sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A383525
a(n) = Sum_{k=0..floor(n/3)} binomial(n,k)^2 * binomial(n-2*k,k).
[ "1", "1", "1", "10", "33", "76", "370", "1569", "5089", "20584", "88776", "336865", "1336434", "5639869", "22824789", "92230285", "384930529", "1595575648", "6570596764", "27418859721", "114736740808", "478594009281", "2005907811469", "8437974722463", "35480386059826", "149466347150701", "631299305598625", "2668522402478179" ]
[ "nonn" ]
9
0
4
[ "A000172", "A248658", "A383525", "A383526" ]
null
Seiichi Manyama, Apr 29 2025
2025-04-29T08:54:56
oeisdata/seq/A383/A383525.seq
5fe97676253b44082a23765cc3302124
A383526
a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(n-2*k,k)^2.
[ "1", "1", "1", "4", "17", "46", "112", "365", "1297", "4126", "12686", "41647", "141440", "470887", "1553021", "5205769", "17665105", "59858038", "202599814", "689183087", "2355887902", "8065291637", "27637715887", "94924591313", "326810899744", "1126888746871", "3890420726167", "13450563963085", "46571447873597" ]
[ "nonn" ]
7
0
4
[ "A000172", "A248658", "A383525", "A383526" ]
null
Seiichi Manyama, Apr 29 2025
2025-04-29T08:54:52
oeisdata/seq/A383/A383526.seq
caf0a708940da41e84f0c7803b7299ac
A383527
Partial sums of A005773.
[ "1", "2", "4", "9", "22", "57", "153", "420", "1170", "3293", "9339", "26642", "76363", "219728", "634312", "1836229", "5328346", "15494125", "45137995", "131712826", "384900937", "1126265986", "3299509114", "9676690939", "28407473191", "83470059532", "245465090758", "722406781935", "2127562036990", "6270020029353" ]
[ "nonn" ]
19
0
2
[ "A000069", "A001969", "A002144", "A002145", "A005773", "A005774", "A005775", "A010059", "A097893", "A122896", "A167630", "A210736", "A211278", "A257520", "A383527" ]
null
Mélika Tebni, Apr 29 2025
2025-05-10T13:17:13
oeisdata/seq/A383/A383527.seq
0345ee9e50598c3efd7f907729f90326
A383528
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(n-2*k,k).
[ "1", "1", "1", "5", "11", "19", "57", "149", "325", "841", "2223", "5387", "13599", "35435", "89561", "227397", "587861", "1508833", "3865285", "9980185", "25767813", "66439737", "171835439", "445009955", "1152176511", "2986869731", "7752069847", "20125928723", "52286212535", "135949102339", "353648726393", "920409996709" ]
[ "nonn" ]
9
0
4
[ "A001850", "A383528", "A383529" ]
null
Seiichi Manyama, Apr 29 2025
2025-04-29T08:54:02
oeisdata/seq/A383/A383528.seq
0b5319462478fb9362ed8bae46b2b628
A383529
a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(n-3*k,k).
[ "1", "1", "1", "1", "6", "13", "22", "33", "91", "226", "474", "877", "1938", "4586", "10326", "21409", "45867", "103423", "234271", "511426", "1110544", "2460822", "5526188", "12282861", "27073156", "59942598", "133861825", "298874122", "664509858", "1476912298", "3294571470", "7362783137", "16437438777", "36665641447", "81881083752", "183115618015" ]
[ "nonn" ]
8
0
5
[ "A001850", "A383528", "A383529" ]
null
Seiichi Manyama, Apr 29 2025
2025-04-29T08:54:06
oeisdata/seq/A383/A383529.seq
59577b3bca5902be40cc637c37d6eb88
A383530
Number of non Wilf and non conjugate Wilf integer partitions of n.
[ "0", "0", "0", "1", "0", "0", "3", "2", "5", "12", "14", "19", "35", "38", "55", "83", "107", "137", "209", "252", "359", "462", "612", "757", "1032", "1266", "1649", "2050", "2617", "3210", "4111", "4980", "6262", "7659", "9479", "11484", "14224", "17132", "20962", "25259", "30693", "36744", "44517", "53043", "63850", "75955", "90943", "107721", "128485" ]
[ "nonn" ]
8
0
7
[ "A033461", "A047966", "A048767", "A098859", "A111133", "A130091", "A130092", "A239455", "A320348", "A325324", "A325325", "A325349", "A325351", "A325367", "A325368", "A325388", "A336866", "A351293", "A351294", "A351295", "A381431", "A381432", "A381433", "A383506", "A383507", "A383512", "A383513", "A383530", "A383531", "A383532", "A383534", "A383709", "A383712" ]
null
Gus Wiseman, May 14 2025
2025-05-15T08:23:19
oeisdata/seq/A383/A383530.seq
d0ec757d8129b49d6b3ab341d3031293
A383531
Heinz numbers of integer partitions that do not have distinct multiplicities (Wilf) or distinct nonzero 0-appended differences (conjugate Wilf).
[ "6", "21", "30", "36", "42", "60", "65", "66", "70", "78", "84", "90", "102", "105", "110", "114", "120", "126", "132", "133", "138", "140", "150", "154", "156", "165", "168", "174", "180", "186", "198", "204", "210", "216", "220", "222", "228", "231", "234", "238", "240", "246", "252", "258", "264", "270", "273", "276", "280", "282", "286", "294", "300", "306", "308" ]
[ "nonn" ]
11
1
1
[ "A001222", "A001223", "A047966", "A048767", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A130091", "A130092", "A181819", "A238745", "A320348", "A325324", "A325325", "A325349", "A325366", "A325367", "A325368", "A325388", "A336866", "A351294", "A351295", "A381431", "A383506", "A383507", "A383512", "A383513", "A383530", "A383531", "A383532", "A383709", "A383712" ]
null
Gus Wiseman, May 15 2025
2025-05-16T18:50:51
oeisdata/seq/A383/A383531.seq
e9ad5b141d19f2e89f60da667a474560
A383532
Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct nonzero 0-appended differences (conjugate Wilf).
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "13", "16", "17", "19", "20", "23", "25", "27", "28", "29", "31", "32", "37", "40", "41", "43", "44", "45", "47", "49", "50", "52", "53", "56", "59", "61", "64", "67", "68", "71", "73", "75", "76", "79", "80", "81", "83", "88", "89", "92", "97", "98", "99", "101", "103", "104", "107", "109", "112", "113", "116", "117", "121", "124", "125" ]
[ "nonn" ]
9
1
2
[ "A001222", "A001223", "A047966", "A048767", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A130091", "A130092", "A181819", "A238745", "A320348", "A325324", "A325325", "A325349", "A325366", "A325367", "A325368", "A325388", "A336866", "A351294", "A351295", "A383506", "A383507", "A383512", "A383513", "A383530", "A383531", "A383532", "A383709", "A383712" ]
null
Gus Wiseman, May 15 2025
2025-05-16T18:50:47
oeisdata/seq/A383/A383532.seq
fbfd5d97116a115e857f624d5e6a3996
A383533
Number of integer partitions of n with no ones such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.
[ "1", "0", "1", "1", "1", "2", "3", "3", "4", "5", "8", "8", "11", "13", "17", "22", "25", "30", "37", "44", "53", "69", "77", "93", "111", "130", "153", "181", "220", "249", "295" ]
[ "nonn", "more" ]
9
0
6
[ "A044813", "A047966", "A048767", "A048768", "A089259", "A098859", "A116540", "A130091", "A217605", "A239455", "A242882", "A317141", "A318361", "A351293", "A351294", "A351295", "A381432", "A381433", "A381441", "A381454", "A382912", "A382913", "A383013", "A383533", "A383706", "A383708", "A383710", "A383711" ]
null
Gus Wiseman, May 07 2025
2025-05-08T22:57:03
oeisdata/seq/A383/A383533.seq
1f8bfc8212220dbe53fe54ffd5b6da67
A383534
Irregular triangle read by rows where row n lists the positive first differences of the 0-prepended prime indices of n.
[ "1", "2", "1", "3", "1", "1", "4", "1", "2", "1", "2", "5", "1", "1", "6", "1", "3", "2", "1", "1", "7", "1", "1", "8", "1", "2", "2", "2", "1", "4", "9", "1", "1", "3", "1", "5", "2", "1", "3", "10", "1", "1", "1", "11", "1", "2", "3", "1", "6", "3", "1", "1", "1", "12", "1", "7", "2", "4", "1", "2", "13", "1", "1", "2", "14", "1", "4", "2", "1", "1", "8", "15", "1", "1", "4", "1", "2", "2", "5", "1", "5", "16", "1", "1", "3", "2" ]
[ "nonn", "tabf" ]
7
1
2
[ "A000040", "A001221", "A001222", "A001223", "A005117", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A124010", "A130091", "A241919", "A287352", "A320348", "A325324", "A325325", "A325349", "A325366", "A325367", "A325368", "A325388", "A336866", "A355536", "A358137", "A381431", "A383506", "A383512", "A383513", "A383534", "A383535", "A384008", "A384009" ]
null
Gus Wiseman, May 20 2025
2025-05-21T16:41:53
oeisdata/seq/A383/A383534.seq
c8c46c02d80c63d335d7a240e05f8da7
A383535
Heinz number of the positive first differences of the 0-prepended prime indices of n.
