sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A383626
Expansion of 1/( Product_{k=0..15} (1 + (-1)^k * (2*k+1) * x) )^(1/16).
[ "1", "1", "171", "511", "67219", "332691", "35484101", "243740561", "21888901107", "191172628003", "14869055610001", "156592613526141", "10782221986043741", "132098336706362573", "8194613483517245067", "113784873403069510831", "6451310743087387098451", "99520550430366438297171" ]
[ "nonn" ]
8
0
3
[ "A002426", "A383624", "A383625", "A383626" ]
null
Seiichi Manyama, May 03 2025
2025-05-12T03:37:52
oeisdata/seq/A383/A383626.seq
0663bad801270691d33de50bc7634a41
A383627
Expansion of 1/( Product_{k=0..2} (1 - (3*k+1) * x) )^(1/3).
[ "1", "4", "19", "100", "562", "3304", "20062", "124744", "789553", "5065444", "32840347", "214681636", "1412786872", "9348241504", "62138211112", "414627600736", "2775808278058", "18636412183336", "125436195473662", "846145250012776", "5719044971926972", "38723124875350960", "262609593669266404" ]
[ "nonn" ]
9
0
2
[ "A016223", "A370781", "A383627", "A383628", "A383629", "A383630", "A383631", "A383632", "A383633" ]
null
Seiichi Manyama, May 03 2025
2025-05-12T03:18:11
oeisdata/seq/A383/A383627.seq
044c486fc2f177af9eae7bd9739b8a90
A383628
Expansion of 1/( Product_{k=0..3} (1 - (4*k+1) * x) )^(1/4).
[ "1", "7", "59", "553", "5555", "58597", "640789", "7201383", "82659891", "964698805", "11408855809", "136374495803", "1644405320701", "19971195162107", "244004256374395", "2996243293813273", "36950056359522771", "457349452121086917", "5678884294812093329", "70710759962448700955", "882616583068179751945" ]
[ "nonn" ]
7
0
2
[ "A383627", "A383628", "A383629", "A383630", "A383631", "A383632", "A383633", "A383634" ]
null
Seiichi Manyama, May 03 2025
2025-05-03T09:38:09
oeisdata/seq/A383/A383628.seq
0c4b76cd9a4b435b21b35eb8637d39ca
A383629
Expansion of 1/( Product_{k=0..4} (1 - (5*k+1) * x) )^(1/5).
[ "1", "11", "146", "2156", "34166", "569426", "9854436", "175552696", "3199485331", "59384374841", "1118636310726", "21329345218236", "410804181673996", "7978922735099756", "156074211110053016", "3071360731347145776", "60752572593061028911", "1207041376109801598421", "24073933939936470329806" ]
[ "nonn" ]
7
0
2
[ "A383627", "A383628", "A383629", "A383630", "A383631", "A383632", "A383633", "A383635" ]
null
Seiichi Manyama, May 03 2025
2025-05-03T09:38:02
oeisdata/seq/A383/A383629.seq
e9e56e2776fbf0d06cce2c43b096a80e
A383630
Expansion of 1/( Product_{k=0..6} (1 - (7*k+1) * x) )^(1/7).
[ "1", "22", "582", "17116", "540457", "17965662", "620869768", "22116614080", "807128297844", "30040462521784", "1136357972482216", "43571763517455888", "1689879290748884068", "66179996449115623096", "2613460738278752421648", "103950807765143954047840", "4160551692685459730727454" ]
[ "nonn" ]
8
0
2
[ "A383627", "A383628", "A383629", "A383630", "A383631", "A383632", "A383633" ]
null
Seiichi Manyama, May 03 2025
2025-05-05T07:29:22
oeisdata/seq/A383/A383630.seq
1475db774204960bbbae5f63763083ff
A383631
Expansion of 1/( Product_{k=0..7} (1 - (8*k+1) * x) )^(1/8).
[ "1", "29", "1009", "39005", "1618849", "70741469", "3214527633", "150606953757", "7231305564225", "354221417305757", "17641204276036657", "890872808134921949", "45521466404971069921", "2349568589682742349405", "122328082368695017498321", "6416984703345086646305181", "338833672698752842286404737" ]
[ "nonn" ]
6
0
2
[ "A383627", "A383628", "A383629", "A383630", "A383631", "A383632", "A383633" ]
null
Seiichi Manyama, May 03 2025
2025-05-03T09:38:05
oeisdata/seq/A383/A383631.seq
76f873170a93e88c9ad0c67b48b97def
A383632
Expansion of 1/( Product_{k=0..8} (1 - (9*k+1) * x) )^(1/9).
[ "1", "37", "1639", "80623", "4257424", "236721412", "13688641144", "816291120808", "49895692924132", "3112177949225236", "197407027057353724", "12699858803178669148", "826900665838817386456", "54398158759680212197576", "3610650035912536155468808", "241521616482786052388206408", "16265890564063100473094045146" ]
[ "nonn" ]
6
0
2
[ "A383627", "A383628", "A383629", "A383630", "A383631", "A383632", "A383633" ]
null
Seiichi Manyama, May 03 2025
2025-05-03T09:40:58
oeisdata/seq/A383/A383632.seq
446dcc9863d6b19f622390bc1c2f6c06
A383633
Expansion of 1/( Product_{k=0..10} (1 - (11*k+1) * x) )^(1/11).
[ "1", "56", "3741", "277256", "22052713", "1846878936", "160878051401", "14454374710216", "1331486959280259", "125190717874655720", "11973642784650273211", "1161838196321182959096", "114133506709827074843495", "11331528323810252967417064", "1135444330405820622163425351", "114694796036872449398436891896" ]
[ "nonn" ]
8
0
2
[ "A383627", "A383628", "A383629", "A383630", "A383631", "A383632", "A383633" ]
null
Seiichi Manyama, May 03 2025
2025-05-12T03:26:21
oeisdata/seq/A383/A383633.seq
e504fe49de2cb26b0e40becbb295e6ca
A383634
Expansion of 1/( Product_{k=0..3} (1 - (4*k+1) * x) ).
[ "1", "28", "530", "8540", "126651", "1791048", "24604420", "331842280", "4422301301", "58467523268", "768888466710", "10074907080420", "131688310339951", "1718380224948688", "22396840268491400", "291680037734786960", "3796530709486682601", "49397112147411259308", "642542379001477422490", "8356470240627243865900" ]
[ "nonn", "easy" ]
20
0
2
[ "A383628", "A383634" ]
null
Seiichi Manyama, May 03 2025
2025-05-04T14:44:01
oeisdata/seq/A383/A383634.seq
7ddad9518266fcb6d5d9d398c6702c31
A383635
Expansion of 1/( Product_{k=0..4} (1 - (5*k+1) * x) ).
[ "1", "55", "1940", "56210", "1461495", "35567301", "829147810", "18774611680", "416583297845", "9111004217315", "197197849460976", "4235712944853390", "90470493402792595", "1924292232588575905", "40801645704191871710", "863108809168841357276", "18225784176922532902545" ]
[ "nonn", "easy" ]
21
0
2
[ "A383629", "A383635" ]
null
Seiichi Manyama, May 03 2025
2025-05-04T14:44:19
oeisdata/seq/A383/A383635.seq
eb423c16d59b9eae97ee568ba50548c1
A383636
Integers k such that there is no prime of the form x*y+1 with x+y=k.
[ "1", "6", "30", "54" ]
[ "nonn", "hard" ]
15
1
2
[ "A026728", "A109905", "A383636" ]
null
Michel Marcus, May 03 2025
2025-05-07T11:24:53
oeisdata/seq/A383/A383636.seq
f27d3023ab2ecad3f5005098a376154a
A383637
Expansion of 1/((1-x) * (1+3*x) * (1-5*x)).
[ "1", "3", "22", "90", "511", "2373", "12412", "60420", "307021", "1520343", "7646002", "38097150", "190884331", "953225913", "4769716792", "23837822280", "119221396441", "596010127083", "2980341200782", "14900834307810", "74506786627351", "372526087871853", "1862653975153972", "9313199268385740", "46566208164081061" ]
[ "nonn", "easy" ]
26
0
2
[ "A079773", "A120612", "A383637" ]
null
Seiichi Manyama, May 03 2025
2025-05-04T13:59:02
oeisdata/seq/A383/A383637.seq
c6a5a32a8854f40074b61931a56990ad
A383638
Right-truncatable happy numbers: every prefix is a happy number and no digits are zero.
[ "1", "7", "13", "19", "79", "133", "139", "192", "193", "793", "1332", "1333", "1335", "1337", "1339", "1393", "1929", "1933", "7937", "7938", "13323", "13332", "13334", "13339", "13393", "13933", "19293", "19295", "19296", "19333", "79372", "79384", "79386", "133236", "133326", "133399", "133939", "139339", "192934", "192951", "192954" ]
[ "nonn", "base", "fini", "full" ]
9
1
2
[ "A007770", "A383638" ]
null
Shyam Sunder Gupta, May 03 2025
2025-05-08T22:44:26
oeisdata/seq/A383/A383638.seq
29ea9ebcb33052ff5f3a86345c1b14e3
A383639
Left-truncatable happy numbers: every suffix is a happy number and no digits are zero.
[ "1", "7", "31", "91", "97", "291", "331", "391", "397", "931", "2331", "3331", "3391", "3931", "5331", "7331", "7397", "8397", "9291", "9331", "23331", "27397", "32331", "33391", "33931", "39291", "39331", "43331", "48397", "59291", "68397", "69291", "93331", "127397", "159291", "427397", "439291", "459291", "469291", "623331", "632331" ]
[ "nonn", "base", "fini", "full" ]
6
1
2
[ "A007770", "A383639" ]
null
Shyam Sunder Gupta, May 03 2025
2025-05-08T22:41:49
oeisdata/seq/A383/A383639.seq
1bf2e70b072c50de4871d3a81b242a38
A383640
Internal digits of k^3 include digits of k as substring, k does not end in 0.
