | G.f. satisfies Sum_{n>=0} x^n * abs(1/A(x)^n) = C(x), where C(x) = 1 + x*C(x)^2 and abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x). | [
"1",
"1",
"3",
"12",
"49",
"202",
"838",
"3486",
"14575",
"60820",
"254406",
"1061438",
"4444802",
"18602018",
"78066384",
"326985608",
"1365996909",
"5697914836",
"23752394338",
"99027785702",
"413203462516",
"1726164299990",
"7219911692522",
"30228722494504",
"126658682953328",
"530772842793396",
"2224199143900798",
"9319843329508200",
"39051457052597480"
] | [
"nonn"
] | 13 | 0 | 3 | [
"A000108",
"A382122",
"A382123"
] | null | Paul D. Hanna, Mar 16 2025 | 2025-03-28T04:38:23 | oeisdata/seq/A382/A382122.seq | d7f16ba4758b9cf431a7ed18f7470656 |
A382123 | a(n) = sigma(n)*sigma(2*n)/3 for n >= 1. | [
"1",
"7",
"16",
"35",
"36",
"112",
"64",
"155",
"169",
"252",
"144",
"560",
"196",
"448",
"576",
"651",
"324",
"1183",
"400",
"1260",
"1024",
"1008",
"576",
"2480",
"961",
"1372",
"1600",
"2240",
"900",
"4032",
"1024",
"2667",
"2304",
"2268",
"2304",
"5915",
"1444",
"2800",
"3136",
"5580",
"1764",
"7168",
"1936",
"5040",
"6084",
"4032",
"2304",
"10416",
"3249",
"6727",
"5184",
"6860"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A000203",
"A062731",
"A087943",
"A329963",
"A347108",
"A382123",
"A382124",
"A382125"
] | null | Paul D. Hanna, Apr 06 2025 | 2025-04-06T16:51:29 | oeisdata/seq/A382/A382123.seq | 58ba6426ca2eb2ec4a1f76852c817835 |
A382124 | G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n)/3 * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n. | [
"1",
"1",
"4",
"9",
"22",
"44",
"105",
"200",
"425",
"825",
"1634",
"3072",
"5917",
"10846",
"20153",
"36436",
"65882",
"116831",
"207293",
"361502",
"629539",
"1083068",
"1856251",
"3150554",
"5328137",
"8933266",
"14920357",
"24745481",
"40869317",
"67089425",
"109697089",
"178379353",
"288953043",
"465805681",
"748079686",
"1196148976",
"1905801579",
"3024212984"
] | [
"nonn"
] | 8 | 0 | 3 | [
"A000041",
"A000203",
"A087943",
"A156302",
"A329963",
"A347108",
"A382123",
"A382124",
"A382125"
] | null | Paul D. Hanna, Apr 06 2025 | 2025-04-06T14:55:22 | oeisdata/seq/A382/A382124.seq | f6a4415ba1f547d13106584b564d0314 |
A382125 | G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n. | [
"1",
"3",
"15",
"52",
"180",
"555",
"1696",
"4809",
"13410",
"35844",
"93771",
"238305",
"594403",
"1449441",
"3476607",
"8190824",
"19015548",
"43492230",
"98197506",
"218885763",
"482337864",
"1051051262",
"2266904481",
"4840955055",
"10242621395",
"21479302368",
"44666897613",
"92139573135",
"188617118541",
"383280793962",
"773395096907"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A000041",
"A000203",
"A087943",
"A156302",
"A329963",
"A347108",
"A382123",
"A382124",
"A382125"
] | null | Paul D. Hanna, Apr 06 2025 | 2025-04-06T14:55:34 | oeisdata/seq/A382/A382125.seq | b0ed6ed8c3d492650f403b280ea676bb |