[ "1", "2", "3", "2", "5", "4", "7", "2", "3", "6", "11", "4", "13", "10", "6", "2", "17", "4", "19", "6", "9", "14", "23", "4", "5", "22", "3", "10", "29", "8", "31", "2", "15", "26", "10", "4", "37", "34", "21", "6", "41", "12", "43", "14", "6", "38", "47", "4", "7", "6", "33", "22", "53", "4", "15", "10", "39", "46", "59", "8", "61", "58", "9", "2", "25", "20", "67", "26", "51", "12", "71", "4", "73" ]
[ "nonn" ]
6
1
2
[ "A000040", "A001222", "A001223", "A048767", "A056239", "A098859", "A112798", "A122111", "A124010", "A130091", "A181819", "A287352", "A320348", "A325324", "A325351", "A325366", "A325367", "A325368", "A325388", "A336866", "A351294", "A351295", "A355536", "A358137", "A381431", "A383512", "A383513", "A383534", "A383535", "A384008", "A384009" ]
null
Gus Wiseman, May 21 2025
2025-05-21T16:41:48
oeisdata/seq/A383/A383535.seq
b390cb621db3d8f71f770822eb59d755
A383536
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k,k)^2 * binomial(n-k,k).
[ "1", "1", "10", "33", "301", "1468", "12006", "70945", "548218", "3588451", "27033942", "187329660", "1398372925", "10015968040", "74666604910", "545706810657", "4076875022533", "30186038308420", "226302738440884", "1690539173230083", "12722171581599588", "95650154853862786", "722460110890588300" ]
[ "nonn" ]
7
0
3
[ "A112019", "A383536" ]
null
Seiichi Manyama, Apr 29 2025
2025-04-29T08:54:48
oeisdata/seq/A383/A383536.seq
0f417e1ca65a9f936b3435676bf5e524
A383537
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k,k)^2 * binomial(n-2*k,k).
[ "1", "1", "1", "17", "51", "109", "981", "4209", "12637", "79351", "393493", "1454021", "7686459", "39697057", "166999101", "823144689", "4241896917", "19293138685", "93151760599", "473739765167", "2252548154403", "10877558634801", "54682637188009", "266304982300197", "1295171619802551", "6466091747859771" ]
[ "nonn" ]
8
0
4
[ "A383537", "A383538" ]
null
Seiichi Manyama, Apr 29 2025
2025-04-29T08:54:45
oeisdata/seq/A383/A383537.seq
fd6731d8db003dcd874514b1bf629b07
A383538
a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k)^2 * binomial(n-3*k,k).
[ "1", "1", "1", "1", "26", "73", "148", "257", "2431", "9676", "26984", "61993", "332762", "1487886", "5029676", "13986049", "57394823", "253491517", "953613991", "3032424076", "11249004334", "47032861778", "185321607072", "645015386921", "2340940921276", "9321743657318", "37091865274327", "136525692171310" ]
[ "nonn" ]
9
0
5
[ "A383536", "A383537", "A383538" ]
null
Seiichi Manyama, Apr 29 2025
2025-04-29T08:54:26
oeisdata/seq/A383/A383538.seq
bfcb2c86d69566c73d93c1a6cf288a36
A383539
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k,k)^2 * binomial(n-2*k,k).
[ "1", "1", "1", "5", "19", "49", "137", "481", "1645", "5259", "17309", "59477", "203931", "693865", "2384149", "8277773", "28797631", "100312525", "350891175", "1232122535", "4335809699", "15287669469", "54029225569", "191351513905", "678850904981", "2412164275651", "8584573648693", "30595269827149" ]
[ "nonn" ]
13
0
4
[ "A098479", "A383525", "A383537", "A383539" ]
null
Seiichi Manyama, Apr 29 2025
2025-05-30T10:11:46
oeisdata/seq/A383/A383539.seq
7ff378478b2321e48d7898fcc6437946
A383540
Positive numbers k such that (sin k)^k sets a new record.
[ "1", "8", "33", "48269", "48624", "48979", "49334", "49689", "50044", "50399", "50754", "51109", "51464", "51819", "52174", "573204", "37362253", "42781604" ]
[ "nonn", "more" ]
13
1
2
[ "A382815", "A383540", "A383541" ]
null
Jwalin Bhatt, Apr 29 2025
2025-05-12T16:22:21
oeisdata/seq/A383/A383540.seq
e597ca48522168b73822d1e18d3cdb7e
A383541
Positive numbers k such that (cos k)^k sets a new record.
[ "1", "6", "19", "22", "710", "1146408", "10838702", "80143857", "245850922", "411557987", "1068966896" ]
[ "nonn", "more" ]
27
1
2
[ "A002485", "A382564", "A383540", "A383541" ]
null
Jwalin Bhatt, Apr 29 2025
2025-05-09T02:38:33
oeisdata/seq/A383/A383541.seq
3c05caa61aa9dd61517360fc650ec46c
A383542
a(n) = round(Shi(n)) where Shi(x) is the sinh integral function.
[ "0", "1", "3", "5", "10", "20", "43", "96", "220", "519", "1246", "3036", "7480", "18599", "46596", "117478", "297780", "758319", "1938952", "4975454", "12807826", "33063593", "85572336", "221983185", "577057696", "1502975453", "3921470496", "10248248560", "26822559296", "70299597879", "184486604704", "484727787984" ]
[ "nonn" ]
21
0
3
[ "A383542", "A383692" ]
null
Kritsada Moomuang, May 05 2025
2025-05-10T23:00:16
oeisdata/seq/A383/A383542.seq
c1c131c90538f6fde8507a0cc02f611e
A383543
a(n) is the largest number k such that i*n + 1 is squarefree for all 0 <= i <= k.
[ "2", "3", "0", "1", "2", "3", "0", "0", "2", "7", "0", "1", "1", "6", "0", "2", "0", "15", "0", "3", "2", "1", "0", "0", "2", "0", "0", "5", "2", "3", "0", "6", "2", "4", "0", "7", "1", "3", "0", "1", "2", "3", "0", "0", "2", "7", "0", "0", "0", "6", "0", "4", "0", "5", "0", "2", "2", "1", "0", "1", "2", "0", "0", "7", "2", "7", "0", "6", "2", "4", "0", "3", "1", "0", "0", "1", "2", "7", "0", "0", "2", "6", "0", "1", "1", "6", "0" ]
[ "nonn", "easy" ]
11
1
1
[ "A005117", "A013929", "A071808", "A383543", "A383544", "A383545", "A383546" ]
null
Amiram Eldar, Apr 30 2025
2025-05-04T02:03:37
oeisdata/seq/A383/A383543.seq
8d860a73a2a8adba928311d6360e16c8
A383544
Numbers k such that A383543(k) > A383543(m) for all m < k.
[ "1", "2", "10", "18", "126", "270", "1470", "1890", "2310", "7770", "23100", "28980", "307230", "325710", "392700", "1178100", "1501500", "2192190", "3393390", "10180170", "19399380", "29099070", "38798760", "310390080", "1338557220", "33910116240", "601681470390", "20056049013000", "198755445718830", "497390015522400", "3579804188330370" ]
[ "nonn" ]
8
1
2
[ "A071808", "A383543", "A383544", "A383545", "A383547" ]
null
Amiram Eldar, Apr 30 2025
2025-05-04T02:06:26
oeisdata/seq/A383/A383544.seq
77e179a2b564ac7cd04b2fcdcabcd47e
A383545
Record values in A383543.
[ "2", "3", "7", "15", "23", "43", "46", "49", "75", "106", "117", "118", "127", "150", "165", "167", "178", "251", "282", "286", "288", "368", "394", "513", "560", "762", "842", "992", "1154", "1214", "1264", "1269", "1313", "1350", "1376", "1414", "1471", "1518", "1592", "1816", "1851", "1940", "1946", "2017", "2101", "2117", "2122", "2159", "2191", "2244", "2393" ]
[ "nonn" ]
12
1
1
[ "A071808", "A383543", "A383544", "A383545", "A383548" ]
null
Amiram Eldar, Apr 30 2025
2025-05-04T02:04:49
oeisdata/seq/A383/A383545.seq
0ef696cd58efbd085e4685db8c1c8066
A383546
a(n) is the largest number k such that i*n - 1 is squarefree for all 1 <= i <= k, or 0 if no such number exists.
[ "0", "4", "2", "6", "0", "20", "2", "7", "0", "0", "2", "22", "0", "1", "2", "3", "0", "6", "0", "4", "0", "6", "1", "23", "0", "0", "2", "0", "0", "17", "2", "1", "0", "3", "2", "14", "0", "1", "2", "6", "0", "2", "2", "3", "0", "0", "2", "11", "0", "0", "0", "3", "0", "9", "0", "4", "0", "4", "1", "8", "0", "7", "1", "0", "0", "10", "2", "1", "0", "3", "2", "7", "0", "1", "2", "0", "0", "16", "2", "7", "0", "0", "2", "13", "0" ]
[ "nonn", "easy" ]
16
1
2
[ "A005117", "A013929", "A071809", "A383543", "A383546", "A383547", "A383548" ]
null
Amiram Eldar, Apr 30 2025
2025-05-04T02:05:22
oeisdata/seq/A383/A383546.seq
dcd8d4c4e160384338f94cb5d5ceab53
A383547
Numbers k such that A383546(k) > A383546(m) for all m < k.
[ "1", "2", "4", "6", "12", "24", "120", "150", "240", "300", "840", "1680", "2730", "6090", "32340", "106260", "145530", "154770", "1554630", "1861860", "2072070", "2642640", "5105100", "28918890", "77507430", "99549450", "717777060", "3714981270", "5577321750", "6692786100", "95929934100", "188736568020", "512444322390", "1348596399150" ]
[ "nonn" ]
12
1
2
[ "A071809", "A383544", "A383546", "A383547", "A383548" ]
null
Amiram Eldar, Apr 30 2025
2025-05-04T02:06:10
oeisdata/seq/A383/A383547.seq
4091c77dcac2163394dba2708b9a6eef
A383548
Record values in A383546.