[ "56", "782", "5111", "8089", "8216", "9553", "11768", "14357", "18229", "53257", "64164", "65137", "72556", "98442", "213405", "271516", "830686", "941976", "1969394", "2420681", "2751442", "4150015", "5354867", "7045156", "9590417", "9699457", "10333214", "13427757", "21955652", "31213974", "32743132", "35272742" ]
[ "nonn", "base" ]
10
1
1
[ "A046837", "A052210", "A383640" ]
null
Shyam Sunder Gupta, May 03 2025
2025-05-09T10:29:53
oeisdata/seq/A383/A383640.seq
83a5b52cebf8ba7710068d44bc1fa624
A383641
a(n) is the difference between the sum of even composites and the sum of the odd composites in the first n positive integers.
[ "0", "0", "0", "4", "4", "10", "10", "18", "9", "19", "19", "31", "31", "45", "30", "46", "46", "64", "64", "84", "63", "85", "85", "109", "84", "110", "83", "111", "111", "141", "141", "173", "140", "174", "139", "175", "175", "213", "174", "214", "214", "256", "256", "300", "255", "301", "301", "349", "300", "350", "299", "351", "351", "405", "350", "406", "349", "407", "407" ]
[ "nonn" ]
18
1
4
[ "A000720", "A002808", "A004526", "A010701", "A028552", "A034387", "A066247", "A071904", "A101256", "A193356", "A262044", "A383259", "A383641" ]
null
Felix Huber, May 08 2025
2025-05-14T21:44:46
oeisdata/seq/A383/A383641.seq
8bddfcfa55c9d4634cb952ba620f398e
A383642
Numbers k = x + y with x and y positive integers such that x*y is a cube.
[ "2", "6", "9", "12", "16", "20", "28", "30", "33", "34", "35", "42", "48", "54", "56", "58", "65", "70", "72", "75", "84", "86", "90", "91", "96", "105", "110", "114", "120", "124", "126", "128", "132", "133", "152", "153", "156", "160", "162", "180", "182", "189", "198", "201", "205", "209", "210", "217", "224", "236", "238", "240", "243", "246", "250", "254", "258", "264", "267" ]
[ "nonn" ]
39
1
1
[ "A000578", "A003325", "A337140", "A383642" ]
null
Huaineng He, May 03 2025
2025-05-14T18:02:20
oeisdata/seq/A383/A383642.seq
ed1cca894d6f5078335f514137c8b6c1
A383643
Number of n-dimensional additively indecomposable positive definite integral lattices (or quadratic forms).
[ "1", "0", "0", "0", "0", "1", "1", "1", "2" ]
[ "nonn", "hard", "more" ]
15
1
9
[ "A380746", "A383643" ]
null
Robin Visser, May 09 2025
2025-05-15T21:28:07
oeisdata/seq/A383/A383643.seq
b7d4d7d25814973c32b57d5e12afc094
A383644
a(n) is the number of zeros in the left half-plane of the Maclaurin polynomial of degree n for exp(z).
[ "1", "2", "3", "4", "3", "4", "5", "6", "7", "6", "7", "8", "9", "10", "11", "10", "11", "12", "13", "14", "13", "14", "15", "16", "17", "16", "17", "18", "19", "20", "19", "20", "21", "22", "23", "24", "23", "24", "25", "26", "27", "26", "27", "28", "29", "30", "29", "30", "31", "32", "33", "32", "33", "34", "35", "36", "37", "36", "37", "38", "39", "40", "39", "40", "41", "42", "43", "42", "43", "44" ]
[ "nonn" ]
13
1
2
[ "A330187", "A332324", "A332420", "A383644" ]
null
Michel Lagneau, May 03 2025
2025-05-20T16:53:24
oeisdata/seq/A383/A383644.seq
0674e9347075300d0dca8486d9c73776
A383645
Consecutive internal states of the linear congruential pseudo-random number generator (17405*s+10395331) mod 2^24 when started at s=1.
[ "1", "10412736", "16578179", "2262842", "2257173", "4251524", "3870775", "3934750", "10123369", "13310344", "356907", "14791746", "14354941", "11842764", "8826975", "14928294", "8608209", "15734096", "7839443", "6803018", "3333093", "7266068", "9654663", "9209390", "10306617", "15070744", "4922491", "5109074" ]
[ "nonn", "easy" ]
53
1
2
[ "A096550", "A096561", "A383645" ]
null
Sean A. Irvine, May 23 2025
2025-05-26T09:54:16
oeisdata/seq/A383/A383645.seq
922267e4405b97533d229fc95996df6c
A383646
Smallest number that takes n steps to reach 1 under iteration of sum-of-cubes-of-digits map.
[ "1", "10", "112", "1189", "778", "13477", "2388889999999999999999" ]
[ "nonn", "base" ]
29
0
2
[ "A001273", "A007770", "A035504", "A383646" ]
null
Shyam Sunder Gupta, May 11 2025
2025-05-15T00:59:42
oeisdata/seq/A383/A383646.seq
14ff3b293014dca93d84278693b1a5df
A383647
Decimal expansion of 15/(2*Pi^4).
[ "0", "7", "6", "9", "9", "4", "8", "6", "6", "9", "1", "0", "1", "3", "2", "5", "1", "3", "9", "1", "8", "6", "4", "5", "8", "7", "4", "5", "0", "3", "3", "9", "0", "2", "0", "6", "0", "6", "3", "7", "0", "8", "5", "1", "3", "9", "0", "2", "2", "8", "6", "9", "7", "0", "3", "8", "6", "2", "6", "0", "2", "6", "6", "0", "3", "9", "8", "0", "2", "4", "7", "0", "0", "6", "6", "6", "3", "9", "4", "0", "1", "8", "6", "8", "0", "4", "2", "8", "6", "4", "4", "7", "1", "4", "6", "7", "8", "6", "7", "9", "2" ]
[ "nonn", "cons" ]
12
0
2
[ "A030059", "A082020", "A088245", "A088246", "A092425", "A151927", "A383647" ]
null
Stefano Spezia, May 03 2025
2025-05-06T16:20:49
oeisdata/seq/A383/A383647.seq
8610c1c67f9387d6754d81a7ae99bf96
A383648
Expansion of 1/((1-x) * (1+3*x) * (1-5*x) * (1+7*x) * (1-9*x)).
[ "1", "5", "95", "595", "7686", "55230", "607090", "4754090", "48061871", "397151755", "3829847385", "32718352485", "306907974556", "2676025381580", "24692022876980", "217997482615780", "1991711627877741", "17717860670676705", "160916534238851875", "1438073191564643975", "13013962546963583426" ]
[ "nonn", "easy" ]
22
0
2
[ "A381853", "A383648" ]
null
Seiichi Manyama, May 03 2025
2025-05-04T14:43:38
oeisdata/seq/A383/A383648.seq
641c017093b7685fedadea577c8fbf21
A383649
Numbers k such that A206369(k) is prime.
[ "3", "4", "6", "8", "9", "16", "18", "49", "64", "81", "98", "162", "169", "338", "625", "729", "1024", "1250", "1458", "4096", "4489", "6241", "8978", "12482", "14641", "19321", "22801", "26569", "29282", "37249", "38642", "45602", "53138", "65536", "74498", "113569", "121801", "143641", "208849", "227138", "243602", "262144", "287282", "292681", "375769", "413449", "417698" ]
[ "nonn" ]
22
1
1
[ "A127727", "A206369", "A383649" ]
null
Shreyansh Jaiswal, May 04 2025
2025-05-09T22:25:14
oeisdata/seq/A383/A383649.seq
b0825cbb49fb1b8455424b16c6cd2487
A383650
Averages k of a twin prime pair such that 3*k*2^d is also the average of a twin prime pair for some divisor d of 3*k.
[ "4", "6", "12", "18", "30", "60", "72", "108", "138", "192", "240", "270", "312", "348", "420", "432", "570", "642", "810", "822", "828", "1020", "1050", "1092", "1302", "1320", "1452", "1620", "1668", "1698", "1722", "1950", "1998", "2310", "2550", "2688", "2712", "2730", "2970", "3000", "3168", "3258", "3330", "3372", "3462", "3468", "3540", "3582", "4092" ]
[ "nonn" ]
19
1
1
[ "A000040", "A005101", "A014574", "A173490", "A383475", "A383650" ]
null
Juri-Stepan Gerasimov, May 04 2025
2025-05-06T11:51:17
oeisdata/seq/A383/A383650.seq
95673516c402ba91e17b426a420a34b3
A383651
Expansion of 1/((1-x) * (1+4*x) * (1-6*x)).
[ "1", "3", "31", "135", "1015", "5271", "34903", "196311", "1230295", "7172055", "43871191", "259871703", "1572651991", "9382224855", "56508097495", "338189591511", "2032573522903", "12181697242071", "73145159033815", "438651051877335", "2632785920566231", "15793197086188503", "94773256265966551" ]
[ "nonn", "easy" ]
22
0
2
[ "A051958", "A083578", "A383651" ]
null
Seiichi Manyama, May 04 2025
2025-05-04T14:43:33
oeisdata/seq/A383/A383651.seq
4a19c8c6b9a290225023ae9161e4d470
A383652
Primes p preceded and followed by gaps whose product is less than (log(p))^2.
[ "17", "19", "41", "43", "59", "61", "71", "73", "101", "103", "107", "109", "137", "139", "149", "151", "163", "167", "179", "181", "191", "193", "197", "199", "227", "229", "233", "239", "241", "269", "271", "277", "281", "283", "311", "313", "347", "349", "353", "379", "383", "397", "401", "419", "421", "431", "433", "439", "443", "457", "461", "463", "487", "491", "499", "503", "521", "523", "563", "569", "571", "593", "599" ]
[ "nonn" ]
22
1
1
[ "A083550", "A288907", "A381850", "A383652" ]
null
Alain Rocchelli, May 04 2025
2025-05-13T15:09:23
oeisdata/seq/A383/A383652.seq
b194a7738a86fba85b124eace7461647
A383653
Integers m such that m^4 is the sum of squares of two or more consecutive integers, positive or negative.
