sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A007701
a(0) = 0; for n > 0, a(n) = n^n*2^((n-1)^2).
[ "0", "1", "8", "432", "131072", "204800000", "1565515579392", "56593444029595648", "9444732965739290427392", "7146646609494406531041460224", "24178516392292583494123520000000000" ]
[ "nonn" ]
26
0
3
[ "A007701", "A086804", "A127670" ]
[ "M4585" ]
N. J. A. Sloane
2023-09-04T12:53:29
oeisdata/seq/A007/A007701.seq
35d0218647cd8cde4513b3d224d98776
A007702
a(n) = prime(n)*...*prime(m), the least product of consecutive primes which is non-deficient.
[ "6", "15015", "33426748355", "1357656019974967471687377449", "7105630242567996762185122555313528897845637444413640621" ]
[ "nonn" ]
17
1
1
[ "A005100", "A007684", "A007686", "A007702", "A007741", "A107705", "A108227", "A285993" ]
null
Walter Nissen
2019-06-29T21:03:53
oeisdata/seq/A007/A007702.seq
d8c4e6a3403819adade48c670da7b6ee
A007703
Regular primes.
[ "3", "5", "7", "11", "13", "17", "19", "23", "29", "31", "41", "43", "47", "53", "61", "71", "73", "79", "83", "89", "97", "107", "109", "113", "127", "137", "139", "151", "163", "167", "173", "179", "181", "191", "193", "197", "199", "211", "223", "227", "229", "239", "241", "251", "269", "277", "281", "313", "317", "331", "337", "349", "359", "367", "373", "383", "397", "419", "431" ]
[ "nonn", "nice", "changed" ]
51
1
1
[ "A000928", "A007703", "A061576" ]
[ "M2411" ]
N. J. A. Sloane, Simon Plouffe
2025-04-22T10:47:58
oeisdata/seq/A007/A007703.seq
f271d3dde5cb85520caf9c268d955051
A007704
a(n+2) = (a(n) - 1)*a(n+1) + 1.
[ "2", "3", "4", "9", "28", "225", "6076", "1361025", "8268226876", "11253255215681025", "93044467205527772332546876", "1047053135870867396062743192203958743681025" ]
[ "nonn", "easy" ]
36
1
1
[ "A006277", "A007704" ]
[ "M0594" ]
N. J. A. Sloane, Jeffrey Shallit
2024-03-19T03:20:05
oeisdata/seq/A007/A007704.seq
e7d0c80a65fd77aa1bef04a23a63023a
A007705
Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.
[ "1", "0", "10", "28", "0", "88", "4524", "0", "140692", "820496", "0", "128850048", "1957725000", "0", "605917055356", "13404947681712", "0" ]
[ "nonn", "nice", "hard", "more" ]
60
0
3
[ "A007705", "A051906", "A071607", "A342990" ]
[ "M4691" ]
N. J. A. Sloane
2025-02-16T08:32:31
oeisdata/seq/A007/A007705.seq
1d3dcb1d90a0fb595b0f497e4a89f5be
A007706
a(n) = 1 + coefficient of x^n in Product_{k>=1} (1-x^k) (essentially the expansion of the Dedekind function eta(x)).
[ "2", "0", "0", "1", "1", "2", "1", "2", "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1" ]
[ "nonn", "easy", "nice" ]
35
0
1
[ "A007706", "A010815" ]
[ "M0013" ]
N. J. A. Sloane, Sep 19 1994
2016-08-28T18:23:35
oeisdata/seq/A007/A007706.seq
234ca9a35cec4bc15c351359fab33e6d
A007707
Prime(n)*...*prime(a(n)) is the least product of consecutive primes which is abundant.
[ "3", "6", "11", "21", "35", "51", "73", "98", "130", "167", "204", "249", "296", "347", "406", "471", "538", "608", "686", "768", "855", "950", "1050", "1156", "1266", "1377", "1495", "1621", "1755", "1898", "2049", "2194", "2347", "2504", "2670", "2837", "3013", "3194", "3380", "3573", "3771", "3974", "4187", "4401", "4625", "4856" ]
[ "nonn" ]
21
1
1
[ "A005101", "A007684", "A007707", "A007708", "A007741" ]
null
Walter Nissen
2019-06-29T21:04:25
oeisdata/seq/A007/A007707.seq
bd6c0de45d67122f5373e5054d5b3cd3
A007708
Prime(n)*...*a(n) is the least product of consecutive primes which is abundant.