[ "0", "4", "6", "20", "22", "23", "28", "32", "38", "39", "68", "94", "104", "117", "129", "135", "151", "163", "167", "213", "235", "270", "275", "277", "283", "356", "416", "445", "453", "533", "586", "639", "784", "803", "836", "1073", "1223", "1252", "1313", "1314", "1508", "1549", "1558", "1559", "1599", "1605", "1631", "1644", "1676", "1692", "1694", "1738", "1834" ]
[ "nonn" ]
12
1
2
[ "A071808", "A383545", "A383546", "A383547", "A383548" ]
null
Amiram Eldar, Apr 30 2025
2025-05-04T02:05:51
oeisdata/seq/A383/A383548.seq
dd6716ae7e069be50fee606bbb5dd743
A383549
Number of rises in all compositions of n with parts in {1,2,3} and adjacent differences in {-1,1}.
[ "0", "0", "0", "1", "1", "2", "5", "3", "9", "11", "10", "24", "21", "30", "50", "43", "75", "93", "96", "161", "170", "215", "312", "323", "456", "574", "639", "906", "1046", "1276", "1710", "1935", "2501", "3135", "3642", "4760", "5699", "6893", "8823", "10401", "12952", "16079", "19104", "24002", "29097", "35165", "43865", "52628", "64503", "79363", "95329" ]
[ "nonn", "easy" ]
14
0
6
[ "A011782", "A076118", "A124760", "A151842", "A173258", "A214247", "A220062", "A238343", "A383549" ]
null
John Tyler Rascoe, Apr 29 2025
2025-05-04T03:21:30
oeisdata/seq/A383/A383549.seq
c6e86c1ec39ef499c9160f495108defd
A383550
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (2,0),(0,2),(3,3).
[ "1", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "2", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "3", "1", "3", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "4", "2", "6", "2", "4", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "5", "3", "10", "6", "10", "3", "5", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "6", "4", "15", "12", "21", "12", "15", "4", "6", "0", "1" ]
[ "nonn", "tabl" ]
12
0
13
[ "A027907", "A053442", "A383550", "A383567" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:14:11
oeisdata/seq/A383/A383550.seq
cfa19bde065d3378db48ec1755ec70bf
A383551
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(3,3).
[ "1", "1", "1", "1", "2", "1", "1", "3", "3", "1", "1", "4", "6", "4", "1", "1", "5", "10", "10", "5", "1", "1", "6", "15", "21", "15", "6", "1", "1", "7", "21", "37", "37", "21", "7", "1", "1", "8", "28", "59", "76", "59", "28", "8", "1", "1", "9", "36", "88", "138", "138", "88", "36", "9", "1", "1", "10", "45", "125", "230", "282", "230", "125", "45", "10", "1", "1", "11", "55", "171", "360", "522", "522", "360", "171", "55", "11", "1" ]
[ "nonn", "tabl" ]
9
0
5
[ "A376791", "A383551" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:13:48
oeisdata/seq/A383/A383551.seq
3d2d077b68a2436feaee8aa15232eef4
A383552
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(2,2).
[ "1", "1", "1", "1", "2", "1", "1", "3", "3", "1", "1", "4", "7", "4", "1", "1", "5", "12", "12", "5", "1", "1", "6", "18", "26", "18", "6", "1", "1", "7", "25", "47", "47", "25", "7", "1", "1", "8", "33", "76", "101", "76", "33", "8", "1", "1", "9", "42", "114", "189", "189", "114", "42", "9", "1", "1", "10", "52", "162", "321", "404", "321", "162", "52", "10", "1", "1", "11", "63", "221", "508", "772", "772", "508", "221", "63", "11", "1" ]
[ "nonn", "tabl" ]
11
0
5
[ "A008288", "A349713", "A383551", "A383552", "A383566" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:11:40
oeisdata/seq/A383/A383552.seq
52a3732f56b651c25bd38805b0ffcbe3
A383553
G.f. A(x) satisfies A( x*(1 - x*A(x)) )^2 = A(x) / (1 - x*A(x)).
[ "1", "1", "4", "25", "203", "1986", "22492", "287779", "4092708", "63950627", "1088344063", "20034723586", "396685773847", "8407897764860", "189983677908848", "4559916912174055", "115878339541378537", "3108738814550013980", "87811656459134922064", "2605292980183085241385", "81009590895282761666579", "2634565319518560418484917" ]
[ "nonn" ]
10
0
3
[ "A383553", "A383554", "A383555" ]
null
Paul D. Hanna, Apr 30 2025
2025-06-09T05:22:05
oeisdata/seq/A383/A383553.seq
70e9d27b44e6d7d7dedd3e6e47e9a3f2
A383554
G.f. B(x) satisfies B(x)^2 = B(x*B(x)) / (1 - x*B(x)).
[ "1", "1", "3", "15", "106", "960", "10458", "131608", "1864069", "29203507", "499950326", "9270102872", "184914799822", "3946947403992", "89751996370928", "2166232174120558", "55315057188777104", "1490116322734948876", "42239882837124257362", "1257015386867813340506", "39187639539046005580139", "1277312296443107349977421" ]
[ "nonn" ]
17
0
3
[ "A383553", "A383554", "A383555" ]
null
Paul D. Hanna, May 03 2025
2025-06-09T05:22:39
oeisdata/seq/A383/A383554.seq
90ea115821df3a3293330ca38db18249
A383555
G.f. C(x) satisfies C(x) = (1 - x/C(x)) * C(x/C(x))^2.
[ "1", "1", "2", "8", "53", "474", "5160", "65044", "923050", "14485824", "248342433", "4610040310", "92042354800", "1966041657574", "44732916501187", "1080164746159166", "27592519521492907", "743533900115940394", "21082015219948566983", "627509220974664243742", "19566084047915645708631", "637845348518456030195620" ]
[ "nonn" ]
19
0
3
[ "A383553", "A383554", "A383555" ]
null
Paul D. Hanna, May 03 2025
2025-06-09T05:21:27
oeisdata/seq/A383/A383555.seq
1209dc46d932b777cf137f4ea06a6fef
A383556
G.f. A(x) satisfies [x^n] A(x)^n = [x^n] -1/A(x)^(n+1) for n > 1 with A(0) = 1, A'(0) = 1.
[ "1", "1", "7", "163", "7295", "497193", "46629734", "5701678075", "878881320340", "166768493380169", "38240722520600933", "10435986606153478637", "3345526178030524399987", "1245613832452691368917233", "533281483558996002057816770", "260228921614773660248756394778", "143609349303434423698940591120719" ]
[ "nonn" ]
11
0
3
null
null
Paul D. Hanna, May 17 2025
2025-05-18T03:19:27
oeisdata/seq/A383/A383556.seq
3ac741450ef27ae7393e3ba9437a9f85
A383557
G.f. A(x) satisfies: Sum_{n>=0} x^n * A(x)^(n*(n-1)) = 1/Sum_{n>=0} (-1)^n * x^n * A(x)^(n^2).
[ "1", "1", "5", "31", "219", "1694", "13994", "121410", "1093480", "10141721", "96319038", "932974034", "9189767159", "91843859618", "929737369160", "9520350467469", "98508339702499", "1029120790761273", "10848277404444721", "115332595879627333", "1236215234785069596", "13356483685654097089", "145444925937547162484", "1596284433654881047888" ]
[ "nonn" ]
11
0
3
[ "A337913", "A383557", "A383558" ]
null
Paul D. Hanna, Jun 04 2025
2025-06-05T09:56:09
oeisdata/seq/A383/A383557.seq
91f9eb02fa79087f77bae0c605996cd7
A383558
G.f. A(x) satisfies: Sum_{n>=0} x^n * A(x)^(n^2) = 1/Sum_{n>=0} (-1)^n * x^n * A(x)^(n*(n+1)).
[ "1", "1", "6", "47", "424", "4175", "43617", "475457", "5350757", "61727826", "726360262", "8686960066", "105308656277", "1291367772947", "15992962919905", "199777529838694", "2514520265005606", "31863092830768302", "406201872497094718", "5206720221580284591", "67072172226855680831", "867953975985508272626", "11279109566312519301208" ]
[ "nonn" ]
9
0
3
[ "A337913", "A383557", "A383558" ]
null
Paul D. Hanna, Jun 04 2025
2025-06-05T09:56:12
oeisdata/seq/A383/A383558.seq
1ca541de04ea2c5ef0252c8335017c79
A383559
O.g.f. A(x) satisfies: [x^n] exp( n*(2*n+1)*x ) / A(x) = 0 for n > 0.
[ "1", "3", "29", "609", "20857", "997671", "61114409", "4548317073", "397323349505", "39774233809179", "4483232458612245", "561425116837715457", "77289022946177141161", "11597365849594347661839", "1883429636306366952452433", "329083700898584984268782241", "61549497773760817234065857793", "12268604214374346472111552473267" ]
[ "nonn" ]
11
0
2
[ "A304319", "A337458", "A383559" ]
null
Paul D. Hanna, May 17 2025
2025-05-24T03:06:05
oeisdata/seq/A383/A383559.seq
ed1b9b6edb2e5c92c820e446c0c52a49
A383560
E.g.f. satisfies A(x) = exp(-x*A(x)) * A( x*exp(-x*A(x)) )^2.
[ "1", "1", "7", "118", "3517", "160086", "10224319", "867305622", "94034404377", "12665879397046", "2073375227292691", "405303998554127718", "93253207746857953381", "24948396475041099571590", "7680545481780577676806215", "2696379400609033981226573206", "1070917017856110681841654586929", "477809258637756188291409832547094" ]
[ "nonn" ]
13
0
3
[ "A383560", "A383561", "A383562" ]
null
Paul D. Hanna, May 01 2025
2025-05-03T09:35:13
oeisdata/seq/A383/A383560.seq
c7456f7f79295face8443b29dee08c74
A383561
E.g.f. B(x) satisfies B(x)^2 = exp(x*B(x)) * B(x*B(x)).