[ "1", "13", "26", "33", "295", "330", "364", "1085", "5005", "5546", "5682", "6305", "6538", "15516", "415151", "1990368", "3538366", "34011252", "42016497", "79565281", "139107722", "175761059", "254801664", "418093065", "667378972", "1214995500", "3609736702", "4353556896" ]
[ "nonn", "more" ]
29
1
2
[ "A000330", "A097812", "A189173", "A383359", "A383367", "A383653", "A383654" ]
null
Xianwen Wang, May 04 2025
2025-05-13T22:44:50
oeisdata/seq/A383/A383653.seq
e32ca398ba50cf42e81132bedba9172f
A383654
a(n) is the number k such that A383653(n)^4 is the sum of squares of k consecutive integers.
[ "2", "2", "169", "242", "177", "352", "1536", "2401", "40898", "163607", "230121", "60625", "218089", "185761", "19512097", "47761921", "1170329056", "1224370081", "7957888849", "10842382346", "11474926944", "208152552417", "12230369281", "190412616875", "497818686976", "72899460001", "1384334025217", "313455536641" ]
[ "nonn", "more" ]
33
1
1
[ "A000330", "A097812", "A189173", "A383359", "A383367", "A383653", "A383654" ]
null
Xianwen Wang, May 04 2025
2025-05-14T15:44:57
oeisdata/seq/A383/A383654.seq
e54b80998271787888a758493931f83d
A383655
Triangle read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k isolated points, n>=0, 0<=k<=n.
[ "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "11", "8", "6", "0", "1", "72", "55", "20", "10", "0", "1", "677", "432", "165", "40", "15", "0", "1", "8686", "4739", "1512", "385", "70", "21", "0", "1", "152191", "69488", "18956", "4032", "770", "112", "28", "0", "1", "3632916", "1369719", "312696", "56868", "9072", "1386", "168", "36", "0", "1", "118317913", "36329160", "6848595", "1042320", "142170", "18144", "2310", "240", "45", "0", "1" ]
[ "nonn", "tabl" ]
15
0
7
[ "A135922", "A323842", "A383655" ]
null
Geoffrey Critzer, May 04 2025
2025-05-07T11:35:22
oeisdata/seq/A383/A383655.seq
7b6a4add33bdab18fec7138b6e7f81cf
A383656
Triangular array read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k connected components, n>=0, 0<=k<=n.
[ "1", "0", "1", "0", "1", "1", "0", "2", "3", "1", "0", "8", "11", "6", "1", "0", "52", "60", "35", "10", "1", "0", "502", "472", "255", "85", "15", "1", "0", "6824", "5166", "2422", "805", "175", "21", "1", "0", "127166", "76712", "30072", "9177", "2100", "322", "28", "1", "0", "3205924", "1526910", "486800", "129360", "28497", "4788", "546", "36", "1", "0", "108975934", "40603534", "10292970", "2285240", "455805", "76629", "9870", "870", "45", "1" ]
[ "nonn", "tabl" ]
18
0
8
[ "A135922", "A323843", "A383656" ]
null
Geoffrey Critzer, May 04 2025
2025-05-08T02:21:19
oeisdata/seq/A383/A383656.seq
7202112d09d0160a0a05ae388c43b10e
A383657
Numerator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).
[ "1", "3", "3", "15", "3", "9", "3", "35", "15", "9", "3", "45", "3", "9", "9", "315", "3", "45", "3", "45", "9", "9", "3", "105", "15", "9", "35", "45", "3", "27", "3", "693", "9", "9", "9", "225", "3", "9", "9", "105", "3", "27", "3", "45", "45", "9", "3", "945", "15", "45", "9", "45", "3", "105", "9", "105", "9", "9", "3", "135", "3", "9", "45", "3003", "9", "27", "3", "45", "9", "27", "3", "525", "3" ]
[ "nonn", "frac", "mult" ]
16
1
2
[ "A000005", "A007425", "A007426", "A034695", "A046643", "A046644", "A061200", "A256688", "A256689", "A256690", "A256691", "A256692", "A256693", "A383657", "A383658" ]
null
Vaclav Kotesovec, May 04 2025
2025-05-04T23:44:22
oeisdata/seq/A383/A383657.seq
158c1c8b3bc02712f1b6d7d07fa09d69
A383658
Denominator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).
[ "1", "2", "2", "8", "2", "4", "2", "16", "8", "4", "2", "16", "2", "4", "4", "128", "2", "16", "2", "16", "4", "4", "2", "32", "8", "4", "16", "16", "2", "8", "2", "256", "4", "4", "4", "64", "2", "4", "4", "32", "2", "8", "2", "16", "16", "4", "2", "256", "8", "16", "4", "16", "2", "32", "4", "32", "4", "4", "2", "32", "2", "4", "16", "1024", "4", "8", "2", "16", "4", "8", "2", "128", "2", "4", "16", "16", "4" ]
[ "nonn", "frac", "mult" ]
17
1
2
[ "A000005", "A007425", "A007426", "A034695", "A046643", "A046644", "A061200", "A256688", "A256689", "A256690", "A256691", "A256692", "A256693", "A383657", "A383658" ]
null
Vaclav Kotesovec, May 04 2025
2025-05-07T11:32:53
oeisdata/seq/A383/A383658.seq
64fe1fa3788cbed551b6bf00a6fa59ce
A383659
Decimal expansion of phi + 2*log(phi), where phi is the golden ratio.
[ "2", "5", "8", "0", "4", "5", "7", "6", "3", "8", "8", "6", "9", "1", "0", "1", "7", "4", "3", "2", "0", "0", "1", "0", "4", "6", "6", "1", "2", "1", "4", "3", "7", "4", "9", "6", "3", "9", "9", "0", "6", "7", "7", "8", "4", "8", "5", "7", "7", "0", "8", "3", "9", "0", "1", "4", "5", "7", "4", "8", "4", "9", "6", "0", "3", "8", "5", "5", "8", "8", "1", "9", "8", "0", "3", "5", "3", "4", "5", "9", "9", "8", "5", "3", "1", "2", "2" ]
[ "nonn", "cons" ]
18
1
1
[ "A001622", "A002390", "A202543", "A383659", "A384238", "A384682" ]
null
Kritsada Moomuang, Jun 11 2025
2025-06-17T22:24:35
oeisdata/seq/A383/A383659.seq
8f6019e8c9c93620a45d81925ee0b275
A383660
Number of closed knight's tours in the first 2n cells of a 3 X ceiling(2n/3) board.
[ "4", "0", "4", "24", "16", "56", "306", "176", "456", "2632", "1536", "4828", "26788", "15424", "44952", "254288", "147728", "448032", "2502568", "1448416", "4310048", "24228704", "14060048", "42195584", "236335248", "136947616", "409403328", "2297294496", "1332257856", "3989883552", "22366625344", "12965578752", "38798663104", "217604833360", "126169362176" ]
[ "nonn" ]
15
11
1
[ "A070030", "A383660", "A383661", "A383662", "A383663", "A383664" ]
null
Don Knuth, May 04 2025
2025-06-23T14:41:01
oeisdata/seq/A383/A383660.seq
c3f7fbd04ed8dbfd17ee4c08921e3003
A383661
Number of closed knight's tours in the first 2n cells of a 5 X ceiling(2n/5) board.
[ "1", "0", "1", "30", "0", "148", "8", "78", "9309", "612", "62749", "44202", "42049", "2916485", "147192", "18284136", "13311268", "13008389", "973107552", "51147756", "6190192748", "4557702762", "4311375354", "316985255470", "16552301184", "2015267424300", "1495135512514", "1417634375316", "104324890543686", "5459334927260", "663068761241948" ]
[ "nonn" ]
17
9
4
[ "A175855", "A383660", "A383661", "A383662", "A383663", "A383664" ]
null
Don Knuth, May 04 2025
2025-06-23T14:41:06
oeisdata/seq/A383/A383661.seq
3d4e54d7c06b7d67dc3af3894661b67c
A383662
Number of closed knight's tours in the first 2n cells of a 6 X ceiling(2n/6) board.
[ "6", "0", "2", "302", "8", "151", "19072", "9862", "18202", "1603948", "1067638", "1310791", "107096187", "55488142", "66608924", "6149236417", "3374967940", "4259963914", "402706752421", "239187240144", "292999006211", "26470682075988", "15360134570696", "18595568012716", "1685811256230132", "964730606632516", "1173328484648288" ]
[ "nonn" ]
16
11
1
[ "A175881", "A383660", "A383661", "A383662", "A383663", "A383664" ]
null
Don Knuth, May 04 2025
2025-06-23T14:41:10
oeisdata/seq/A383/A383662.seq
787440b71bb517dca3c80f491fdfd486
A383663
Number of closed knight's tours in the first 2n cells of a 7 X ceiling(2n/7) board.
[ "2", "11", "58", "0", "21", "1020", "9309", "1481", "34162", "1295034", "1067638", "2213327", "50139185", "682189688", "144994543", "2607067351", "53099426601", "34524432316", "57716933870", "1388556345255", "16330667126220", "3697750041989", "70341043737487", "1662805965511580", "1250063279938854", "2122662114673944" ]
[ "nonn" ]
16
11
1
[ "A193054", "A383660", "A383661", "A383662", "A383663", "A383664" ]
null
Don Knuth, May 04 2025
2025-06-23T14:41:19
oeisdata/seq/A383/A383663.seq
2041862889fd8df9d1c56f71eca34979
A383664
Number of closed knight's tours in the first 2n cells of an 8 X ceiling(2n/8) board.