[ "5", "13", "31", "73", "149", "233", "367", "521", "733", "991", "1249", "1579", "1949", "2341", "2791", "3343", "3881", "4481", "5147", "5849", "6619", "7499", "8387", "9341", "10321", "11411", "12517", "13709", "15013", "16363", "17881", "19381", "20873", "22369", "24007", "25763", "27611", "29399", "31357" ]
[ "nonn" ]
18
1
1
[ "A005101", "A007686", "A007707", "A007708", "A007741" ]
null
Walter Nissen
2019-06-29T19:49:38
oeisdata/seq/A007/A007708.seq
25deddc477a0ccd85d257f2c93dc1775
A007709
Number of winning (or reformed) decks at Mousetrap.
[ "1", "1", "2", "6", "15", "84", "330", "1812", "9978", "65503", "449719", "3674670", "28886593", "266242729", "2527701273", "25749021720" ]
[ "nonn" ]
23
1
3
[ "A007709", "A007710", "A007711", "A007712", "A055459", "A067950" ]
[ "M1608" ]
N. J. A. Sloane
2019-06-06T04:21:08
oeisdata/seq/A007/A007709.seq
7a173d3b3685a973852437a2955a9807
A007710
From the game of Mousetrap.
[ "1", "0", "2", "6", "31", "180", "1255", "9949", "89162", "886837", "9722814", "116236256", "1507191024", "21042127239" ]
[ "nonn" ]
41
1
3
[ "A007710", "A028305" ]
[ "M1695" ]
N. J. A. Sloane
2018-01-17T16:44:54
oeisdata/seq/A007/A007710.seq
dbb939bcd02c9852887fda644caed819
A007711
Number of unreformed permutations of {1,...,n}.
[ "0", "1", "4", "18", "105", "636", "4710", "38508", "352902", "3563297", "39467081", "475326930", "6198134207", "86912048471", "1305146666727", "20897040866280" ]
[ "nonn", "more" ]
31
1
3
[ "A007709", "A007711", "A007712", "A055459", "A067950" ]
[ "M3546" ]
N. J. A. Sloane
2018-01-17T19:08:47
oeisdata/seq/A007/A007711.seq
728deee40a0700923b00993735ddea75
A007712
Number of once reformable permutations of {1,2,...,n}.
[ "1", "2", "4", "14", "72", "316", "1730", "9728", "64330", "444890", "3645441", "28758111", "265434293", "2522822881", "25717118338" ]
[ "nonn", "nice", "more" ]
20
2
2
[ "A007709", "A007711", "A007712", "A055459", "A067950" ]
[ "M1283" ]
N. J. A. Sloane
2019-06-06T05:51:32
oeisdata/seq/A007/A007712.seq
12ab298a0bf9ecdecfbdde085874e779
A007713
Number of 4-level rooted trees with n leaves.
[ "1", "1", "4", "10", "30", "75", "206", "518", "1344", "3357", "8429", "20759", "51044", "123973", "299848", "719197", "1716563", "4070800", "9607797", "22555988", "52718749", "122655485", "284207304", "655894527", "1508046031", "3454808143", "7887768997", "17949709753", "40719611684", "92096461012", "207697731344" ]
[ "easy", "nonn" ]
40
0
3
[ "A001970", "A007713", "A047968", "A050342", "A055886", "A089259", "A141268", "A258466", "A261049", "A290353", "A319066", "A320328", "A320330", "A320331" ]
null
N. J. A. Sloane.
2023-02-18T14:45:11
oeisdata/seq/A007/A007713.seq
18e50ac8b05bed69e1e498c88e49a1ae
A007714
Number of 5-level rooted trees with n leaves.
[ "1", "1", "5", "15", "55", "170", "571", "1789", "5727", "17836", "55627", "171169", "524879", "1595896", "4829894", "14527981", "43497312", "129588391", "384430264", "1135607519", "3341662498", "9796626673", "28620419254", "83334382425", "241879403752", "699937499318", "2019607806247", "5811320364410", "16677611788799" ]
[ "easy", "nonn" ]
38
0
3
[ "A007714", "A290353" ]
null
N. J. A. Sloane
2019-04-08T03:41:21
oeisdata/seq/A007/A007714.seq
e4da506588ebf3907a1ba65409c4a894
A007715
Number of 5-leaf rooted trees with n levels.