[ "1", "1", "5", "67", "1761", "75291", "4676833", "393156443", "42661238049", "5778857710603", "953295948777201", "187879651901314011", "43567356033945471313", "11738730471967494152795", "3636438743736060718972545", "1283505233869526097965732971", "512110262770880950252243273281", "229380028602428037581395066474347" ]
[ "nonn" ]
9
0
3
[ "A383560", "A383561", "A383562" ]
null
Paul D. Hanna, May 01 2025
2025-05-03T09:35:09
oeisdata/seq/A383/A383561.seq
626a6f791eed00f27280d0f872597f55
A383562
E.g.f. C(x) satisfies C(x) = exp(-x/C(x)) * C(x/C(x))^2.
[ "1", "1", "3", "34", "869", "37046", "2305267", "194264862", "21126164649", "2866926282454", "473618723892911", "93448926633746366", "21689210323474282525", "5848029460632243552630", "1812621760896079629017355", "640062219045088105574834686", "255472389087185984365656473681", "114462401664425227281876155867990" ]
[ "nonn" ]
13
0
3
[ "A383560", "A383561", "A383562" ]
null
Paul D. Hanna, May 01 2025
2025-05-03T09:35:05
oeisdata/seq/A383/A383562.seq
d0a7b134fcbda9ec1033bbffb1cc5689
A383563
G.f. A(x) satisfies A( x*(1+x)/A(x)^2 ) = 1 + x.
[ "1", "1", "1", "3", "13", "72", "465", "3362", "26531", "224856", "2024188", "19202830", "190857879", "1978567663", "21319434418", "238109360460", "2750229390071", "32789591062124", "402891169846242", "5094855923807780", "66229610059651788", "884081025776797026", "12107164229698851942", "169954380180177899277", "2443554376412586234247" ]
[ "nonn" ]
18
0
4
[ "A121687", "A145345", "A383563", "A384265" ]
null
Paul D. Hanna, May 26 2025
2025-06-01T19:39:39
oeisdata/seq/A383/A383563.seq
f1498664bf4226bce245bd7b3c6a2d7a
A383564
G.f. A(x) satisfies 1 = Sum{n=-oo..+oo} (x^n - 2*x*A(x)^n)^n.
[ "1", "2", "11", "63", "313", "953", "-2103", "-52455", "-340989", "-684583", "3097817", "-42019812", "-959576394", "2335125550", "229613772815", "2356225506958", "-11899498155741", "-527484556204563", "-3363552193233237", "67551575645570526", "1470281680830417628", "2115661347716495378", "-323942681936663419906", "-4680631899371554723607", "23014994879777225773481" ]
[ "sign" ]
7
0
2
[ "A383564", "A383565" ]
null
Paul D. Hanna, May 21 2025
2025-05-21T10:42:55
oeisdata/seq/A383/A383564.seq
efcf57ca26cbb2fd9886d0670c8c22fa
A383565
G.f. A(x) satisfies 1 = Sum{n=-oo..+oo} (2*x*A(x)^(n-2) - x^n)^n.
[ "1", "2", "5", "51", "420", "4281", "46511", "545096", "6692705", "85823095", "1139652239", "15617770854", "220169697660", "3186889572660", "47301102618948", "719343250099901", "11204504778316013", "178732002565811126", "2920246793283514209", "48883298337473391637", "838635194555095619608", "14750589639992176103092", "266072885796042137133800" ]
[ "nonn" ]
7
0
2
null
null
Paul D. Hanna, May 21 2025
2025-05-21T10:44:49
oeisdata/seq/A383/A383565.seq
735d407010fef21059570809e85a28f8
A383566
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(4,4).
[ "1", "1", "1", "1", "2", "1", "1", "3", "3", "1", "1", "4", "6", "4", "1", "1", "5", "10", "10", "5", "1", "1", "6", "15", "20", "15", "6", "1", "1", "7", "21", "35", "35", "21", "7", "1", "1", "8", "28", "56", "71", "56", "28", "8", "1", "1", "9", "36", "84", "128", "128", "84", "36", "9", "1", "1", "10", "45", "120", "213", "258", "213", "120", "45", "10", "1", "1", "11", "55", "165", "334", "474", "474", "334", "165", "55", "11", "1" ]
[ "nonn", "tabl" ]
10
0
5
[ "A008288", "A376792", "A383551", "A383552", "A383566" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:12:30
oeisdata/seq/A383/A383566.seq
43eddb0fb5fd0e5a979ca4dbc6d3c04e
A383567
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (2,0),(0,2),(5,5).
[ "1", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "2", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "3", "0", "3", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "4", "0", "6", "0", "4", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "5", "0", "10", "1", "10", "0", "5", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "6", "0", "15", "2", "20", "2", "15", "0", "6", "0", "1" ]
[ "nonn", "tabl" ]
11
0
13
[ "A027907", "A383550", "A383567", "A383568" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:14:06
oeisdata/seq/A383/A383567.seq
f0c7f93f518cdffa896c10181b205358
A383568
Expansion of 1/sqrt((1-x^5)^2 - 4*x^2).
[ "1", "0", "2", "0", "6", "1", "20", "6", "70", "30", "253", "140", "936", "630", "3522", "2773", "13430", "12032", "51770", "51690", "201389", "220470", "789546", "935330", "3116416", "3951949", "12373910", "16645398", "49389050", "69938416", "198048409", "293296470", "797461358", "1228136090", "3222960100", "5136602753" ]
[ "nonn" ]
12
0
3
[ "A002426", "A053442", "A383567", "A383568", "A383569" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:13:57
oeisdata/seq/A383/A383568.seq
d5a115165b13876c624173c90e5152be
A383569
Expansion of 1/sqrt((1-x^7)^2 - 4*x^2).
[ "1", "0", "2", "0", "6", "0", "20", "1", "70", "6", "252", "30", "924", "140", "3433", "630", "12882", "2772", "48710", "12012", "185316", "51481", "708582", "218810", "2720788", "923990", "10484684", "3881556", "40528441", "16236486", "157086660", "67675972", "610318610", "281236620", "2376289056", "1165715161", "9269869182" ]
[ "nonn" ]
10
0
3
[ "A002426", "A053442", "A383568", "A383569" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:13:53
oeisdata/seq/A383/A383569.seq
20da64754fa8202b73c80d727df06620
A383571
Expansion of 1/sqrt((1-x^3)^2 - 4*x^4).
[ "1", "0", "0", "1", "2", "0", "1", "6", "6", "1", "12", "30", "21", "20", "90", "141", "100", "210", "561", "672", "672", "1681", "3206", "3528", "5125", "11622", "17892", "21253", "38172", "74052", "102565", "141680", "268092", "454741", "622182", "979836", "1790361", "2784366", "3993132", "6741593", "11587758", "17380116", "26551097", "45489082", "74098518" ]
[ "nonn" ]
8
0
5
[ "A002426", "A053442", "A182883", "A376791", "A383571", "A383572" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:11:37
oeisdata/seq/A383/A383571.seq
8958c9b7a3463f04c01d849188e02abe
A383572
Expansion of 1/sqrt((1-x^4)^2 - 4*x^5).
[ "1", "0", "0", "0", "1", "2", "0", "0", "1", "6", "6", "0", "1", "12", "30", "20", "1", "20", "90", "140", "71", "30", "210", "560", "631", "294", "420", "1680", "3151", "2828", "1680", "4200", "11551", "16704", "13272", "12672", "34651", "72162", "86064", "69960", "102961", "252362", "423390", "446160", "429001", "805508", "1685970", "2393820", "2419561" ]
[ "nonn" ]
9
0
6
[ "A002426", "A182883", "A376792", "A383571", "A383572" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:11:32
oeisdata/seq/A383/A383572.seq
eb4662251b505cf334363d17a16a4421
A383573
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(2*(n-2*k),n-2*k).
[ "1", "2", "7", "24", "89", "338", "1311", "5152", "20449", "81778", "328999", "1330008", "5398265", "21984610", "89791103", "367643776", "1508560257", "6201927074", "25540266503", "105336838616", "435035342553", "1798875915826", "7446653956895", "30857577536800", "127987031688161", "531301328367762", "2207281722474919" ]
[ "nonn" ]
23
0
2
[ "A026375", "A360290", "A383573", "A383581", "A383582" ]
null
Seiichi Manyama, Apr 30 2025
2025-05-03T22:26:07
oeisdata/seq/A383/A383573.seq
c7e70612d3055a563c7db6f4fef96990
A383574
Fourth column of A353077.
[ "9", "14", "8", "-1", "13", "7", "9", "-1", "12", "-1", "16", "-1", "-1", "7", "21", "-1", "12", "-1", "-1", "-1", "13", "-1", "33", "-1", "9", "-1", "12", "-1", "13", "7", "-1", "-1", "-1", "-1", "19", "-1", "-1", "-1", "8", "-1", "10", "-1", "-1", "-1", "10", "-1", "25", "-1", "-1", "-1", "15", "-1", "-1", "-1", "-1", "-1", "8", "-1", "16", "-1", "-1", "7", "-1", "-1", "12", "-1", "-1" ]
[ "sign" ]
55
4
1
[ "A000961", "A333852", "A353077", "A373514", "A383574" ]
null
Martin Becker, May 03 2025
2025-05-24T10:36:05
oeisdata/seq/A383/A383574.seq
3960ab300582b3182a987e7901d424c5
A383575
Characteristic function of numbers of the form k = m^e, where m is squarefree and (-1)^omega(k) = mu(e).