[ "4", "12", "212", "0", "50", "4525", "101730", "44202", "66034", "2408624", "69362264", "55488142", "101343548", "2398536889", "43391615822", "34524432316", "52661182514", "1231713564493", "20780788492646", "13267364410532", "21515340977481", "552407941427835", "10211663162678661", "7112881119092574", "11873618786859165" ]
[ "nonn" ]
14
13
1
[ "A193055", "A383660", "A383661", "A383662", "A383663", "A383664" ]
null
Don Knuth, May 04 2025
2025-05-05T15:18:53
oeisdata/seq/A383/A383664.seq
4b2e30975155bcdd7e5bd643c4e356d2
A383665
a(n) is the least number k such that k, k - s and k + s all have n prime divisors, counted with multiplicity, where s is the sum of the decimal digits of k.
[ "15", "102", "204", "408", "3078", "14496", "88448", "128768", "6857312", "111411968", "844844000", "6059394048", "13384999936", "948305874880", "6373064359936", "186505184249928" ]
[ "nonn", "base", "hard", "more" ]
17
2
1
[ "A001222", "A007953", "A062028", "A066568", "A381851", "A382996", "A383665" ]
null
Zak Seidov and Robert Israel, May 04 2025
2025-05-29T00:54:04
oeisdata/seq/A383/A383665.seq
45647b8b119547d8ebfc93efe97db95d
A383666
Numbers in whose binary representation no bit (0 or 1) occurs exactly once.
[ "3", "7", "9", "10", "12", "15", "17", "18", "19", "20", "21", "22", "24", "25", "26", "28", "31", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "48", "49", "50", "51", "52", "53", "54", "56", "57", "58", "60", "63", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86" ]
[ "nonn", "base", "easy" ]
34
1
1
[ "A030130", "A158581", "A383666", "A383667" ]
null
Clark Kimberling, May 07 2025
2025-05-21T12:40:18
oeisdata/seq/A383/A383666.seq
cde811a1d739e979320f892eba81daa1
A383667
Binary words beginning with 1 in which no binary digit occurs only once.
[ "11", "111", "1001", "1010", "1100", "1111", "10001", "10010", "10011", "10100", "10101", "10110", "11000", "11001", "11010", "11100", "11111", "100001", "100010", "100011", "100100", "100101", "100110", "100111", "101000", "101001", "101010", "101011", "101100", "101101", "101110", "110000", "110001", "110010", "110011" ]
[ "nonn", "base" ]
14
1
1
[ "A158581", "A383666", "A383667" ]
null
Clark Kimberling, May 07 2025
2025-05-21T12:39:44
oeisdata/seq/A383/A383667.seq
c03685034a153a126af8d653c87920b1
A383668
Numbers whose binary representation has a positive number of 0s, all with even runlength.
[ "4", "9", "12", "16", "19", "25", "28", "33", "36", "39", "48", "51", "57", "60", "64", "67", "73", "76", "79", "97", "100", "103", "112", "115", "121", "124", "129", "132", "135", "144", "147", "153", "156", "159", "192", "195", "201", "204", "207", "225", "228", "231", "240", "243", "249", "252", "256", "259", "265", "268", "271", "289", "292", "295", "304", "307" ]
[ "nonn", "look", "base" ]
16
1
1
[ "A060142", "A383668", "A383669" ]
null
Clark Kimberling, May 15 2025
2025-06-18T01:00:49
oeisdata/seq/A383/A383668.seq
625ac551082f9dc1dcc2ba3e68c31e12
A383669
Numbers whose binary representation has a positive number of 0s, all with odd runlength.
[ "2", "5", "6", "8", "10", "11", "13", "14", "17", "21", "22", "23", "24", "26", "27", "29", "30", "32", "34", "35", "40", "42", "43", "45", "46", "47", "49", "53", "54", "55", "56", "58", "59", "61", "62", "65", "69", "70", "71", "81", "85", "86", "87", "88", "90", "91", "93", "94", "95", "96", "98", "99", "104", "106", "107", "109", "110", "111", "113", "117", "118", "119", "120" ]
[ "nonn", "look", "base" ]
14
1
1
[ "A060142", "A383668", "A383669" ]
null
Clark Kimberling, May 15 2025
2025-06-18T01:00:44
oeisdata/seq/A383/A383669.seq
dec44ced1200b0f9603d022cc15a1eeb
A383670
Limiting word, as a sequence, obtained by prefixing with 0 the limiting sequence of s(n) defined by s(0) = 0, s(1) = 12, s(n) = the concatenation of s(n - 1) and s(n - 2).
[ "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1" ]
[ "nonn" ]
22
1
3
[ "A000045", "A001950", "A003849", "A026352", "A276885", "A383670", "A383671" ]
null
Clark Kimberling, May 15 2025
2025-05-21T20:30:53
oeisdata/seq/A383/A383670.seq
20f97b3078fef23538aadd4b0efec927
A383671
The limiting word that starts with 0, as a sequence, generated by s(0) = 0, s(1) = 12, s(n) = concatenation of s(n - 2) and s(n - 1).
[ "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "1", "2", "0", "1", "2", "0", "1", "2", "1", "2" ]
[ "nonn" ]
18
0
3
[ "A000045", "A003849", "A022413", "A026356", "A047924", "A383670", "A383671" ]
null
Clark Kimberling, May 15 2025
2025-05-21T23:36:34
oeisdata/seq/A383/A383671.seq
56587d5e508b223e30a03815e4f2aa78
A383672
Squarefree numbers k such that k^2+1 is not squarefree.
[ "7", "38", "41", "43", "57", "70", "82", "93", "107", "118", "143", "157", "182", "193", "218", "239", "251", "257", "282", "293", "307", "318", "327", "357", "382", "393", "407", "418", "437", "443", "457", "482", "493", "515", "518", "543", "557", "577", "582", "593", "606", "607", "618", "643", "682", "707", "718", "743", "746", "757", "782", "793", "807", "818", "829", "843", "857", "893" ]
[ "nonn" ]
17
1
1
[ "A005117", "A049532", "A080666", "A141932", "A141941", "A224718", "A383672" ]
null
Alexandre Herrera, May 04 2025
2025-05-09T19:59:59
oeisdata/seq/A383/A383672.seq
76e221bb6631901c457e47271c6fda0f
A383673
a(n) is the number of n X n Latin squares obeying a certain self-referential property defined in the comments.
[ "1", "2", "0", "1", "2", "0", "0", "2", "2", "0", "4", "0", "4", "0", "0", "2" ]
[ "nonn", "more", "hard" ]
22
1
2
null
null
Luis Novoa, May 04 2025
2025-05-15T15:55:01
oeisdata/seq/A383/A383673.seq
cc62f2929968764ce9a1420eb58a8bf4
A383674
Decimal expansion of Integral_{0..1} 1 / ((1+x^4) * sqrt(1-x^4)) dx.
[ "1", "0", "4", "8", "2", "1", "3", "4", "7", "0", "2", "7", "1", "7", "5", "4", "1", "0", "7", "4", "2", "4", "0", "4", "0", "3", "2", "0", "3", "8", "2", "7", "1", "7", "7", "1", "3", "9", "4", "5", "3", "3", "4", "9", "1", "2", "7", "7", "9", "7", "9", "4", "0", "1", "8", "3", "2", "6", "0", "7", "3", "4", "9", "9", "9", "8", "8", "6", "7", "4", "6", "9", "7", "5", "5", "3", "3", "7", "9", "6", "8", "7", "3", "8", "6", "0", "7" ]
[ "nonn", "cons" ]
8
1
3
[ "A019675", "A383674", "A383676" ]
null
Sean A. Irvine, May 04 2025
2025-05-04T23:44:06
oeisdata/seq/A383/A383674.seq
6e6c89f6248ef46e16372d013b76df5d
A383675
Number of n-digit terms in A157711.
[ "0", "0", "0", "0", "1", "0", "2", "2", "1", "4", "9", "5", "8", "3", "9", "9", "12", "6", "14", "4", "5", "9", "8", "10", "13", "10", "8", "19", "17", "15", "20", "16", "27", "16", "26", "14", "23", "18", "26", "22", "40", "23", "21", "18", "32", "24", "29", "15", "33", "21", "25", "33", "34", "25", "25", "22", "47", "30", "40", "25", "37", "29", "38", "33", "47", "30", "41", "37", "45", "41", "46", "33", "42", "36", "52", "39", "48", "28", "49", "37" ]
[ "nonn", "base" ]
51
1
7
[ "A157711", "A383675" ]
null
Hans Havermann, May 29 2025
2025-06-16T15:17:37
oeisdata/seq/A383/A383675.seq
baf948d7d6d61abe072bc81cb614edbc
A383676
Decimal expansion of Integral_{0..1} x^4 / ((1+x^4) * sqrt(1-x^4)) dx.
[ "2", "6", "2", "8", "1", "5", "3", "0", "6", "8", "7", "4", "3", "0", "5", "7", "9", "7", "8", "0", "8", "3", "7", "9", "4", "7", "4", "5", "6", "2", "8", "4", "1", "9", "9", "2", "8", "9", "6", "0", "4", "2", "5", "6", "2", "9", "3", "6", "0", "1", "7", "5", "6", "3", "0", "8", "2", "3", "3", "7", "3", "5", "1", "9", "1", "1", "7", "2", "0", "5", "9", "5", "9", "8", "1", "8", "2", "7", "4", "3", "7", "7", "2", "9", "0", "6", "9" ]
[ "nonn", "cons" ]
6
0
1
[ "A019675", "A383674", "A383676" ]
null
Sean A. Irvine, May 04 2025
2025-05-04T23:44:10
oeisdata/seq/A383/A383676.seq
8c1bf08ef25eb72b68800038d17feedc
A383677
Irregular triangle read by rows: T(n,k), 2 <= n , 3 <= k <= largest k such that A067175(k) <= n , is the smallest n-digit number m such that omega(m) = A001221(m) = k, and its largest prime factor equals the sum of its remaining prime factors. or -1 if no such number exists.