[ "1", "7", "27", "75", "170", "336", "602", "1002", "1575", "2365", "3421", "4797", "6552", "8750", "11460", "14756", "18717", "23427", "28975", "35455", "42966", "51612", "61502", "72750", "85475", "99801", "115857", "133777", "153700", "175770", "200136", "226952", "256377", "288575", "323715", "361971", "403522", "448552", "497250" ]
[ "nonn", "easy" ]
36
1
2
[ "A007715", "A290353" ]
null
N. J. A. Sloane, Simon Plouffe
2022-09-08T08:44:35
oeisdata/seq/A007/A007715.seq
8358dd7eee279c70fedbe5a6009108cb
A007716
Number of polynomial symmetric functions of matrix of order n under separate row and column permutations.
[ "1", "1", "4", "10", "33", "91", "298", "910", "3017", "9945", "34207", "119369", "429250", "1574224", "5916148", "22699830", "89003059", "356058540", "1453080087", "6044132794", "25612598436", "110503627621", "485161348047", "2166488899642", "9835209912767", "45370059225318", "212582817739535", "1011306624512711" ]
[ "nice", "nonn" ]
55
0
3
[ "A000041", "A007716", "A049311", "A052365", "A052366", "A052367", "A052372", "A052373", "A053307", "A054688", "A318795" ]
null
Colin Mallows
2020-03-29T19:35:31
oeisdata/seq/A007/A007716.seq
55047f7e190fa13c6d0c802320031d2b
A007717
Number of symmetric polynomial functions of degree n of a symmetric matrix (of indefinitely large size) under joint row and column permutations. Also number of multigraphs with n edges (allowing loops) on an infinite set of nodes.
[ "1", "2", "7", "23", "79", "274", "1003", "3763", "14723", "59663", "250738", "1090608", "4905430", "22777420", "109040012", "537401702", "2723210617", "14170838544", "75639280146", "413692111521", "2316122210804", "13261980807830", "77598959094772", "463626704130058", "2826406013488180", "17569700716557737" ]
[ "nonn" ]
67
0
2
[ "A000664", "A002620", "A007716", "A007717", "A007719", "A020555", "A050531", "A050532", "A050535", "A052171", "A053418", "A053419", "A094574", "A316972", "A316974", "A318951", "A331485", "A339065" ]
null
Colin Mallows
2025-02-08T11:08:59
oeisdata/seq/A007/A007717.seq
c9bc664a1989469cb11a96e40baa196a
A007718
Number of independent polynomial invariants of matrix of order n.
[ "1", "1", "3", "6", "17", "40", "125", "354", "1159", "3774", "13113", "46426", "171027", "644038", "2493848", "9867688", "39922991", "164747459", "693093407", "2968918400", "12940917244", "57353242370", "258306634422", "1181572250326", "5486982683756", "25856584485254" ]
[ "nonn" ]
18
0
3
[ "A007716", "A007718", "A056156", "A319557", "A319565", "A319566" ]
null
Colin Mallows
2023-01-15T19:49:25
oeisdata/seq/A007/A007718.seq
2763994036e304a28949417579c1b58b
A007719
Number of independent polynomial invariants of symmetric matrix of order n.
[ "1", "2", "4", "11", "30", "95", "328", "1211", "4779", "19902", "86682", "393072", "1847264", "8965027", "44814034", "230232789", "1213534723", "6552995689", "36207886517", "204499421849", "1179555353219", "6942908667578", "41673453738272", "254918441681030", "1588256152307002", "10073760672179505" ]
[ "nonn", "nice" ]
39
0
2
[ "A002905", "A007716", "A007717", "A007719", "A020555", "A050535", "A053419", "A076864", "A191970", "A316972", "A316974", "A322115" ]
null
Colin Mallows
2019-10-23T14:35:38
oeisdata/seq/A007/A007719.seq
375e05ebdd4b6d5392b70633fb45f63f
A007720
Arises in attempts to apply Engel's `probabilistic abacus' to random walks on infinite square grid.