A382126 | G.f. satisfies A(x) = A(x^2)*A(x^3) / (1-x). | [
"1",
"1",
"2",
"3",
"5",
"6",
"11",
"13",
"20",
"26",
"36",
"44",
"66",
"78",
"106",
"132",
"174",
"208",
"282",
"332",
"430",
"520",
"656",
"774",
"1000",
"1166",
"1456",
"1731",
"2131",
"2486",
"3097",
"3585",
"4374",
"5125",
"6177",
"7144",
"8700",
"9994",
"11966",
"13874",
"16482",
"18908",
"22598",
"25800",
"30472",
"35014",
"41062",
"46802",
"55178",
"62624",
"73094",
"83384",
"96834"
] | [
"nonn",
"new"
] | 13 | 0 | 3 | [
"A003586",
"A007814",
"A007949",
"A382126"
] | null | Paul D. Hanna, Apr 14 2025 | 2025-04-15T08:56:26 | oeisdata/seq/A382/A382126.seq | 8b57f8e627f0c46340902bf7d965550a |
A382127 | Smallest prime p with n distinct digits, such that for each digit of p, 2*p*(digit) + 1 is prime. | [
"3",
"131",
"173",
"4391",
"4746616799"
] | [
"nonn",
"base",
"fini",
"full"
] | 40 | 1 | 1 | [
"A000040",
"A005384",
"A382127",
"A382179",
"A382198",
"A382199"
] | null | Jakub Buczak, Mar 16 2025 | 2025-03-19T23:20:59 | oeisdata/seq/A382/A382127.seq | c11762aa3d5e4754dd33ed25b5b19d02 |
A382128 | Fractalization of the Recamán sequence. | [
"0",
"0",
"1",
"0",
"3",
"1",
"6",
"0",
"2",
"3",
"7",
"1",
"13",
"6",
"20",
"0",
"12",
"2",
"21",
"3",
"11",
"7",
"22",
"1",
"10",
"13",
"23",
"6",
"9",
"20",
"24",
"0",
"8",
"12",
"25",
"2",
"43",
"21",
"62",
"3",
"42",
"11",
"63",
"7",
"41",
"22",
"18",
"1",
"42",
"10",
"17",
"13",
"43",
"23",
"16",
"6",
"44",
"9",
"15",
"20",
"45",
"24",
"14",
"0",
"46",
"8",
"79",
"12",
"113",
"25",
"78",
"2",
"114",
"43",
"77",
"21",
"39",
"62",
"78"
] | [
"nonn",
"easy"
] | 25 | 1 | 5 | [
"A003602",
"A005132",
"A110766",
"A110779",
"A110812",
"A382128",
"A382129",
"A382130"
] | null | David Cleaver, Mar 16 2025 | 2025-03-22T22:50:37 | oeisdata/seq/A382/A382128.seq | cdd63f2b6c0cd99599156813680c702e |
A382129 | Fractalization of the prime numbers. | [
"2",
"2",
"3",
"2",
"5",
"3",
"7",
"2",
"11",
"5",
"13",
"3",
"17",
"7",
"19",
"2",
"23",
"11",
"29",
"5",
"31",
"13",
"37",
"3",
"41",
"17",
"43",
"7",
"47",
"19",
"53",
"2",
"59",
"23",
"61",
"11",
"67",
"29",
"71",
"5",
"73",
"31",
"79",
"13",
"83",
"37",
"89",
"3",
"97",
"41",
"101",
"17",
"103",
"43",
"107",
"7",
"109",
"47",
"113",
"19",
"127",
"53",
"131",
"2",
"137",
"59",
"139",
"23",
"149",
"61",
"151",
"11",
"157"
] | [
"nonn",
"easy"
] | 29 | 1 | 1 | [
"A000040",
"A003602",
"A110766",
"A110779",
"A110812",
"A382128",
"A382129",
"A382130"
] | null | David Cleaver, Mar 16 2025 | 2025-03-22T22:50:51 | oeisdata/seq/A382/A382129.seq | f910ff7a886205a6aec5ca5f39d468c2 |
A382130 | Fractalization of the golden ratio. | [
"1",
"1",
"6",
"1",
"1",
"6",
"8",
"1",
"0",
"1",
"3",
"6",
"3",
"8",
"9",
"1",
"8",
"0",
"8",
"1",
"7",
"3",
"4",
"6",
"9",
"3",
"8",
"8",
"9",
"9",
"4",
"1",
"8",
"8",
"4",
"0",
"8",
"8",
"2",
"1",
"0",
"7",
"4",
"3",
"5",
"4",
"8",
"6",
"6",
"9",
"8",
"3",
"3",
"8",
"4",