[ "30", "120", "-1", "1080", "3135", "3570", "10336", "10695", "10626", "-1", "100672", "102695", "103730", "844305", "-1", "1003520", "1005039", "1003450", "1218945", "1231230", "-1", "10017286", "10000295", "10003390", "10064145", "10314150", "-1", "100216924", "100019275", "100017216", "100367745", "100327920", "463798335", "-1" ]
[ "sign", "tabf", "base" ]
108
2
1
[ "A001221", "A002110", "A067175", "A365795", "A382469", "A383677", "A383725", "A383726", "A383728", "A383729" ]
null
Jean-Marc Rebert, May 11 2025
2025-06-18T21:41:15
oeisdata/seq/A383/A383677.seq
592db35d98fcd4ba236e4b628fdf3958
A383678
a(n) = [x^n] Product_{k=0..n} (1 + (2*n+k)*x).
[ "1", "5", "74", "1650", "48504", "1763100", "76223664", "3817038960", "217177416576", "13834411290720", "975244141065600", "75366122480858880", "6335159176892851200", "575442172080117538560", "56165570794932257433600", "5862137958472255891200000", "651508569509254106827161600", "76814449419352043102473728000" ]
[ "nonn" ]
44
0
2
[ "A000142", "A165675", "A382347", "A383678", "A384024" ]
null
Seiichi Manyama, May 18 2025
2025-05-23T03:02:51
oeisdata/seq/A383/A383678.seq
5d350936ebdafeb3dad9ddaf4e116a5d
A383679
The lesser of two consecutive primes whose gap equals the difference between their digital sums.
[ "2", "3", "5", "11", "13", "17", "23", "31", "41", "43", "53", "61", "71", "73", "83", "101", "103", "107", "131", "137", "151", "163", "173", "191", "193", "197", "223", "227", "233", "251", "263", "271", "281", "311", "313", "331", "347", "353", "373", "383", "401", "431", "433", "443", "461", "463", "491", "503", "521", "541", "563", "571", "593", "601", "613", "617" ]
[ "nonn", "base", "easy" ]
11
1
1
[ "A000040", "A001223", "A007953", "A383679", "A383680", "A383681", "A383685" ]
null
Stefano Spezia, May 05 2025
2025-05-07T11:25:54
oeisdata/seq/A383/A383679.seq
3dcfb4b953994921ed910038cf9d7747
A383680
The greater of two consecutive primes whose gap equals the difference between their digital sums.
[ "3", "5", "7", "13", "17", "19", "29", "37", "43", "47", "59", "67", "73", "79", "89", "103", "107", "109", "137", "139", "157", "167", "179", "193", "197", "199", "227", "229", "239", "257", "269", "277", "283", "313", "317", "337", "349", "359", "379", "389", "409", "433", "439", "449", "463", "467", "499", "509", "523", "547", "569", "577", "599", "607", "617", "619" ]
[ "nonn", "base", "easy" ]
9
1
1
[ "A000040", "A001223", "A007953", "A383679", "A383680", "A383681", "A383686" ]
null
Stefano Spezia, May 05 2025
2025-05-07T11:26:00
oeisdata/seq/A383/A383680.seq
06d96f6cdd9e82f4d47c5fa361db3a5b
A383681
Disjunctive union of A383679 and A383680.
[ "2", "7", "11", "19", "23", "29", "31", "37", "41", "47", "53", "59", "61", "67", "71", "79", "83", "89", "101", "109", "131", "139", "151", "157", "163", "167", "173", "179", "191", "199", "223", "229", "233", "239", "251", "257", "263", "269", "271", "277", "281", "283", "311", "317", "331", "337", "347", "349", "353", "359", "373", "379", "383", "389", "401", "409", "431" ]
[ "nonn", "base", "easy" ]
8
1
1
[ "A000040", "A001223", "A007953", "A383679", "A383680", "A383681", "A383687" ]
null
Stefano Spezia, May 05 2025
2025-05-07T11:26:13
oeisdata/seq/A383/A383681.seq
2e0918fa064ddae39578a6e4a46b2952
A383682
The largest nonnegative integer value of j for which each integer n, n+2, ..., j-4, j-2, j can be written as the sum of the squares of the elements of a partition of n.
[ "1", "4", "5", "10", "13", "14", "21", "34", "35", "46", "61", "62", "77", "78", "95", "114", "121", "142", "165", "190", "225", "246", "277", "290", "345", "358", "359", "396", "435", "446", "487", "530", "575", "622", "679", "722", "783", "790", "791", "846", "903", "1022", "1085", "1086", "1151", "1230", "1287", "1358", "1373", "1374", "1521", "1522", "1599" ]
[ "nonn" ]
9
1
2
[ "A381811", "A383682" ]
null
Noah A Rosenberg, May 05 2025
2025-05-10T19:31:33
oeisdata/seq/A383/A383682.seq
6e58e26e318bd0a39abda140cd456b04
A383683
The number of possible values that can be obtained for the Shannon diversity index across all partitions of n.
[ "1", "1", "2", "3", "5", "7", "11", "15", "21", "29", "39", "52", "68", "89", "117", "150", "192", "244", "309", "387", "485", "603", "749", "922", "1130", "1384", "1680", "2035", "2440", "2922", "3478", "4118", "4867", "5728", "6740", "7879", "9206", "10741", "12502", "14516", "16846", "19533", "22620", "26164", "30252", "34967", "40450", "46786" ]
[ "nonn" ]
10
0
3
[ "A000041", "A000607", "A383683" ]
null
Noah A Rosenberg, May 05 2025
2025-05-06T15:20:40
oeisdata/seq/A383/A383683.seq
8768550385a80db1e7eb83f2a4063809
A383684
Minimum number of transversals in an extended self-orthogonal diagonal Latin square of order n.
[ "1", "0", "0", "8", "15", "0", "23", "128", "133", "716" ]
[ "nonn", "more", "hard" ]
8
1
4
[ "A090741", "A091323", "A287644", "A287645", "A309210", "A309598", "A309599", "A357514", "A383684" ]
null
Eduard I. Vatutin, May 05 2025
2025-06-29T22:35:43
oeisdata/seq/A383/A383684.seq
a920706048696d89204a21bd7896376d
A383685
The lesser of two consecutive primes whose gap equals the difference between their digital roots.
[ "2", "3", "5", "11", "13", "19", "29", "37", "41", "47", "59", "67", "73", "83", "101", "103", "109", "127", "137", "149", "163", "173", "191", "193", "227", "229", "239", "263", "271", "281", "307", "311", "347", "353", "379", "397", "419", "433", "443", "461", "463", "487", "499", "541", "569", "587", "599", "613", "617", "641", "643", "659", "677", "739", "757", "769" ]
[ "nonn", "base", "easy" ]
11
1
1
[ "A000040", "A001223", "A010888", "A383679", "A383685", "A383686", "A383687" ]
null
Stefano Spezia, May 05 2025
2025-05-07T11:26:25
oeisdata/seq/A383/A383685.seq
26648c491c68d1348c76a61da1e9c4b9
A383686
The greater of two consecutive primes whose gap equals the difference between their digital roots.
[ "3", "5", "7", "13", "17", "23", "31", "41", "43", "53", "61", "71", "79", "89", "103", "107", "113", "131", "139", "151", "167", "179", "193", "197", "229", "233", "241", "269", "277", "283", "311", "313", "349", "359", "383", "401", "421", "439", "449", "463", "467", "491", "503", "547", "571", "593", "601", "617", "619", "643", "647", "661", "683", "743", "761", "773" ]
[ "nonn", "base", "easy" ]
9
1
1
[ "A000040", "A001223", "A010888", "A383680", "A383685", "A383686", "A383687" ]
null
Stefano Spezia, May 05 2025
2025-05-07T11:26:32
oeisdata/seq/A383/A383686.seq
e4442d613feb9824d22bf99030cfa94e
A383687
Disjunctive union of A383685 and A383686.
[ "2", "7", "11", "17", "19", "23", "29", "31", "37", "43", "47", "53", "59", "61", "67", "71", "73", "79", "83", "89", "101", "107", "109", "113", "127", "131", "137", "139", "149", "151", "163", "167", "173", "179", "191", "197", "227", "233", "239", "241", "263", "269", "271", "277", "281", "283", "307", "313", "347", "349", "353", "359", "379", "383", "397", "401", "419" ]
[ "nonn", "base", "easy" ]
10
1
1
[ "A000040", "A001223", "A010888", "A383681", "A383685", "A383686", "A383687" ]
null
Stefano Spezia, May 05 2025
2025-05-07T11:26:38
oeisdata/seq/A383/A383687.seq
7ce8042a68a8dd559f84c23d204deaaa
A383688
Partial sums of A383442.
[ "0", "1", "3", "2", "0", "-3", "0", "4", "9", "4", "0", "6", "13", "21", "14", "8", "17", "27", "38", "28", "19", "11", "0", "-12", "-25", "-39", "-25", "-12", "0", "15", "31", "48", "66", "48", "33", "17", "0", "19", "39", "60", "82", "105", "83", "64", "44", "23", "47", "72", "98", "125", "153", "126", "102", "79", "53", "28", "0", "-29", "-59", "-90", "-122", "-155", "-122", "-92", "-63", "-31" ]
[ "sign" ]
7
0
3
[ "A383442", "A383443", "A383688" ]
null
Paolo Xausa, May 05 2025
2025-05-05T11:45:26
oeisdata/seq/A383/A383688.seq
fc4d5ed4f5b78458eeb5786f7f512f6c
A383689
a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^n, where 0 < x < y < z has exactly n integer solutions.
[ "36", "188", "54", "144", "90", "63", "99" ]
[ "nonn", "hard", "more" ]
27
1
1
[ "A383689", "A383879" ]
null
Zhining Yang, May 12 2025
2025-06-07T11:56:45
oeisdata/seq/A383/A383689.seq
19a4275a36da425130cc83f92e8b2998
A383690
Positions of digits in the decimal expansion of Pi where the cumulative sum of even digits equals the cumulative sum of odd digits (positions 1, 2, 3, ... refer to the digits 3, 1, 4, ...).