[ "1", "2", "3", "1", "2", "3", "4", "2", "3", "3", "2", "3", "4", "4", "4", "3", "4", "5", "5", "3", "4", "5", "3", "4", "5", "5", "6", "4", "5", "6", "4", "5", "5", "6", "7", "5", "5", "6", "4", "5", "4", "5", "5", "5", "4", "4", "5", "6", "6", "5", "5", "5", "4", "5", "6", "6", "6", "4", "5", "4", "5", "5", "7", "7" ]
[ "nonn", "walk" ]
6
1
2
null
null
N. J. A. Sloane, James Propp
2013-10-12T15:25:23
oeisdata/seq/A007/A007720.seq
44a77e478467c164f522c54c6970bbdd
A007721
Number of distinct degree sequences among all connected graphs with n nodes.
[ "1", "1", "2", "6", "19", "68", "236", "863", "3137", "11636", "43306", "162728", "614142", "2330454", "8875656", "33924699", "130038017", "499753560", "1924912505", "7429159770", "28723877046", "111236422377", "431403469046", "1675316533812", "6513837677642", "25354842098354", "98794053266471", "385312558567775" ]
[ "nonn", "nice" ]
46
1
3
[ "A000569", "A004250", "A004251", "A007721", "A007722", "A029889", "A095268" ]
null
Frank Ruskey
2017-06-25T02:50:58
oeisdata/seq/A007/A007721.seq
e1ffe468be5c8dc10846754e5f216623
A007722
Number of graphical partitions of biconnected graphs with n nodes.
[ "1", "3", "9", "34", "125", "473", "1779", "6732", "25492", "96927", "369463", "1412700", "5415117", "20807502", "80120350", "309106496", "1194609429", "4624160156", "17925278497", "69578272204", "270401326899", "1052036082719", "4097343156323", "15973179953261", "62325892264031", "243392644741599" ]
[ "nonn" ]
27
3
2
[ "A000569", "A004250", "A004251", "A007721", "A007722", "A029889", "A095268" ]
null
Frank Ruskey
2023-11-29T11:41:51
oeisdata/seq/A007/A007722.seq
b7330e726e0e9862cccdbc3dbf53508a
A007723
Triangle a(n,k) of number of M-sequences read by antidiagonals.
[ "1", "1", "2", "1", "2", "2", "1", "2", "3", "2", "1", "2", "4", "4", "2", "1", "2", "5", "8", "5", "2", "1", "2", "6", "15", "16", "6", "2", "1", "2", "7", "26", "52", "32", "7", "2", "1", "2", "8", "42", "152", "203", "64", "8", "2", "1", "2", "9", "64", "392", "1144", "877", "128", "9", "2", "1", "2", "10", "93", "904", "5345", "10742", "4140", "256", "10", "2", "1", "2", "11", "130", "1899", "20926", "102050", "122772", "21147" ]
[ "nonn", "nice", "easy", "tabl" ]
31
0
3
[ "A003659", "A007065", "A007625", "A007723", "A011819", "A011820" ]
null
N. J. A. Sloane
2024-08-06T07:07:13
oeisdata/seq/A007/A007723.seq
5b0c58f688e67eeaba1f865d96717598
A007724
Even minus odd extensions of truncated 3 X 2n grid diagram.
[ "2", "12", "110", "1274", "17136", "255816", "4124406", "70549050", "1264752060", "23555382240", "452806924752", "8939481277552", "180551099694400", "3719061442253520", "77933728043586630", "1658001861319441050", "35749633305661575300", "780123576993991461000", "17208112644166765652100" ]
[ "nonn", "easy" ]
33
2
1
[ "A003121", "A005789", "A007724", "A217800" ]
null
Frank Ruskey
2023-07-07T13:15:27
oeisdata/seq/A007/A007724.seq
37a830d767076c66f73b8bd587bcee21
A007725
Number of spanning trees of Aztec diamonds of order n.
[ "1", "4", "768", "18170880", "48466759778304", "14179455913065873408000", "449549878218740179750040371200000", "1534679662450485063038349752542766158611218432", "561985025597966566291275288056092110323394467225010519932928" ]
[ "nonn" ]
54
0
2
[ "A007725", "A007726", "A340166", "A340176", "A340185", "A340352" ]
null
Richard Stanley
2023-02-28T23:46:15
oeisdata/seq/A007/A007725.seq
057aa5d4c43e741dc3d41b16dc6df924
A007726
Number of spanning trees of quarter Aztec diamonds of order n.