[ "1", "0", "0", "1", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "1" ]
[ "nonn" ]
20
1
null
[ "A001221", "A005117", "A008683", "A382883", "A383016", "A383575", "A383576", "A384667", "A385055" ]
null
Friedjof Tellkamp, Jun 14 2025
2025-06-17T02:57:28
oeisdata/seq/A383/A383575.seq
dc43d927bb2d719d20014b6205b4b3a8
A383576
Characteristic function of numbers of the form k = m^e, where m is squarefree and (-1)^omega(k) = -mu(e).
[ "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0" ]
[ "nonn" ]
19
1
null
[ "A001221", "A005117", "A008683", "A382883", "A383017", "A383575", "A383576", "A384667", "A384709" ]
null
Friedjof Tellkamp, Jun 14 2025
2025-06-17T02:57:32
oeisdata/seq/A383/A383576.seq
e3a723cc17a47c374c600727a1d9cc0f
A383577
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k,k) * binomial(n-2*k,k)^2.
[ "1", "1", "1", "3", "13", "37", "87", "241", "793", "2513", "7437", "22287", "70051", "222883", "700213", "2195139", "6959869", "22252933", "71201129", "227826699", "731309001", "2356460041", "7609531843", "24603325189", "79677148959", "258535824775", "840291483835", "2734637778217", "8910389207081", "29069537051081" ]
[ "nonn" ]
7
0
4
[ "A383539", "A383577" ]
null
Seiichi Manyama, Apr 30 2025
2025-04-30T09:11:23
oeisdata/seq/A383/A383577.seq
ee9c7e0b93587563140457be7d051371
A383578
Let p = prime(n), then a(n) is the p-smooth part of (p-1)!+1.
[ "2", "3", "25", "7", "11", "169", "17", "19", "23", "29", "31", "37", "41", "43", "47", "53", "59", "61", "67", "71", "73", "79", "83", "89", "97", "101", "103", "107", "109", "113", "127", "131", "137", "139", "149", "151", "157", "163", "167", "173", "179", "181", "191", "193", "197", "199", "211", "223", "227", "229", "233", "239", "241", "251", "257", "263", "269", "271", "277", "281", "283", "293" ]
[ "nonn" ]
29
1
1
[ "A007540", "A060371", "A383257", "A383578" ]
null
Mike Jones, Apr 30 2025
2025-05-15T08:24:13
oeisdata/seq/A383/A383578.seq
ef9bdcae4cd61fa57509e427c05798e3
A383579
a(n) is the largest number t such that there exist numbers i,j,k such that, for all m <= t, there exist integers x,y,z with x*i + y*j + z*k = m and |x|+|y|+|z| <= n.
[ "0", "3", "10", "24", "46", "80", "129", "196", "277", "372", "500", "660", "842", "1046", "1272", "1560", "1883", "2236", "2619", "3040", "3544", "4086", "4666", "5284", "5969", "6740", "7557", "8420", "9329", "10342", "11436", "12584", "13786", "15042", "16447", "17920", "19455", "21052", "22734", "24572", "26480", "28458", "30506", "32684", "35005", "37404" ]
[ "nonn" ]
28
0
2
[ "A002378", "A383579" ]
null
Zachary Barbanell, Apr 30 2025
2025-05-14T06:46:23
oeisdata/seq/A383/A383579.seq
8eb3374f84ae95800ce454ce24bdb424
A383580
a(n) is the largest number t such that there exist numbers i,j,k,l such that, for all m <= t, there exist integers x,y,z,w with x*i + y*j + z*k + w*l = m and |x|+|y|+|z|+|w| <= n.
[ "0", "4", "16", "47", "104", "207", "375", "624", "984", "1475" ]
[ "nonn", "more" ]
4
0
2
[ "A002378", "A383579", "A383580" ]
null
Zachary Barbanell, May 14 2025
2025-05-19T22:17:52
oeisdata/seq/A383/A383580.seq
bf7f5d3d4a1e0970188db382b4bb0547
A383581
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-3*k),n-3*k).
[ "1", "2", "6", "21", "74", "270", "1005", "3788", "14418", "55289", "213270", "826614", "3216629", "12558928", "49175136", "193023965", "759299438", "2992534344", "11813985377", "46709675040", "184928644350", "733047010709", "2908981549006", "11555513379450", "45945148281437", "182835149061920", "728149606630164" ]
[ "nonn" ]
16
0
2
[ "A026375", "A360291", "A376791", "A383571", "A383573", "A383581", "A383582" ]
null
Seiichi Manyama, Apr 30 2025
2025-05-02T08:00:38
oeisdata/seq/A383/A383581.seq
0e1d51c097a1908e0bb411e879e37403
A383582
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*(n-4*k),n-4*k).
[ "1", "2", "6", "20", "71", "256", "942", "3512", "13221", "50138", "191260", "733088", "2821037", "10892100", "42174848", "163706656", "636816019", "2481902842", "9689155902", "37882580356", "148313102097", "581365577564", "2281393560802", "8961689897248", "35235582858441", "138657185501870", "546064549476476" ]
[ "nonn" ]
24
0
2
[ "A026375", "A360292", "A376792", "A383572", "A383573", "A383581", "A383582" ]
null
Seiichi Manyama, Apr 30 2025
2025-05-03T09:40:48
oeisdata/seq/A383/A383582.seq
de15e7b78d62f5b38ed0ef914f3a1d34
A383583
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(k,n-3*k).
[ "1", "0", "0", "0", "1", "0", "0", "2", "3", "0", "3", "12", "10", "4", "30", "60", "40", "60", "210", "286", "231", "560", "1267", "1428", "1722", "4208", "7182", "8064", "13275", "28080", "40656", "51754", "97020", "176088", "240251", "355872", "667810", "1081092", "1506648", "2475616", "4401696", "6693492", "9904752", "16950662", "28359201" ]
[ "nonn" ]
16
0
8
[ "A005717", "A383571", "A383583", "A383584" ]
null
Seiichi Manyama, May 01 2025
2025-05-03T14:22:14
oeisdata/seq/A383/A383583.seq
377d77cad204e521ea4f681732d50e66
A383584
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k) * binomial(k,n-4*k).
[ "1", "0", "0", "0", "0", "1", "0", "0", "0", "2", "3", "0", "0", "3", "12", "10", "0", "4", "30", "60", "35", "5", "60", "210", "280", "132", "105", "560", "1260", "1267", "630", "1260", "4200", "6938", "5796", "4236", "11550", "27729", "36396", "28644", "34155", "90100", "168663", "188100", "163020", "276573", "631290", "973830", "995280", "1068222", "2111252", "4104100" ]
[ "nonn" ]
16
0
10
[ "A005717", "A383572", "A383583", "A383584" ]
null
Seiichi Manyama, May 01 2025
2025-05-02T03:18:18
oeisdata/seq/A383/A383584.seq
9e4cfd8abd09fc9b6fd9a3abfacceaa8
A383585
Number of vertices of even degree in a cubic lattice n X n X n.
[ "0", "0", "13", "32", "63", "112", "185", "288", "427", "608", "837", "1120", "1463", "1872", "2353", "2912", "3555", "4288", "5117", "6048", "7087", "8240", "9513", "10912", "12443", "14112", "15925", "17888", "20007", "22288", "24737", "27360", "30163", "33152", "36333", "39712", "43295", "47088", "51097", "55328", "59787", "64480", "69413", "74592", "80023", "85712", "91665", "97888" ]
[ "nonn", "easy" ]
31
1
3
[ "A000578", "A383585" ]
null
Nicolay Avilov, May 01 2025
2025-05-19T11:42:05
oeisdata/seq/A383/A383585.seq
dcabbe553b88147e50799badc63a643c
A383586
a(n) is the minimum sum of a nonnegative integer 4-tuple that takes n moves to reach a 0 component, where a move picks two components, subtracts the smaller from the larger, and doubles the smaller.
[ "0", "4", "10", "20", "40", "76", "177", "387", "829", "1749" ]
[ "nonn", "more" ]
16
0
2
[ "A256001", "A383586", "A383587", "A383588" ]
null
Gerold Jager, May 01 2025
2025-05-08T05:01:36
oeisdata/seq/A383/A383586.seq
3c74035cb1acc11090449690764f6b51
A383587
a(n) is the minimum sum of a nonnegative integer 5-tuple that takes n moves to reach a 0 component, where a move picks two components, subtracts the smaller from the larger, and doubles the smaller.
[ "0", "5", "15", "31", "71", "176", "444" ]
[ "nonn", "more" ]
17
0
2
[ "A256001", "A383586", "A383587", "A383588" ]
null
Gerold Jager, May 01 2025
2025-05-12T19:42:39
oeisdata/seq/A383/A383587.seq
7502c42c4600880a0daffe24602b9782
A383588
a(n) is the minimum sum of a nonnegative integer 6-tuple that takes n moves to reach a 0 component, where a move picks two components, subtracts the smaller from the larger, and doubles the smaller.
[ "0", "6", "21", "45", "123", "335" ]
[ "nonn", "more" ]
14
0
2
[ "A256001", "A383586", "A383587", "A383588" ]
null
Gerold Jager, May 01 2025
2025-05-12T19:27:33
oeisdata/seq/A383/A383588.seq
a13a5b0e13515474a3bb1592d6febac2
A383589
a(n) = A378762(A381662(n)).