[ "3", "268", "375", "376", "402" ]
[ "nonn", "base", "more" ]
30
1
1
[ "A000796", "A175813", "A383690" ]
null
Gonzalo Martínez, May 09 2025
2025-05-20T16:49:38
oeisdata/seq/A383/A383690.seq
43c2840f56a942a0a405f98288824775
A383691
Square numbers with distinct digits from 1-9 that have an initial string of two or more digits forming a square number.
[ "169", "256", "361", "3249", "16384", "18496", "36481", "81796", "237169", "729316", "2537649", "3481956", "5184729", "36517849", "81432576", "254817369", "361874529", "529874361" ]
[ "nonn", "base", "fini", "full" ]
18
1
1
[ "A036744", "A036745", "A352329", "A383691" ]
null
Hilarie Orman, May 05 2025
2025-05-07T11:55:12
oeisdata/seq/A383/A383691.seq
6c4a0b60add9b411f7b0340ae28229ad
A383692
a(n) = round(Chi(n)) where Chi(x) is the cosh integral function.
[ "1", "2", "5", "10", "20", "43", "96", "220", "519", "1246", "3036", "7480", "18599", "46596", "117478", "297780", "758319", "1938952", "4975454", "12807826", "33063593", "85572336", "221983185", "577057696", "1502975453", "3921470496", "10248248560", "26822559296", "70299597879", "184486604704", "484727787984" ]
[ "nonn" ]
10
1
2
[ "A383542", "A383692" ]
null
Kritsada Moomuang, May 05 2025
2025-05-10T23:00:20
oeisdata/seq/A383/A383692.seq
b47a558e2c9ec30eb6cb02d5a97cbcdc
A383693
Exponential unitary abundant numbers: numbers k such that A322857(k) > 2*k.
[ "900", "1764", "4356", "4500", "4900", "6084", "6300", "8820", "9900", "10404", "11700", "12348", "12996", "14700", "15300", "17100", "19044", "19404", "20700", "21780", "22500", "22932", "26100", "27900", "29988", "30276", "30420", "30492", "31500", "33300", "33516", "34596", "36900", "38700", "40572", "42300", "42588", "44100", "47700", "47916", "49284", "49500" ]
[ "nonn", "easy" ]
9
1
1
[ "A005117", "A013929", "A129575", "A209061", "A322857", "A322858", "A361255", "A383693", "A383694", "A383697", "A383698" ]
null
Amiram Eldar, May 05 2025
2025-05-07T10:49:38
oeisdata/seq/A383/A383693.seq
4899c7cf47fb84d56f8c2402c36931db
A383694
Primitive exponential unitary abundant numbers: the powerful terms of A383693.
[ "900", "1764", "4356", "4500", "4900", "6084", "10404", "12348", "12996", "19044", "22500", "30276", "34596", "44100", "47916", "49284", "60516", "66564", "79092", "79524", "86436", "88200", "101124", "108900", "112500", "125316", "132300", "133956", "152100", "161604", "176400", "176868", "181476", "191844", "213444", "217800", "220500" ]
[ "nonn" ]
8
1
1
[ "A001694", "A005117", "A322857", "A328136", "A383693", "A383694", "A383698" ]
null
Amiram Eldar, May 05 2025
2025-05-07T10:49:58
oeisdata/seq/A383/A383694.seq
e63833edfb3a0ef50ed1b5e0d65b7780
A383695
Exponential infinitary abundant numbers that are not exponential unitary abundant: numbers k such that A361175(k) > 2*k >= A322857(k).
[ "476985600", "815673600", "1018886400", "1177862400", "1493049600", "2014214400", "2373638400", "2712326400", "3756614400", "3863865600", "4744454400", "5218617600", "5246841600", "6234681600", "7928121600", "8108755200", "8245036800", "8972409600", "9062726400", "9824774400", "10502150400", "10603756800" ]
[ "nonn" ]
10
1
1
[ "A005117", "A013929", "A129575", "A322857", "A361175", "A383695", "A383696" ]
null
Amiram Eldar, May 05 2025
2025-05-07T10:50:08
oeisdata/seq/A383/A383695.seq
e1afdd28a2e931f7791ffadf4865e21b
A383696
Primitive exponential infinitary abundant numbers that are not primitive exponential unitary abundant: the powerful terms of A383695.
[ "476985600", "815673600", "1018886400", "1177862400", "1493049600", "2014214400", "2373638400", "2712326400", "3756614400", "3863865600", "4744454400", "5218617600", "6234681600", "7928121600", "9824774400", "10502150400", "12669753600", "14227718400", "15040569600", "17614598400", "19443513600", "22356230400" ]
[ "nonn" ]
8
1
1
[ "A001694", "A005117", "A322857", "A361175", "A383695", "A383696" ]
null
Amiram Eldar, May 06 2025
2025-05-07T10:50:28
oeisdata/seq/A383/A383696.seq
5603d5af129049619302e3c7ad24854d
A383697
Exponential squarefree exponential abundant numbers: numbers k such that A361174(k) > 2*k.
[ "900", "1764", "4356", "4500", "4900", "6084", "6300", "8820", "9900", "10404", "11700", "12348", "12996", "14700", "15300", "17100", "19044", "19404", "20700", "21780", "22932", "26100", "27900", "29988", "30276", "30420", "30492", "31500", "33300", "33516", "34596", "36900", "38700", "40572", "42300", "42588", "44100", "47700", "47916", "49284", "49500" ]
[ "nonn", "easy" ]
8
1
1
[ "A005117", "A013929", "A129575", "A209061", "A361174", "A383693", "A383697", "A383698" ]
null
Amiram Eldar, May 06 2025
2025-05-07T10:50:33
oeisdata/seq/A383/A383697.seq
fe91ace94c4abc36ea1a31ec2a2df8fb
A383698
Primitive exponential squarefree exponential abundant numbers: the powerful terms of A383697.
[ "900", "1764", "4356", "4500", "4900", "6084", "10404", "12348", "12996", "19044", "30276", "34596", "44100", "47916", "49284", "60516", "66564", "79092", "79524", "88200", "101124", "108900", "112500", "125316", "132300", "133956", "152100", "161604", "176868", "181476", "191844", "213444", "217800", "220500", "224676", "246924" ]
[ "nonn" ]
8
1
1
[ "A001694", "A005117", "A361174", "A383694", "A383697", "A383698" ]
null
Amiram Eldar, May 06 2025
2025-05-07T10:50:45
oeisdata/seq/A383/A383698.seq
d8f9ac995b18aacf4ba9d4ee6208bbe8
A383699
Primitive exponential 3-abundant numbers: the powerful terms of A328135.
[ "901800900", "1542132900", "1926332100", "2153888100", "2690496900", "2822796900", "3942584100", "4487660100", "4600908900", "5127992100", "6267888900", "6742052100", "7162236900", "7305120900", "8421732900", "8969984100", "9866448900", "10203020100", "10718460900", "11723411700", "11787444900", "12528324900" ]
[ "nonn" ]
10
1
1
[ "A001694", "A051377", "A307112", "A328135", "A328136", "A383699" ]
null
Amiram Eldar, May 06 2025
2025-05-07T10:50:52
oeisdata/seq/A383/A383699.seq
31c1b1451df86e0ad4ba69ab4ad9ae6b
A383700
Coefficient of x^2 in expansion of (x+1) * (x+5) * ... * (x+4*n-3).
[ "0", "0", "1", "15", "254", "5130", "122119", "3365089", "105599276", "3722336388", "145717348221", "6275071262691", "294890141047050", "15020233818893550", "824373714907080675", "48505985450168267925", "3046201904592803410200", "203381159927362120499400", "14385952383695375700375225" ]
[ "nonn" ]
16
0
4
[ "A290319", "A383700" ]
null
Seiichi Manyama, May 06 2025
2025-05-12T03:51:17
oeisdata/seq/A383/A383700.seq
8ade0f64f57b03a5a67f2b8974b0dcea
A383701
Coefficient of x^3 in expansion of (x+1) * (x+5) * ... * (x+4*n-3).
[ "0", "0", "0", "1", "28", "730", "20460", "633619", "21740040", "823020596", "34174098440", "1546855384261", "75883563554436", "4013184755214414", "227719025845257492", "13804358188086757719", "890571834923460488784", "60933371174617735181160", "4407783770975985847999440", "336154167664942342604334345" ]
[ "nonn" ]
12
0
5
[ "A290319", "A383701" ]
null
Seiichi Manyama, May 06 2025
2025-05-07T06:03:36
oeisdata/seq/A383/A383701.seq
6de792f1da9c26732fd14fef017ddd50
A383702
Coefficient of x^2 in expansion of (x+3) * (x+7) * ... * (x+4*n-1).
[ "0", "0", "1", "21", "446", "10670", "290599", "8951355", "308846124", "11822475564", "497794079421", "22881487815153", "1140642637297866", "61312161303209466", "3535773901817957955", "217787248332803277495", "14271822475100747003160", "991517953843097370650520", "72799719644532661375481145" ]
[ "nonn" ]
20
0
4
[ "A225471", "A383702" ]
null
Seiichi Manyama, May 06 2025
2025-05-08T08:58:42
oeisdata/seq/A383/A383702.seq
fef4d6f29edd77a1caf5b12752f79414
A383703
Coefficient of x^3 in expansion of (x+3) * (x+7) * ... * (x+4*n-1).