[ "1", "1", "4", "56", "2640", "411840", "210613312", "351102230528", "1901049105201408", "33349238079515381760", "1892086487183556298556416", "346728396311328694807284940800", "205021218459835103075295973360128000", "390870571052378289975757743555515137130496" ]
[ "nonn" ]
43
1
3
[ "A007341", "A007725", "A007726", "A065072", "A340052" ]
null
Richard Stanley
2025-01-11T03:33:28
oeisdata/seq/A007/A007726.seq
f7c79ec781b9f4832a21b742a9a28bf5
A007727
Number of 2n-bead black-white strings with n black beads and fundamental period 2n.
[ "1", "2", "4", "18", "64", "250", "900", "3430", "12800", "48600", "184500", "705430", "2703168", "10400598", "40113164", "155117250", "601067520", "2333606218", "9075085776", "35345263798", "137846344000", "538257870990", "2104098258284", "8233430727598", "32247600966144" ]
[ "nonn" ]
24
0
2
[ "A007727", "A022553", "A045630", "A060165" ]
null
Doug Bowman, bowman(AT)math.uiuc.edu.
2023-05-05T10:59:55
oeisdata/seq/A007/A007727.seq
5acb7231a31ab0616ceae26a378a1d43
A007728
5th binary partition function.
[ "1", "1", "2", "2", "4", "3", "5", "4", "8", "6", "9", "7", "12", "8", "12", "9", "17", "12", "18", "14", "23", "15", "22", "16", "28", "19", "27", "20", "32", "20", "29", "21", "38", "26", "38", "29", "47", "30", "44", "32", "55", "37", "52", "38", "60", "37", "53", "38", "66", "44", "63", "47", "74", "46", "66", "47", "79", "52", "72", "52", "81", "49", "70", "50", "88", "59", "85", "64" ]
[ "nonn", "look" ]
34
0
3
[ "A000123", "A007728", "A018819", "A072170" ]
null
N. J. A. Sloane
2023-08-02T14:36:46
oeisdata/seq/A007/A007728.seq
f6d563c9932986cdf7bc78d1a52061e3
A007729
6th binary partition function.
[ "1", "2", "4", "5", "8", "10", "13", "14", "18", "21", "26", "28", "33", "36", "40", "41", "46", "50", "57", "60", "68", "73", "80", "82", "89", "94", "102", "105", "112", "116", "121", "122", "128", "133", "142", "146", "157", "164", "174", "177", "188", "196", "209", "214", "226", "233", "242", "244", "253", "260", "272", "277", "290", "298", "309", "312", "322", "329", "340", "344" ]
[ "nonn" ]
57
0
2
[ "A002487", "A007051", "A007729", "A072170", "A174868" ]
null
N. J. A. Sloane
2023-05-08T03:25:07
oeisdata/seq/A007/A007729.seq
9798145d6e040dddd8ad59ee8d229866
A007730
7th binary partition function.
[ "1", "1", "2", "2", "4", "4", "6", "5", "9", "8", "12", "10", "16", "14", "19", "15", "24", "20", "28", "22", "34", "29", "39", "30", "46", "38", "52", "40", "59", "49", "64", "48", "72", "58", "78", "59", "87", "72", "94", "70", "104", "84", "113", "85", "124", "102", "132", "98", "144", "115", "153", "114", "166", "136", "176", "130", "189", "151", "200", "148", "212", "172", "220" ]
[ "nonn" ]
30
0
3
[ "A007730", "A072170" ]
null
N. J. A. Sloane
2021-02-20T03:35:58
oeisdata/seq/A007/A007730.seq
8d6d15a828e5ad539bddcfcdf6bf59e4
A007731
a(n) = a(floor(n/2)) + a(floor(n/3)) + a(floor(n/6)), with a(0) = 1.
[ "1", "3", "5", "7", "9", "9", "15", "15", "17", "19", "19", "19", "29", "29", "29", "29", "31", "31", "41", "41", "41", "41", "41", "41", "55", "55", "55", "57", "57", "57", "57", "57", "59", "59", "59", "59", "85", "85", "85", "85", "85", "85", "85", "85", "85", "85", "85", "85", "103", "103", "103", "103", "103", "103", "117", "117" ]
[ "nonn", "easy", "nice" ]
38
0
2
[ "A007731", "A061984", "A083662", "A088468", "A165704", "A165706" ]
null
N. J. A. Sloane
2025-04-10T10:45:59
oeisdata/seq/A007/A007731.seq
3162db4ddb29884195b821c977822c15
A007732
Period of decimal representation of 1/n.