"8",
"3",
"9",
"6",
"9",
"5",
"4",
"6",
"1",
"3",
"8",
"8",
"8",
"1",
"4",
"1",
"0",
"7",
"8",
"7",
"8",
"2",
"2",
"0",
"1",
"3",
"0",
"0",
"7",
"9",
"4",
"1",
"3",
"7",
"5",
"9",
"4",
"8",
"8",
"0"
] | [
"nonn",
"easy",
"base"
] | 28 | 1 | 3 | [
"A001622",
"A003602",
"A110766",
"A110779",
"A110812",
"A382128",
"A382129",
"A382130"
] | null | David Cleaver, Mar 16 2025 | 2025-03-22T22:51:21 | oeisdata/seq/A382/A382130.seq | 9c2fc6000e8d84db8e1690fe2b91f41a |
A382132 | Centered pentagonal numbers which are semiprimes. | [
"6",
"51",
"106",
"141",
"226",
"391",
"526",
"681",
"766",
"951",
"1501",
"1891",
"2031",
"2326",
"2481",
"2641",
"3151",
"3901",
"4101",
"4306",
"6631",
"6891",
"7981",
"8266",
"8851",
"10081",
"10401",
"11391",
"13141",
"14631",
"15406",
"16201",
"20931",
"22801",
"23281",
"24751",
"27301",
"27826",
"28891",
"29431",
"30526",
"32206",
"33351",
"35701",
"36301",
"38131",
"38751"
] | [
"nonn"
] | 19 | 1 | 1 | [
"A001358",
"A005891",
"A364610",
"A382132"
] | null | Massimo Kofler, Mar 17 2025 | 2025-03-25T18:01:53 | oeisdata/seq/A382/A382132.seq | 27d1390ab409898c4dce96010e5e4403 |
A382133 | Products of 4 distinct primes that are the average of two consecutive primes. | [
"462",
"570",
"714",
"858",
"870",
"1190",
"1230",
"1254",
"1290",
"1302",
"1482",
"1590",
"1722",
"1785",
"1806",
"1995",
"2046",
"2130",
"2170",
"2210",
"2470",
"2490",
"2870",
"3030",
"3045",
"3255",
"3390",
"3410",
"3705",
"3774",
"3795",
"3885",
"3930",
"4002",
"4218",
"4242",
"4278",
"4422",
"4510",
"4515",
"4641",
"4785",
"4935",
"5010",
"5110"
] | [
"nonn"
] | 21 | 1 | 1 | [
"A024675",
"A046386",
"A078443",
"A130178",
"A382133"
] | null | Massimo Kofler, Mar 17 2025 | 2025-03-31T21:25:27 | oeisdata/seq/A382/A382133.seq | 3831b013c27094104ff5be3232f736e9 |
A382134 | Number of completely asymmetric matchings (not containing centered or coupled arcs) of [2n]. | [
"1",
"0",
"0",
"8",
"48",
"384",
"4480",
"59520",
"897792",
"15368192",
"293769216",
"6198589440",
"143130972160",
"3590253477888",
"97214510235648",
"2826205634330624",
"87801981951344640",
"2902989352269250560",
"101776549707306237952",
"3771425415371470405632",
"147285455218020210180096"
] | [
"nonn"
] | 18 | 0 | 4 | [
"A000079",
"A001205",
"A047974",
"A053871",
"A382134"
] | null | R. J. Mathar, Mar 17 2025 | 2025-03-17T16:01:46 | oeisdata/seq/A382/A382134.seq | 20130d6e1858ae3d922c943062dbabc8 |
A382135 | Square array read by antidiagonals: T(n,k) = S(n+k) - S(n) - S(k) - min(n,k), where S(k) = A000788(k-1). | [
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"0",
"2",
"2",
"2",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"0",
"1",
"0",
"1",
"0",
"2",
"2",
"2",
"1",
"2",
"2",
"1",
"0",
"0",
"0",
"0",
"1",
"2",
"2",
"1",
"2",
"2",
"3",
"2",
"2",
"0",
"0",
"0",
"2"
] | [
"nonn",
"easy",
"base",
"tabl"
] | 25 | 1 | 22 | [
"A000120",
"A000788",
"A382135"