[ "0", "0", "0", "1", "36", "1130", "36660", "1280419", "48644344", "2011398164", "90267003960", "4379275249701", "228707424551100", "12804721289403966", "765571832220427596", "48704512002823186119", "3286171504510664002992", "234445313277315235203624", "17637135196532479070107824", "1395584859384468591633567945" ]
[ "nonn" ]
15
0
5
[ "A225471", "A383703" ]
null
Seiichi Manyama, May 06 2025
2025-05-07T11:54:40
oeisdata/seq/A383/A383703.seq
5cb1f68d8c2589960cabcbca96c90222
A383704
a(n) = [x^n] Product_{k=0..2*n-1} (x - (-1)^k * (2*k+1)).
[ "1", "2", "-34", "-540", "26614", "805980", "-66399124", "-2972817848", "343902030758", "20389669252524", "-3039312653124540", "-224361715353976200", "40941662601331486396", "3617518823154571788440", "-781104190733806836937320", "-80375840650247250199417200", "20044038897159722534821833990" ]
[ "sign" ]
14
0
2
[ "A293318", "A383704" ]
null
Seiichi Manyama, May 06 2025
2025-05-07T14:57:15
oeisdata/seq/A383/A383704.seq
f2183dd962beb9e7a5311df92a8494a1
A383705
Numerator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(2/3).
[ "1", "2", "2", "5", "2", "4", "2", "40", "5", "4", "2", "10", "2", "4", "4", "110", "2", "10", "2", "10", "4", "4", "2", "80", "5", "4", "40", "10", "2", "8", "2", "308", "4", "4", "4", "25", "2", "4", "4", "80", "2", "8", "2", "10", "10", "4", "2", "220", "5", "10", "4", "10", "2", "80", "4", "80", "4", "4", "2", "20", "2", "4", "10", "2618", "4", "8", "2", "10", "4", "8", "2", "200", "2", "4", "10", "10", "4" ]
[ "nonn", "frac", "mult" ]
11
1
2
[ "A046643", "A256688", "A256689", "A383657", "A383705" ]
null
Vaclav Kotesovec, May 06 2025
2025-05-06T17:10:31
oeisdata/seq/A383/A383705.seq
945115330a03ca398334a52da11bb2cc
A383706
Number of ways to choose disjoint strict integer partitions, one of each prime index of n.
[ "1", "1", "1", "0", "2", "1", "2", "0", "0", "1", "3", "0", "4", "1", "1", "0", "5", "0", "6", "0", "2", "2", "8", "0", "2", "2", "0", "0", "10", "1", "12", "0", "2", "3", "2", "0", "15", "3", "2", "0", "18", "1", "22", "0", "0", "5", "27", "0", "2", "0", "3", "0", "32", "0", "3", "0", "4", "5", "38", "0", "46", "7", "0", "0", "4", "1", "54", "0", "5", "1", "64", "0", "76", "8", "0", "0", "3", "1", "89", "0", "0", "10" ]
[ "nonn" ]
9
1
5
[ "A000009", "A000041", "A048767", "A048768", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A130091", "A179009", "A209229", "A217605", "A239455", "A279375", "A279790", "A299200", "A317141", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382771", "A382876", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384005" ]
null
Gus Wiseman, May 15 2025
2025-05-18T09:58:29
oeisdata/seq/A383/A383706.seq
83adabfa3a6ceb782b7f9e49578d60ad
A383707
Heinz numbers of maximally refined strict integer partitions.
[ "1", "2", "3", "6", "10", "14", "15", "30", "42", "66", "70", "78", "105", "110", "182", "210", "330", "390" ]
[ "nonn", "more" ]
19
1
2
[ "A048767", "A055396", "A056239", "A061395", "A112798", "A130091", "A179009", "A299200", "A351294", "A351295", "A357982", "A381432", "A381454", "A382525", "A383706", "A383707", "A384320", "A384321", "A384349", "A384389", "A384390", "A384723" ]
null
Gus Wiseman, May 15 2025
2025-06-10T23:15:46
oeisdata/seq/A383/A383707.seq
c889eb36ce1b9fe0b775419df9c77dcc
A383708
Number of integer partitions of n such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.
[ "1", "1", "2", "2", "3", "5", "5", "7", "8", "13", "14", "18", "22", "27", "36", "41", "50", "61", "73", "86" ]
[ "nonn", "more" ]
10
0
3
[ "A044813", "A047966", "A048767", "A048768", "A089259", "A091602", "A098859", "A116540", "A130091", "A217605", "A239455", "A242882", "A317141", "A351013", "A351293", "A351294", "A351295", "A381432", "A381433", "A381441", "A382771", "A382912", "A382913", "A383013", "A383533", "A383706", "A383708", "A383710", "A383711" ]
null
Gus Wiseman, May 07 2025
2025-05-08T22:55:53
oeisdata/seq/A383/A383708.seq
d5a67b8c0664c598df38bd6f9cf01132
A383709
Number of integer partitions of n with distinct multiplicities (Wilf) and distinct 0-appended differences.
[ "1", "1", "2", "1", "2", "2", "3", "4", "4", "4", "5", "6", "5", "7", "8", "6", "8", "9", "9", "10", "9", "10", "12", "12", "11", "12", "14", "13", "14", "15", "14", "16", "16", "16", "18", "17", "17", "19", "20", "19", "19", "21", "21", "22", "22", "21", "24", "24", "23", "25", "25", "25", "26", "27", "27", "27", "28", "28", "30", "30", "28", "31", "32", "31", "32", "32", "33", "34", "34", "34" ]
[ "nonn" ]
6
0
3
[ "A047966", "A048767", "A098859", "A130091", "A130092", "A239455", "A320348", "A325324", "A325325", "A325349", "A325351", "A325367", "A325368", "A325388", "A336866", "A351293", "A351294", "A351295", "A381431", "A383506", "A383507", "A383512", "A383513", "A383530", "A383531", "A383532", "A383534", "A383709", "A383712" ]
null
Gus Wiseman, May 15 2025
2025-05-16T22:59:23
oeisdata/seq/A383/A383709.seq
3596390cc58632a74f66fdccc37af3d7
A383710
Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.
[ "0", "0", "1", "1", "3", "4", "6", "10", "15", "22", "29", "42", "59", "79", "108", "140", "190", "247", "324", "417", "541" ]
[ "nonn", "more" ]
7
0
5
[ "A044813", "A047966", "A048767", "A048768", "A089259", "A098859", "A116540", "A130091", "A217605", "A239455", "A242882", "A317141", "A318361", "A351293", "A351294", "A351295", "A381432", "A381433", "A381454", "A382912", "A382913", "A383013", "A383533", "A383706", "A383708", "A383710", "A383711" ]
null
Gus Wiseman, May 07 2025
2025-05-08T22:57:09
oeisdata/seq/A383/A383710.seq
576688f6abce4994bad7ace3becf8b2e
A383711
Number of integer partitions of n with no ones such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.
[ "0", "0", "0", "0", "1", "0", "1", "1", "3", "3", "4", "6", "10", "11", "17", "19", "30", "36", "51", "61", "84", "96", "133", "160", "209", "253", "325", "393", "488", "598", "744" ]
[ "nonn", "more" ]
6
0
9
[ "A044813", "A047966", "A048767", "A048768", "A089259", "A098859", "A116540", "A130091", "A217605", "A239455", "A242882", "A317141", "A318361", "A351293", "A351294", "A351295", "A381432", "A381433", "A381441", "A381454", "A382912", "A382913", "A383013", "A383533", "A383706", "A383708", "A383710", "A383711" ]
null
Gus Wiseman, May 07 2025
2025-05-08T22:55:58
oeisdata/seq/A383/A383711.seq
e3f0b00093473aedb97364e21c4afaea
A383712
Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct 0-appended differences.
[ "1", "2", "3", "4", "5", "7", "9", "11", "13", "17", "19", "20", "23", "25", "28", "29", "31", "37", "41", "43", "44", "45", "47", "49", "50", "52", "53", "59", "61", "67", "68", "71", "73", "75", "76", "79", "83", "89", "92", "97", "98", "99", "101", "103", "107", "109", "113", "116", "117", "121", "124", "127", "131", "137", "139", "148", "149", "151", "153", "157", "163", "164" ]
[ "nonn" ]
7
1
2
[ "A000040", "A000720", "A001222", "A001223", "A005117", "A047966", "A048767", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A130091", "A130092", "A238745", "A239455", "A320348", "A325324", "A325325", "A325349", "A325355", "A325366", "A325367", "A325368", "A325388", "A336866", "A351293", "A351294", "A351295", "A383506", "A383507", "A383512", "A383513", "A383530", "A383531", "A383532", "A383709", "A383712" ]
null
Gus Wiseman, May 15 2025
2025-05-16T22:59:12
oeisdata/seq/A383/A383712.seq
fbe9a692a1d5dd96461396a0535b3d30
A383713
Triangle read by rows: T(n,k) is the number of compositions of n with k parts all in standard order.
[ "1", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "2", "1", "0", "0", "0", "1", "3", "1", "0", "0", "0", "1", "3", "4", "1", "0", "0", "0", "0", "4", "6", "5", "1", "0", "0", "0", "0", "2", "10", "10", "6", "1", "0", "0", "0", "0", "1", "9", "20", "15", "7", "1", "0", "0", "0", "0", "1", "7", "25", "35", "21", "8", "1", "0", "0", "0", "0", "0", "7", "26", "55", "56", "28", "9", "1", "0", "0", "0", "0", "0", "4", "29", "71", "105", "84", "36", "10", "1" ]
[ "nonn", "easy", "tabl" ]
10
0
14
[ "A000110", "A047998", "A107429", "A126347", "A278984", "A383253", "A383713" ]
null
John Tyler Rascoe, May 06 2025
2025-05-07T11:18:39
oeisdata/seq/A383/A383713.seq
d1c58539c427c1194d10b0e57befaa68
A383714
Integers k such that there exists an integer 0<m<k such that m*sigma(m)^2 + k*sigma(k)^2 = (m+k)^3.