[ "1", "1", "1", "1", "1", "1", "6", "1", "1", "1", "2", "1", "6", "6", "1", "1", "16", "1", "18", "1", "6", "2", "22", "1", "1", "6", "3", "6", "28", "1", "15", "1", "2", "16", "6", "1", "3", "18", "6", "1", "5", "6", "21", "2", "1", "22", "46", "1", "42", "1", "16", "6", "13", "3", "2", "6", "18", "28", "58", "1", "60", "15", "6", "1", "6", "2", "33", "16", "22", "6", "35", "1", "8", "3", "1", "18", "6", "6", "13", "1", "9", "5", "41", "6", "16", "21", "28", "2", "44", "1" ]
[ "nonn", "base", "easy", "nice" ]
92
1
7
[ "A001913", "A007732", "A066799", "A084680", "A121090", "A121341" ]
null
N. J. A. Sloane, Hal Sampson [ hals(AT)easynet.com ]
2024-07-18T03:33:00
oeisdata/seq/A007/A007732.seq
fc4ab7b7104f389cbb7dc4e56dbff136
A007733
Period of binary representation of 1/n. Also, multiplicative order of 2 modulo the odd part of n (= A000265(n)).
[ "1", "1", "2", "1", "4", "2", "3", "1", "6", "4", "10", "2", "12", "3", "4", "1", "8", "6", "18", "4", "6", "10", "11", "2", "20", "12", "18", "3", "28", "4", "5", "1", "10", "8", "12", "6", "36", "18", "12", "4", "20", "6", "14", "10", "12", "11", "23", "2", "21", "20", "8", "12", "52", "18", "20", "3", "18", "28", "58", "4", "60", "5", "6", "1", "12", "10", "66", "8", "22", "12", "35", "6", "9", "36", "20", "18", "30", "12", "39", "4", "54", "20", "82", "6" ]
[ "nonn", "easy" ]
58
1
3
[ "A000265", "A002326", "A007733", "A136042", "A139099", "A256607", "A256757" ]
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
2022-12-21T12:00:39
oeisdata/seq/A007/A007733.seq
fcc383bb5282b02ad2b9dccc3d492614
A007734
Period of repeating digits of 1/n in base 3.
[ "1", "1", "1", "2", "4", "1", "6", "2", "1", "4", "5", "2", "3", "6", "4", "4", "16", "1", "18", "4", "6", "5", "11", "2", "20", "3", "1", "6", "28", "4", "30", "8", "5", "16", "12", "2", "18", "18", "3", "4", "8", "6", "42", "10", "4", "11", "23", "4", "42", "20", "16", "6", "52", "1", "20", "6", "18", "28", "29", "4", "10", "30", "6", "16", "12", "5", "22", "16", "11", "12", "35", "2", "12", "18", "20", "18", "30", "3", "78", "4", "1", "8", "41", "6", "16", "42" ]
[ "nonn", "base" ]
21
1
4
null
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
2014-02-13T13:17:12
oeisdata/seq/A007/A007734.seq
f1a6ccc31465efd76227a8a67859f260
A007735
Period of base 4 representation of 1/n.
[ "1", "1", "1", "1", "2", "1", "3", "1", "3", "2", "5", "1", "6", "3", "2", "1", "4", "3", "9", "2", "3", "5", "11", "1", "10", "6", "9", "3", "14", "2", "5", "1", "5", "4", "6", "3", "18", "9", "6", "2", "10", "3", "7", "5", "6", "11", "23", "1", "21", "10", "4", "6", "26", "9", "10", "3", "9", "14", "29", "2", "30", "5", "3", "1", "6", "5", "33", "4", "11", "6", "35", "3", "9", "18", "10", "9", "15", "6", "39", "2", "27", "10", "41", "3", "4", "7", "14", "5", "11", "6", "6", "11", "5" ]
[ "nonn", "base" ]
22
1
5
[ "A007732", "A007733", "A007734", "A007735", "A007736", "A007737", "A007738", "A007739", "A007740" ]
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
2024-08-26T04:54:45
oeisdata/seq/A007/A007735.seq
1234267a6bbc244470b6945ae5238d2f
A007736
Period of repeating digits of 1/n in base 5.