] | null | Yifan Xie, Mar 17 2025 | 2025-04-02T15:04:25 | oeisdata/seq/A382/A382135.seq | 86b45624565919dc216af1a2099bc908 |
A382136 | Number of triples of non-crossing lattice paths from (0,0) to (n,n) using (1,0) and (0,1) as steps. | [
"1",
"4",
"50",
"980",
"24696",
"731808",
"24293412",
"877262100",
"33803832920",
"1371597504992",
"58043512597616",
"2543610972177184",
"114801908084920000",
"5313688317073440000",
"251370667949555421000",
"12120154230252872020500",
"594283640753967620247000",
"29576997448419995135100000"
] | [
"nonn",
"easy"
] | 17 | 0 | 2 | [
"A000108",
"A000891",
"A382136"
] | null | Yifan Xie, Mar 27 2025 | 2025-04-02T15:07:27 | oeisdata/seq/A382/A382136.seq | 23acba42322abd913771b3a1156a0458 |
A382137 | Smallest integer that cannot be be converted to a multiple of n by changing at most one of its decimal digit. | [
"545",
"51",
"44",
"31",
"21",
"21",
"22",
"21",
"21",
"11",
"15",
"11",
"11",
"11",
"11",
"11",
"12",
"11",
"11",
"11",
"14",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"13",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12"
] | [
"nonn",
"base"
] | 36 | 11 | 1 | [
"A192545",
"A353023",
"A382137"
] | null | Mickaël Launay, Mar 27 2025 | 2025-04-03T02:51:56 | oeisdata/seq/A382/A382137.seq | ec97c8319a87155f03fe2c50000ae272 |
A382138 | a(n) = A381800(n) - A381798(n). | [
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"1",
"1",
"0",
"0",
"3",
"0",
"2",
"1",
"1",
"0",
"4",
"0",
"1",
"0",
"2",
"0",
"8",
"0",
"0",
"1",
"1",
"1",
"5",
"0",
"1",
"1",
"3",
"0",
"10",
"0",
"2",
"3",
"1",
"0",
"6",
"0",
"5",
"1",
"2",
"0",
"9",
"1",
"4",
"1",
"1",
"0",
"16",
"0",
"1",
"2",
"0",
"1",
"14",
"0",
"2",
"1",
"12",
"0",
"8",
"0",
"1",
"5",
"2",
"1",
"16",
"0",
"5",
"0",
"1",
"0",
"19",
"1"
] | [
"nonn",
"new"
] | 24 | 1 | 12 | [
"A000961",
"A024619",
"A381798",
"A381799",
"A381800",
"A381801",
"A382138"
] | null | Michael De Vlieger, Apr 12 2025 | 2025-04-19T18:06:30 | oeisdata/seq/A382/A382138.seq | f589f77a5b810a7ab30a7882931894fb |
A382139 | Number of matchings of [2n] with no coupled arcs. | [
"1",
"1",
"1",
"9",
"81",
"705",
"7665",
"100905",
"1524705",
"26022465",
"496042785",
"10445342985",
"240779831985",
"6030718158465",
"163087008669585",
"4735950860666025",
"146987669673669825",
"4855606200012593025",
"170101350767940617025",
"6298861062893921346825",
"245834199405298416337425"
] | [
"nonn"
] | 8 | 0 | 4 | [
"A001147",
"A047974",
"A053871",
"A067994",
"A382134",
"A382139"
] | null | R. J. Mathar, Mar 17 2025 | 2025-03-17T14:23:42 | oeisdata/seq/A382/A382139.seq | 9b24818dba754478c357ab0d997c42af |
A382140 | Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group A_n. | [
"6",
"18",
"50",
"154",
"536"
] | [
"nonn",
"more"
] | 12 | 1 | 1 | [
"A382140",
"A382141",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:17:14 | oeisdata/seq/A382/A382140.seq | 5560db2c80ec7d97a587d413ae6685d1 |