[ "21", "231", "284", "1210", "2499", "2924", "5564", "6368", "10856", "14595", "18416", "66992", "71145", "76084", "87633", "88730" ]
[ "nonn", "more", "changed" ]
108
1
1
[ "A002046", "A063990", "A259180", "A383239", "A383483", "A383484", "A383714" ]
null
S. I. Dimitrov, May 14 2025
2025-07-10T12:14:32
oeisdata/seq/A383/A383714.seq
d3f8ca73a377ce309769b77bbc0168fe
A383715
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^floor((k+1)/2) * A099927(n,k).
[ "1", "1", "-1", "1", "-2", "-1", "1", "-5", "-5", "1", "1", "-12", "-30", "12", "1", "1", "-29", "-174", "174", "29", "-1", "1", "-70", "-1015", "2436", "1015", "-70", "-1", "1", "-169", "-5915", "34307", "34307", "-5915", "-169", "1", "1", "-408", "-34476", "482664", "1166438", "-482664", "-34476", "408", "1", "1", "-985", "-200940", "6791772", "39618670", "-39618670", "-6791772", "200940", "985", "-1" ]
[ "sign", "tabl" ]
21
0
5
[ "A055870", "A099927", "A383715" ]
null
Seiichi Manyama, May 07 2025
2025-05-07T09:40:44
oeisdata/seq/A383/A383715.seq
1d31b7d2eda769709050767dc7e4be41
A383717
Dirichlet g.f.: Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)).
[ "1", "2", "3", "2", "5", "6", "7", "0", "3", "10", "11", "6", "13", "14", "15", "0", "17", "6", "19", "10", "21", "22", "23", "0", "5", "26", "0", "14", "29", "30", "31", "0", "33", "34", "35", "6", "37", "38", "39", "0", "41", "42", "43", "22", "15", "46", "47", "0", "7", "10", "51", "26", "53", "0", "55", "0", "57", "58", "59", "30", "61", "62", "21", "0", "65", "66", "67", "34", "69", "70", "71", "0", "73" ]
[ "nonn", "mult", "easy" ]
13
1
2
[ "A007947", "A056552", "A335341", "A336649", "A383717" ]
null
Vaclav Kotesovec, May 07 2025
2025-05-07T08:17:40
oeisdata/seq/A383/A383717.seq
2a706aab59bb78576a51b8bfeb93331d
A383718
a(n) is the multinomial coefficient (length of n in binary) choose (the lengths of runs in n's binary expansion).
[ "1", "1", "2", "1", "3", "6", "3", "1", "4", "12", "24", "12", "6", "12", "4", "1", "5", "20", "60", "30", "60", "120", "60", "20", "10", "30", "60", "30", "10", "20", "5", "1", "6", "30", "120", "60", "180", "360", "180", "60", "120", "360", "720", "360", "180", "360", "120", "30", "15", "60", "180", "90", "180", "360", "180", "60", "20", "60", "120", "60", "15", "30", "6", "1" ]
[ "nonn", "base" ]
11
0
3
[ "A000111", "A000975", "A023758", "A101211", "A368070", "A383718" ]
null
Natalia L. Skirrow, Apr 20 2025
2025-06-02T16:49:53
oeisdata/seq/A383/A383718.seq
aac1e505820a58cc6a0190c3001908a9
A383719
a(n) = Pell(n) * Pell(n-1) * Pell(n-2) * Pell(n-3) * Pell(n-4) / 3480.
[ "1", "70", "5915", "482664", "39618670", "3248730940", "266442347522", "21851425660680", "1792084691254935", "146972777186757522", "12053560080255418725", "988538895611708641200", "81072243052956528402380", "6648912468496274313591800", "545291894670184984544154100", "44720584275276797753993516592" ]
[ "nonn", "easy" ]
24
5
2
[ "A000129", "A099927", "A383719" ]
null
Seiichi Manyama, May 07 2025
2025-05-10T11:28:26
oeisdata/seq/A383/A383719.seq
7992ca2f9a5990749e16fc492db0009e
A383720
a(0)=3, a(1)=5, a(2)=35; a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3) for n > 2.
[ "3", "5", "35", "197", "1155", "6725", "39203", "228485", "1331715", "7761797", "45239075", "263672645", "1536796803", "8957108165", "52205852195", "304278004997", "1773462177795", "10336495061765", "60245508192803", "351136554095045", "2046573816377475", "11928306344169797", "69523264248641315" ]
[ "nonn", "easy" ]
22
0
1
[ "A000129", "A002203", "A047946", "A084158", "A383720" ]
null
Seiichi Manyama, May 07 2025
2025-07-03T10:57:28
oeisdata/seq/A383/A383720.seq
ca1fe4414de534f348ee8b3cb4e5ec3e
A383721
a(n) is the number of distinct rectangles with integer area that can be inscribed in a cube with edge length 4*n, as shown in the linked figure "Cube with inscribed rectangle".
[ "1", "2", "2", "2", "1", "4", "1", "2", "2", "3", "1", "5", "1", "3", "4", "2", "1", "4", "1", "4", "3", "2", "1", "5", "1", "2", "2", "4", "1", "8", "1", "2", "3", "2", "3", "6", "1", "2", "3", "5", "1", "7", "1", "3", "6", "2", "1", "5", "1", "3", "2", "3", "1", "4", "3", "5", "2", "2", "1", "11", "1", "2", "5", "2", "2", "6", "1", "3", "2", "7", "1", "7", "1", "2", "4", "2", "3", "6", "1", "5", "2", "2", "1", "10", "2", "2", "2" ]
[ "nonn" ]
10
1
2
[ "A361795", "A373710", "A375473", "A383721" ]
null
Felix Huber, May 08 2025
2025-05-14T00:00:31
oeisdata/seq/A383/A383721.seq
10754eb2e407162574f26765921fadc8
A383722
a(n) = A378762(A382679(n)).
[ "1", "5", "3", "6", "2", "4", "14", "8", "12", "10", "15", "9", "13", "7", "11", "27", "17", "25", "19", "23", "21", "28", "20", "26", "18", "24", "16", "22", "44", "30", "42", "32", "40", "34", "38", "36", "45", "35", "43", "33", "41", "31", "39", "29", "37", "65", "47", "63", "49", "61", "51", "59", "53", "57", "55", "66", "54", "64", "52", "62", "50", "60", "48", "58", "46", "56" ]
[ "nonn", "tabf" ]
8
1
2
[ "A000027", "A000384", "A016813", "A376214", "A378684", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664", "A381968", "A382499", "A382679", "A382680", "A383722" ]
null
Boris Putievskiy, May 07 2025
2025-05-11T21:57:11
oeisdata/seq/A383/A383722.seq
488376bb289957b7e6c77974daec46b8
A383723
a(n) = A378762(A376214(n)).
[ "1", "2", "3", "6", "5", "4", "9", "8", "7", "10", "15", "12", "13", "14", "11", "20", "17", "18", "19", "16", "21", "28", "23", "26", "25", "24", "27", "22", "35", "30", "33", "32", "31", "34", "29", "36", "45", "38", "43", "40", "41", "42", "39", "44", "37", "54", "47", "52", "49", "50", "51", "48", "53", "46", "55", "66", "57", "64", "59", "62", "61", "60", "63", "58", "65", "56" ]
[ "nonn", "tabf" ]
8
1
2
[ "A000027", "A000384", "A016813", "A376214", "A378684", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664", "A381968", "A382499", "A382679", "A382680", "A383723" ]
null
Boris Putievskiy, May 07 2025
2025-05-11T21:57:03
oeisdata/seq/A383/A383723.seq
33a8afdc433c62bb90ba29aa1e0a9e66
A383724
a(n) = A378762(A382680(n)).
[ "1", "5", "3", "6", "2", "4", "12", "8", "14", "10", "15", "7", "13", "9", "11", "23", "17", "25", "19", "27", "21", "28", "16", "26", "18", "24", "20", "22", "38", "30", "40", "32", "42", "34", "44", "36", "45", "29", "43", "31", "41", "33", "39", "35", "37", "57", "47", "59", "49", "61", "51", "63", "53", "65", "55", "66", "46", "64", "48", "62", "50", "60", "52", "58", "54", "56" ]
[ "nonn", "tabf" ]
8
1
2
[ "A000027", "A000384", "A016813", "A376214", "A378684", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664", "A381968", "A382499", "A382679", "A382680", "A383724" ]
null
Boris Putievskiy, May 07 2025
2025-05-11T21:49:18
oeisdata/seq/A383/A383724.seq
4cf22b9eb289d3bd3949893edd029218
A383725
a(n) is the least number k such that omega(k) = n and the largest prime factor of k equals the sum of its remaining prime factors, where omega(k) = A001221(k).
[ "30", "3135", "3570", "844305", "1231230", "463798335", "1089218130", "410825520105", "905980145070", "818186519485335", "1461885412557570", "2023416377587710105", "3676255934199278430", "6175645531427513476335", "14590719651042312667890", "29263451149172039260325865", "67794672364404337821058590" ]
[ "nonn" ]
21
3
1
[ "A001221", "A002110", "A068873", "A102330", "A365795", "A382469", "A383725", "A383726", "A383728", "A383729" ]
null
Paolo Xausa, May 07 2025
2025-05-11T11:56:17
oeisdata/seq/A383/A383725.seq
cb8e16c951e947408719b86db2ed501c
A383726
Square array read by ascending antidiagonals, where row n lists numbers m such that omega(m) = n and the largest prime factor of m equals the sum of its remaining distinct prime factors, where omega(m) = A001221(m).
[ "30", "3135", "60", "3570", "6279", "70", "844305", "7140", "8855", "90", "1231230", "1218945", "8970", "9405", "120" ]
[ "nonn", "tabl", "hard", "more" ]
11
3
1
[ "A001221", "A365795", "A382469", "A383725", "A383726", "A383727", "A383728", "A383729" ]
null
Paolo Xausa, May 07 2025
2025-05-11T11:56:35
oeisdata/seq/A383/A383726.seq
eb40dafbbab5d923f852dfff8c289c06