[ "1", "2", "3", "6", "5", "4", "7", "10", "9", "8", "15", "12", "13", "14", "11", "16", "21", "18", "19", "20", "17", "28", "23", "26", "25", "24", "27", "22", "29", "36", "31", "34", "33", "32", "35", "30", "45", "38", "43", "40", "41", "42", "39", "44", "37", "46", "55", "48", "53", "50", "51", "52", "49", "54", "47", "66", "57", "64", "59", "62", "61", "60", "63", "58", "65", "56" ]
[ "nonn", "tabf" ]
11
1
2
[ "A000027", "A000384", "A016813", "A376214", "A378684", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664", "A381968", "A382499", "A382679", "A382680", "A383589" ]
null
Boris Putievskiy, May 01 2025
2025-05-06T11:24:05
oeisdata/seq/A383/A383589.seq
133e0a5fea673cd5da95679251e1948b
A383590
a(n) = A378762(A382499(n)).
[ "1", "5", "3", "6", "2", "4", "14", "10", "12", "8", "15", "7", "13", "9", "11", "27", "21", "25", "19", "23", "17", "28", "16", "26", "18", "24", "20", "22", "44", "36", "42", "34", "40", "32", "38", "30", "45", "29", "43", "31", "41", "33", "39", "35", "37", "65", "55", "63", "53", "61", "51", "59", "49", "57", "47", "66", "46", "64", "48", "62", "50", "60", "52", "58", "54", "56" ]
[ "nonn", "tabf" ]
11
1
2
[ "A000027", "A000384", "A016813", "A056023", "A376214", "A378684", "A378762", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664", "A381968", "A382499", "A382679", "A382680", "A383419", "A383589", "A383590", "A383722", "A383723", "A383724" ]
null
Boris Putievskiy, May 01 2025
2025-06-08T16:55:54
oeisdata/seq/A383/A383590.seq
5691c394a86b236e845c1fd4b4e212d1
A383591
Smallest prime p where the absolute difference of the gaps to the adjacent primes exceeds n*log(p).
[ "7", "113", "1327", "15683", "31397", "31397", "360653", "1349533", "1357333", "17051887", "20831323", "47326913", "436273291", "3842610773", "3842610773", "22367084959", "25056082087", "25056082087", "304599509051", "1346294310749" ]
[ "nonn", "hard", "more" ]
25
1
1
[ "A036263", "A383215", "A383216", "A383591" ]
null
Jean-Marc Rebert, May 03 2025
2025-05-10T09:18:51
oeisdata/seq/A383/A383591.seq
89b30e9533a6b46fc43cfd54132af47f
A383592
Positive integers k divisible by all positive integers whose decimal expansion appears as a substring of k.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "15", "20", "22", "24", "30", "33", "36", "40", "44", "48", "50", "55", "60", "66", "70", "77", "80", "88", "90", "99", "100", "110", "120", "150", "200", "210", "220", "240", "250", "300", "330", "360", "400", "420", "440", "480", "500", "510", "520", "550", "600", "630", "660", "700", "770", "800", "840", "880" ]
[ "nonn", "base", "easy" ]
16
1
2
[ "A037124", "A078546", "A175381", "A178157", "A218978", "A383592" ]
null
Rémy Sigrist, May 01 2025
2025-05-13T11:33:49
oeisdata/seq/A383/A383592.seq
ca73a9b64f0de517a0025898909175d1
A383593
In the binary expansion of n, change the most significant 0 bit to 1, if there is any 0 bit.
[ "1", "1", "3", "3", "6", "7", "7", "7", "12", "13", "14", "15", "14", "15", "15", "15", "24", "25", "26", "27", "28", "29", "30", "31", "28", "29", "30", "31", "30", "31", "31", "31", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "56", "57", "58", "59", "60", "61", "62", "63", "60", "61", "62", "63", "62", "63", "63", "63", "96", "97", "98", "99", "100" ]
[ "nonn", "base", "easy", "look" ]
34
0
3
[ "A000225", "A004760", "A063250", "A383593" ]
null
Frederik P.J. Vandecasteele, Jun 11 2025
2025-06-18T00:53:49
oeisdata/seq/A383/A383593.seq
5dcd32f059fdbbdc92a5c6e969fb177e
A383594
a(0) = 0 and thereafter a(n) = 2 if a(n-1) is an odd prime, otherwise a(n) = a(n-1) + k where k = n - P(n) and P(n) is the number of odd primes among terms a(0),...,a(n-1).
[ "0", "1", "3", "2", "5", "2", "6", "11", "2", "8", "15", "23", "2", "11", "2", "12", "23", "2", "14", "27", "41", "2", "17", "2", "18", "35", "53", "2", "21", "41", "2", "23", "2", "24", "47", "2", "26", "51", "77", "104", "132", "161", "191", "2", "33", "65", "98", "132", "167", "2", "38", "75", "113", "2", "41", "2", "42", "83", "2", "44", "87", "131", "2", "47", "2", "48", "95", "143", "192", "242" ]
[ "nonn", "new" ]
22
0
3
null
null
Aaron Pieniozek, May 01 2025
2025-07-09T17:54:43
oeisdata/seq/A383/A383594.seq
40e8f55e0f76df05413e9004cfa2192e
A383595
a(n) is the smallest prime k such that (prime(n), k, u, v) are the vertices of a square in Ulam's spiral, where k < u < v are all primes; or -1 if there is no such k.
[ "-1", "-1", "-1", "56527", "59", "67", "251", "-1", "-1", "2473", "3001", "43", "43", "41", "173", "1621", "61", "59", "13", "141937", "13", "13", "10459", "331", "33211", "643", "179", "41", "41", "1429", "11", "11", "59", "59", "13", "127", "163", "157", "169957", "47", "103", "56519", "683", "2843", "6841", "211", "199", "311", "59407", "439", "11", "137", "274831" ]
[ "sign" ]
13
1
4
[ "A000040", "A063826", "A383595" ]
null
Gonzalo Martínez, May 01 2025
2025-05-07T03:23:30
oeisdata/seq/A383/A383595.seq
e2eca75eaa9c0cf7f9818fbe3a4cf368
A383596
Integers in Ulam's spiral for which the numbers around them form a square whose four corners are all prime numbers.
[ "71", "95", "353", "701", "767", "1151", "1451", "1961", "2507", "3347", "4691", "5957", "7205", "9671", "13463", "15635", "21017", "26051", "27947", "28985", "34337", "42017", "49565", "50921", "52253", "52349", "55859", "57191", "63143", "75857", "79907", "80831", "81611", "92339", "101633", "102557", "106529", "110495", "114521", "116513", "121469", "131075", "136757", "137879", "14449" ]
[ "nonn" ]
8
1
1
[ "A063826", "A136626", "A383595", "A383596" ]
null
Gonzalo Martínez, May 01 2025
2025-05-06T19:23:06
oeisdata/seq/A383/A383596.seq
e5adfea7ab03dc908aef5e56993e64cd
A383597
Expansion of 1/( (1-x)^2 * (1-10*x) )^(1/3).
[ "1", "4", "25", "190", "1570", "13552", "120178", "1085620", "9940345", "91962460", "857750233", "8053389142", "76026759760", "721017894640", "6864725124520", "65578937628304", "628320730656586", "6035594205744520", "58110220504754650", "560624083417180300", "5418599393597801020", "52459116546784350880" ]
[ "nonn", "easy" ]
21
0
2
[ "A004987", "A361375", "A376802", "A383597", "A383598", "A383599", "A383601" ]
null
Seiichi Manyama, May 01 2025
2025-05-04T15:07:13
oeisdata/seq/A383/A383597.seq
2ec0f0e9b13040a0faef578c68d0a528
A383598
Expansion of 1/( (1-x^2)^2 * (1-x^2-9*x) )^(1/3).
[ "1", "3", "19", "132", "1000", "7884", "63802", "525666", "4388518", "37010220", "314633944", "2692239012", "23161121641", "200158043223", "1736461678195", "15114944308560", "131950690469920", "1154858014686960", "10130508263000440", "89045875688728440", "784127521246844872", "6916291864328172336" ]
[ "nonn" ]
17
0
2
[ "A376805", "A383597", "A383598", "A383599" ]
null
Seiichi Manyama, May 01 2025
2025-05-04T08:50:05
oeisdata/seq/A383/A383598.seq
f888c05fb719ef4a6de6c7a4471b5dc5
A383599
Expansion of 1/( (1-x^3)^2 * (1-x^3-9*x) )^(1/3).
[ "1", "3", "18", "127", "951", "7425", "59473", "484902", "4005720", "33425587", "281152551", "2380227705", "20259341335", "173218395228", "1486747223136", "12803424371263", "110579924167533", "957494150283249", "8309596928695417", "72260720257071936", "629526082305028041", "5493357757059584986" ]
[ "nonn" ]
14
0
2
[ "A376806", "A383597", "A383598", "A383599" ]
null
Seiichi Manyama, May 01 2025
2025-05-04T14:44:30
oeisdata/seq/A383/A383599.seq
13ac13814de3d212bd7455202132b3c4
A383600
Expansion of 1/( (1-x)^3 * (1-9*x) )^(1/4).
[ "1", "3", "15", "97", "699", "5313", "41689", "334215", "2721411", "22423737", "186497325", "1562826195", "13178010405", "111700773135", "951026829255", "8128169277897", "69701329848051", "599462375836185", "5169038197383789", "44674793959777443", "386916485124220929", "3357265884164614707" ]
[ "nonn", "easy" ]
26
0
2
[ "A004981", "A084771", "A231482", "A383600", "A383602" ]
null
Seiichi Manyama, May 01 2025
2025-05-05T11:45:21
oeisdata/seq/A383/A383600.seq
2cc2c155db36664baf08265c1e39c5de
A383601
Expansion of 1/( (1-x) * (1-10*x)^2 )^(1/3).