A382141 | Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group A_n. | [
"3",
"8",
"18",
"42",
"112"
] | [
"nonn",
"more"
] | 11 | 1 | 1 | [
"A382140",
"A382141",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:17:20 | oeisdata/seq/A382/A382141.seq | 3fdcf9102351c5e32ade165ff78a14ff |
A382142 | Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n. | [
"24",
"102",
"486",
"2436"
] | [
"nonn",
"more"
] | 9 | 2 | 1 | [
"A382140",
"A382142",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:17:26 | oeisdata/seq/A382/A382142.seq | f52e77b635cc104d6d2f26a895d6f0e6 |
A382143 | Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n. | [
"12",
"51",
"237",
"1122"
] | [
"nonn",
"more"
] | 9 | 2 | 1 | [
"A382140",
"A382143",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:17:31 | oeisdata/seq/A382/A382143.seq | 4760434196831d0682321e874270e7b3 |
A382144 | Number of Hilbert basis elements for the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n. | [
"13",
"58",
"302",
"1598"
] | [
"nonn",
"more"
] | 9 | 2 | 1 | [
"A382140",
"A382144",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:17:43 | oeisdata/seq/A382/A382144.seq | b015c5fab2b61cf97bd2c780611f2bcc |
A382145 | Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n. | [
"50",
"306",
"1982",
"12162"
] | [
"nonn",
"more"
] | 9 | 3 | 1 | [
"A382140",
"A382145",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:17:52 | oeisdata/seq/A382/A382145.seq | dd55f604347fd17225713eedbce67031 |
A382146 | Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n. | [
"18",
"81",
"492",
"3258"
] | [
"nonn",
"more"
] | 14 | 3 | 1 | [
"A382140",
"A382146",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:18:08 | oeisdata/seq/A382/A382146.seq | 428b9287fc747bdaaca263d01e2709a5 |
A382147 | Number of Hilbert basis elements for the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n. | [
"18",
"82",
"505",
"3470"
] | [
"nonn",
"more"
] | 10 | 3 | 1 | [
"A382140",
"A382146",
"A382147"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-17T22:18:14 | oeisdata/seq/A382/A382147.seq | 0205a705b9b2f9b65d393161a74e5b3f |
A382148 | Index of first occurrence of n in A381238, or -1 if n does not appear there. | [
"0",
"14",
"1",
"3",
"79",
"11",
"30",
"8",
"108",
"17",
"6",
"111",
"169",
"18",
"76",
"78",
"74",
"388",
"239",
"86",
"383",
"345",
"191",
"1017",
"178",
"486",
"163",
"1828",
"209",
"364",
"484",
"582",
"160",
"289",
"436",
"878",
"174",
"320",
"37",
"1029",
"698",
"1386",
"768",
"618",
"558",
"212",
"1318",
"2213",
"826",
"350",
"877",
"1780",
"1033",
"407",
"188",
"229",
"1478",
"467",
"305"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A381238",
"A382148"
] | null | N. J. A. Sloane, Mar 17 2025 | 2025-03-18T15:46:37 | oeisdata/seq/A382/A382148.seq | e8cf66c1bdeed420b5895b518dabf674 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.