[ "1", "7", "58", "514", "4705", "43879", "414208", "3943492", "37782346", "363760390", "3515819020", "34088616940", "331383573010", "3228590970430", "31514912933800", "308126549765440", "3016908101224105", "29576113797737695", "290271761086278610", "2851684765215491050", "28040613734007656545" ]
[ "nonn", "easy" ]
21
0
2
[ "A004988", "A377233", "A383597", "A383601", "A383605", "A383606" ]
null
Seiichi Manyama, May 01 2025
2025-05-05T11:45:45
oeisdata/seq/A383/A383601.seq
c45b5ec88e645e2fcc712c39d9618846
A383602
Expansion of 1/( (1-x) * (1-9*x)^3 )^(1/4).
[ "1", "7", "55", "453", "3819", "32637", "281409", "2441715", "21285411", "186225253", "1633973125", "14370441055", "126631522005", "1117707358515", "9879287145855", "87428272217853", "774533435844531", "6868083093333285", "60952616213098789", "541342619512077967", "4811079933571973329" ]
[ "nonn", "easy" ]
22
0
2
[ "A004982", "A084771", "A383600", "A383602" ]
null
Seiichi Manyama, May 01 2025
2025-05-05T16:21:48
oeisdata/seq/A383/A383602.seq
f4cd86b738d5e0ad58f458393d573c9c
A383603
Expansion of 1/( (1-x)^2 * (1-x-9*x^2) )^(1/3).
[ "1", "1", "4", "7", "28", "67", "250", "703", "2497", "7648", "26488", "85036", "291337", "960769", "3280486", "10993165", "37541611", "127077160", "434707756", "1481346064", "5078811037", "17388735001", "59756049838", "205310507773", "707095964617", "2436104710774", "8406778618336", "29027513057326" ]
[ "nonn" ]
17
0
3
[ "A383597", "A383603", "A383604", "A383605" ]
null
Seiichi Manyama, May 01 2025
2025-05-06T00:52:13
oeisdata/seq/A383/A383603.seq
1f86e80a6c995252d7ed5886fb7c79a3
A383604
Expansion of 1/( (1-x)^2 * (1-x-9*x^3) )^(1/3).
[ "1", "1", "1", "4", "7", "10", "31", "70", "127", "328", "799", "1666", "4000", "9817", "22078", "52060", "126727", "296101", "699601", "1691350", "4024450", "9574393", "23081776", "55394488", "132650923", "319807159", "770872429", "1855190146", "4479086230", "10825202521", "26145137668", "63241928080", "153144714331" ]
[ "nonn" ]
18
0
4
[ "A217615", "A383597", "A383603", "A383604" ]
null
Seiichi Manyama, May 01 2025
2025-05-06T09:32:51
oeisdata/seq/A383/A383604.seq
1af510a54a78ddff2a33d99a232e01b5
A383605
Expansion of 1/( (1-x) * (1-x-9*x^2)^2 )^(1/3).
[ "1", "1", "7", "13", "64", "160", "661", "1927", "7288", "23044", "83413", "275479", "976198", "3301462", "11584861", "39703783", "138747637", "479200129", "1672353256", "5803085008", "20251472416", "70486033288", "246114881956", "858397066324", "2999541427177", "10477699520329", "36642516789607", "128146441442989" ]
[ "nonn" ]
17
0
3
[ "A383601", "A383605", "A383606" ]
null
Seiichi Manyama, May 01 2025
2025-05-06T11:50:42
oeisdata/seq/A383/A383605.seq
2f158f850cce75613cb34d55b74f083a
A383606
Expansion of 1/( (1-x) * (1-x-9*x^3)^2 )^(1/3).
[ "1", "1", "1", "7", "13", "19", "70", "166", "307", "853", "2164", "4600", "11491", "29137", "66808", "161692", "403843", "961129", "2316238", "5715742", "13831219", "33450073", "82013692", "199820584", "485389276", "1187152906", "2900334583", "7069398325", "17283884710", "42278723290", "103291322056", "252668924536" ]
[ "nonn" ]
17
0
4
[ "A383601", "A383605", "A383606" ]
null
Seiichi Manyama, May 01 2025
2025-05-06T15:37:58
oeisdata/seq/A383/A383606.seq
750f6e1222be43fe6f1fc12b6276a25c
A383607
Square array read by antidiagonals upwards: T(n,k) is the smallest k-digit prime p such that nextprime(p) is a substring of p^n; or -1 if no such prime exists, n>1, k>0.
[ "-1", "-1", "23", "-1", "11", "113", "2", "37", "101", "1123", "7", "17", "487", "2239", "-1", "5", "47", "-1", "5659", "34297", "200003", "3", "13", "-1", "2399", "91801", "535487", "-1", "-1", "31", "607", "1279", "31627", "842483", "-1", "-1", "3", "41", "431", "3163", "12281", "825059", "6315629", "59897017", "714597769", "-1", "37", "233", "1931", "15791", "179947", "5623421", "-1", "430784719", "-1" ]
[ "sign", "tabl", "base" ]
15
2
3
[ "A052073", "A052074", "A052075", "A052076", "A274932", "A383607" ]
null
Jean-Marc Rebert, May 01 2025
2025-05-10T15:19:06
oeisdata/seq/A383/A383607.seq
51eeb8300b89fdd100b0669f3642f551
A383608
Expansion of e.g.f. (1+x)*cosh(x)^2.
[ "1", "1", "2", "6", "8", "40", "32", "224", "128", "1152", "512", "5632", "2048", "26624", "8192", "122880", "32768", "557056", "131072", "2490368", "524288", "11010048", "2097152", "48234496", "8388608", "209715200", "33554432", "905969664", "134217728", "3892314112", "536870912", "16642998272", "2147483648", "70866960384", "8589934592" ]
[ "nonn", "easy" ]
9
0
3
[ "A081294", "A229580", "A383608" ]
null
Enrique Navarrete, May 01 2025
2025-05-03T10:03:09
oeisdata/seq/A383/A383608.seq
5201892065b415226a2985c3cfcf2e27
A383609
Triangle read by rows: T(n,k) = T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) for 0 < k < n, T(n,0) = T(n,n) = 1.
[ "1", "1", "1", "1", "2", "1", "1", "3", "4", "1", "1", "4", "8", "8", "1", "1", "5", "13", "20", "17", "1", "1", "6", "19", "38", "50", "38", "1", "1", "7", "26", "63", "107", "126", "89", "1", "1", "8", "34", "96", "196", "296", "322", "216", "1", "1", "9", "43", "138", "326", "588", "814", "834", "539", "1", "1", "10", "53", "190", "507", "1052", "1728", "2236", "2187", "1374", "1" ]
[ "nonn", "tabl" ]
10
0
5
[ "A038185", "A167630", "A211278", "A383609" ]
null
Mélika Tebni, May 02 2025
2025-05-03T04:08:09
oeisdata/seq/A383/A383609.seq
20655e39e9a311fa04257049083159d3
A383610
Expansion of 1/( (1-x^2) * (1-x^2-9*x)^2 )^(1/3).
[ "1", "6", "46", "372", "3106", "26406", "227179", "1970952", "17206552", "150940848", "1329193288", "11741662152", "103992267826", "923052335316", "8208568670644", "73116321077784", "652195543067596", "5824848557238228", "52080340709333998", "466116121318516872", "4175438344430632696" ]
[ "nonn" ]
9
0
2
[ "A383598", "A383601", "A383610", "A383611" ]
null
Seiichi Manyama, May 02 2025
2025-05-03T03:07:43
oeisdata/seq/A383/A383610.seq
ea3cfa6578e55c1a5cc07cee0c8d5ecf
A383611
Expansion of 1/( (1-x^3) * (1-x^3-9*x)^2 )^(1/3).
[ "1", "6", "45", "361", "2982", "25083", "213499", "1832508", "15827103", "137356597", "1196642427", "10457750151", "91630781245", "804632867643", "7078961780064", "62380210284379", "550478616300900", "4863816606663882", "43022548851457447", "380930792260360182", "3375853250109410583" ]
[ "nonn" ]
11
0
2
[ "A383599", "A383601", "A383606", "A383610", "A383611" ]
null
Seiichi Manyama, May 02 2025
2025-05-02T07:57:23
oeisdata/seq/A383/A383611.seq
3c8a5f26c751c9a5f3286e0dce7ae43d
A383612
Numbers k such that 2 + val(k!, 2) < p + val(k!, p), where p is the largest prime <= k and val(r, m) is the valuation of r at m.
[ "3", "5", "7", "11", "13", "14", "15", "17", "19", "23", "29", "30", "31", "37", "38", "39", "41", "42", "43", "44", "45", "47", "53", "54", "55", "59", "60", "61", "62", "63", "67", "71", "73", "74", "75", "79", "83", "84", "85", "89", "90", "91", "97", "98", "99", "101", "102", "103", "104", "105", "107", "108", "109", "110", "111", "113", "114", "115", "127", "131", "137", "138", "139", "140", "141", "149", "150" ]
[ "nonn" ]
26
1
1
[ "A000142", "A007814", "A007917", "A383612" ]
null
Ryan Jean, May 02 2025
2025-05-12T19:54:37
oeisdata/seq/A383/A383612.seq
f8adc7a9271c7eadee3c52c03269b2bc
A383613
Square array read by antidiagonals upwards: T(n,k) (for n>1 and k>0) is the smallest k-digit prime p such that prevprime(p) appears as a substring in p^n; or -1 if no such prime exists.
[ "-1", "3", "-1", "-1", "17", "-1", "3", "43", "997", "3701", "3", "31", "607", "2837", "-1", "3", "11", "929", "5843", "57349", "-1", "5", "11", "-1", "4447", "31063", "224813", "-1", "5", "-1", "277", "2477", "77377", "292223", "9999991", "65442077", "7", "11", "809", "7019", "24379", "262433", "9862243", "61879669", "-1", "-1", "11", "499", "1571", "17669", "342281", "1303613", "32685743", "763137931", "-1" ]
[ "sign", "tabl", "base" ]
13
2
2
[ "A381969", "A383613" ]
null
Jean-Marc Rebert, May 02 2025
2025-05-09T23:12:48
oeisdata/seq/A383/A383613.seq
e0734eabd7956ec91cbd9f656f6b2784
A383614
The unique sequence such that Sum_{d|n} d*a(d)^(n/d) = sigma(n)^2 for every n.
[ "1", "4", "5", "4", "7", "-10", "9", "-44", "-23", "-197", "13", "-845", "15", "-2340", "-701", "-9164", "19", "-31578", "21", "-124979", "-11355", "-381326", "25", "-1778580", "-3323", "-5162265", "-212899", "-21915630", "31", "-70256029", "33", "-311369996", "-4439583", "-1010580635", "-129393", "-4135827284", "39", "-14467258386" ]
[ "sign", "easy" ]
16
1
2
[ "A000203", "A072861", "A383614" ]
null
Yifan Xie, May 02 2025
2025-05-19T22:38:52
oeisdata/seq/A383/A383614.seq
adedcf7a208ca2f1abd312d12aacc1fc
A383615
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.
[ "1", "0", "1", "1", "0", "1", "3", "4", "5", "9", "40", "41", "27", "364", "365", "83", "3444", "3445", "263", "34584", "34585", "857", "367224", "367225", "2859", "4086940", "4086941", "9723", "47268364", "47268365", "33591", "564177640", "564177641", "117571", "6911470020", "6911470021", "416023", "86537568264", "86537568265", "1485799", "1103799334200", "1103799334201" ]
[ "nonn", "easy", "tabf" ]
18
0
7
[ "A000108", "A131428", "A381846", "A383615", "A383616" ]
null
Miguel-Ángel Pérez García-Ortega, May 02 2025
2025-05-16T03:03:02
oeisdata/seq/A383/A383615.seq
0051e5c9ff5c513a934d59c058a9ab0a
A383616
Semiperimeter of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "1", "1", "6", "45", "378", "3486", "34716", "367653", "4088370", "47273226", "564194436", "6911528806", "86537776276", "1103800077100", "14305255952760", "187980029453205", "2500329620300130", "33615543018643410", "456277454997741300", "6246438363690689010", "86175353769957832380", "1197196443763413093780", "16738118900201817535560" ]
[ "nonn", "easy" ]
12
0
3
[ "A000108", "A131428", "A381846", "A383615", "A383616" ]
null
Miguel-Ángel Pérez García-Ortega, May 02 2025
2025-05-11T18:33:58
oeisdata/seq/A383/A383616.seq
a7cfcbac13a62d4381eee63a01b09e6d
A383617
Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, k of which are picked out, 0 <= k <= n.
[ "1", "2", "2", "10", "16", "10", "104", "272", "272", "104", "3044", "11456", "16960", "11456", "3044", "291968", "1432608", "2842304", "2842304", "1432608", "291968", "96928992", "578431232", "1441700480", "1920352256", "1441700480", "578431232", "96928992", "112282908928", "784780122880", "2351993457920", "3918054495616", "3918054495616", "2351993457920", "784780122880", "112282908928" ]
[ "nonn", "tabl" ]
14
0
2
[ "A000595", "A329874", "A353996", "A383617" ]
null
Peter Dolland, May 02 2025
2025-05-08T03:15:05
oeisdata/seq/A383/A383617.seq
2748bbc91ec1bd4e13275007ef2b7eeb
A383618
Smallest prime gap whose first occurrence is >= 2^n.
[ "1", "4", "6", "6", "8", "8", "10", "16", "16", "16", "26", "30", "36", "38", "46", "46", "66", "74", "80", "94", "108", "116", "142", "156", "158", "166", "186", "200", "228", "254", "264", "294", "298", "334", "362", "388", "388", "422", "466", "488", "510", "536", "576", "590", "632", "676", "708", "764", "782", "796", "848", "926", "928", "968", "1006", "1048" ]
[ "nonn" ]
17
1
2
[ "A000230", "A383618" ]
null
Brian Kehrig, May 02 2025
2025-05-04T03:22:51
oeisdata/seq/A383/A383618.seq
e04dcfed20f75dbad218aac76f0d1b19
A383619
Conjectured list of least elements of nontrivial arithmetic derivative orbits.
[ "1", "8", "20", "36", "40", "54", "64", "84", "104", "116", "135", "144", "196", "224", "228", "232", "243", "264", "270", "280" ]
[ "nonn", "more" ]
21
1
2
[ "A003415", "A068346", "A099306", "A258644", "A258645", "A258646", "A258647", "A258648", "A258649", "A258650", "A383619" ]
null
Dimitris Cardaris, May 02 2025
2025-05-14T17:49:32
oeisdata/seq/A383/A383619.seq
949310f8665d6ccf93b964b22e3d3661
A383620
Number of weak compositions of n such that the set of adjacent differences is a subset of {-1,1}.
[ "1", "4", "5", "9", "13", "20", "30", "45", "66", "102", "152", "229", "344", "518", "780", "1180", "1775", "2676", "4037", "6088", "9182", "13852", "20891", "31512", "47536", "71706", "108166", "163172", "246140", "371303", "560118", "844943", "1274606", "1922767", "2900522", "4375493", "6600511", "9956990", "15020307", "22658428" ]
[ "nonn" ]
9
0
2
[ "A007318", "A173258", "A214247", "A214249", "A227310", "A383620" ]
null
John Tyler Rascoe, May 02 2025
2025-05-04T14:52:52
oeisdata/seq/A383/A383620.seq
bade4e9fb523301dd5d2fa2cd410b7f3
A383621
a(n) is the minimum possible value of x_1 + x_2 + ... + x_n where x_1, x_2, ..., x_n are positive integers such that x_i does not divide x_j for any i != j.
[ "1", "5", "10", "17", "28", "41", "55", "72", "91", "111", "134", "159", "187", "216", "247", "282", "319", "360", "403", "447", "493", "540", "589", "641", "694", "749", "808", "869", "934", "1001", "1069", "1139", "1210", "1283", "1359", "1436", "1515", "1598", "1683", "1772", "1863", "1955", "2050", "2147", "2245", "2345", "2446", "2549", "2656", "2765", "2878" ]
[ "nonn", "easy" ]
25
1
2
[ "A027649", "A383621", "A383622" ]
null
Yifan Xie, May 10 2025
2025-07-01T19:04:26
oeisdata/seq/A383/A383621.seq
9517b5c743d9dc13cefe2804bc20a6c5
A383622
First differences of A383621.
[ "1", "4", "5", "7", "11", "13", "14", "17", "19", "20", "23", "25", "28", "29", "31", "35", "37", "41", "43", "44", "46", "47", "49", "52", "53", "55", "59", "61", "65", "67", "68", "70", "71", "73", "76", "77", "79", "83", "85", "89", "91", "92", "95", "97", "98", "100", "101", "103", "107", "109", "113", "115", "116", "119", "121", "124", "125", "127", "131", "133", "137", "139", "140", "143" ]
[ "nonn", "easy" ]
22
1
2
[ "A001047", "A007310", "A027649", "A383621", "A383622" ]
null
Yifan Xie, May 10 2025
2025-05-20T10:21:57
oeisdata/seq/A383/A383622.seq
aacdb0569e950ac2c45c8ab0d2a9a290
A383623
a(n) = 4^n - (n^2 + 3*n + 4)*2^(n-2).
[ "0", "0", "2", "20", "128", "672", "3168", "14016", "59648", "247808", "1014272", "4113408", "16588800", "66674688", "267444224", "1071497216", "4289921024", "17168596992", "68694441984", "274822594560", "1099389992960", "4397780172800", "17591605133312", "70367481692160", "281472242024448" ]
[ "nonn", "easy" ]
10
0
3
[ "A000302", "A007466", "A383623" ]
null
Enrique Navarrete, May 03 2025
2025-05-08T22:26:28
oeisdata/seq/A383/A383623.seq
a376e038e9b95c10a3fcb10de99fa709
A383624
Expansion of 1/( Product_{k=0..3} (1 + (-1)^k * (2*k+1) * x) )^(1/4).
[ "1", "1", "11", "31", "275", "1171", "9061", "47601", "340851", "2000035", "13781041", "85853021", "581590621", "3746717261", "25226298475", "165727074511", "1114795372371", "7412559559251", "49931115844481", "334625705273405", "2259169929355945", "15223239487082345", "103033228974453295", "697074803657176595" ]
[ "nonn" ]
7
0
3
[ "A002426", "A383624", "A383625", "A383626" ]
null
Seiichi Manyama, May 03 2025
2025-05-03T09:35:00
oeisdata/seq/A383/A383624.seq
8ca4dfbd475e8ae33dd4ed1c82451253
A383625
Expansion of 1/( Product_{k=0..7} (1 + (-1)^k * (2*k+1) * x) )^(1/8).
[ "1", "1", "43", "127", "4243", "20371", "560709", "3642129", "86291955", "690569251", "14567545105", "135548975101", "2614274677597", "27191058449101", "489590162677771", "5534086571696943", "94565644541691219", "1137954908186418771", "18691690961308817377", "235813806878453147485", "3760260498723044082985" ]
[ "nonn" ]
7
0
3
[ "A002426", "A383624", "A383625", "A383626" ]
null
Seiichi Manyama, May 03 2025
2025-05-03T09:34:56
oeisdata/seq/A383/A383625.seq
0b8b3b46ea20fad830b65e0cc14ab8a1