[ "1", "1", "2", "1", "1", "2", "6", "2", "6", "1", "5", "2", "4", "6", "2", "4", "16", "6", "9", "1", "6", "5", "22", "2", "1", "4", "18", "6", "14", "2", "3", "8", "10", "16", "6", "6", "36", "9", "4", "2", "20", "6", "42", "5", "6", "22", "46", "4", "42", "1", "16", "4", "52", "18", "5", "6", "18", "14", "29", "2", "30", "3", "6", "16", "4", "10", "22", "16", "22", "6", "5", "6", "72", "36", "2", "9", "30", "4", "39", "4", "54", "20", "82", "6", "16", "42", "14", "10", "44" ]
[ "nonn", "base" ]
29
1
3
null
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com), David W. Wilson
2024-07-10T20:31:56
oeisdata/seq/A007/A007736.seq
c0f973d98b8673a65d61b5f61d988a1b
A007737
Period of repeating digits of 1/n in base 6.
[ "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "10", "1", "12", "2", "1", "1", "16", "1", "9", "1", "2", "10", "11", "1", "5", "12", "1", "2", "14", "1", "6", "1", "10", "16", "2", "1", "4", "9", "12", "1", "40", "2", "3", "10", "1", "11", "23", "1", "14", "5", "16", "12", "26", "1", "10", "2", "9", "14", "58", "1", "60", "6", "2", "1", "12", "10", "33", "16", "11", "2", "35", "1", "36", "4", "5", "9", "10", "12", "78", "1", "1", "40", "82", "2", "16", "3", "14", "10" ]
[ "nonn", "base" ]
28
1
7
[ "A007732", "A007733", "A007734", "A007735", "A007736", "A007737", "A007738", "A007739", "A007740" ]
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
2024-08-26T04:55:29
oeisdata/seq/A007/A007737.seq
9a70dad511a71b2818bfa64afc92bd5e
A007738
Period of repeating digits of 1/n in base 7.
[ "1", "1", "1", "2", "4", "1", "1", "2", "3", "4", "10", "2", "12", "1", "4", "2", "16", "3", "3", "4", "1", "10", "22", "2", "4", "12", "9", "2", "7", "4", "15", "4", "10", "16", "4", "6", "9", "3", "12", "4", "40", "1", "6", "10", "12", "22", "23", "2", "1", "4", "16", "12", "26", "9", "20", "2", "3", "7", "29", "4", "60", "15", "3", "8", "12", "10", "66", "16", "22", "4", "70", "6", "24", "9", "4", "6", "10", "12", "78", "4", "27", "40", "41", "2", "16", "6", "7", "10" ]
[ "nonn", "base" ]
19
1
4
null
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
2014-02-14T00:33:51
oeisdata/seq/A007/A007738.seq
0d66084a9302ab76d1adb1ca82894961
A007739
Period of repeating digits of 1/n in base 8.
[ "1", "1", "2", "1", "4", "2", "1", "1", "2", "4", "10", "2", "4", "1", "4", "1", "8", "2", "6", "4", "2", "10", "11", "2", "20", "4", "6", "1", "28", "4", "5", "1", "10", "8", "4", "2", "12", "6", "4", "4", "20", "2", "14", "10", "4", "11", "23", "2", "7", "20", "8", "4", "52", "6", "20", "1", "6", "28", "58", "4", "20", "5", "2", "1", "4", "10", "22", "8", "22", "4", "35", "2", "3", "12", "20", "6", "10", "4", "13", "4", "18", "20", "82", "2", "8", "14", "28", "10", "11", "4", "4" ]
[ "nonn", "base" ]
24
1
3
[ "A007732", "A007733", "A007734", "A007735", "A007736", "A007737", "A007738", "A007739", "A007740" ]
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
2024-08-26T04:55:45
oeisdata/seq/A007/A007739.seq
abf682d80d11ded7c049867fab5754c3
A007740
Period of repeating digits of 1/n in base 9.
[ "1", "1", "1", "1", "2", "1", "3", "1", "1", "2", "5", "1", "3", "3", "2", "2", "8", "1", "9", "2", "3", "5", "11", "1", "10", "3", "1", "3", "14", "2", "15", "4", "5", "8", "6", "1", "9", "9", "3", "2", "4", "3", "21", "5", "2", "11", "23", "2", "21", "10", "8", "3", "26", "1", "10", "3", "9", "14", "29", "2", "5", "15", "3", "8", "6", "5", "11", "8", "11", "6", "35", "1", "6", "9", "10", "9", "15", "3", "39", "2", "1", "4", "41", "3", "8", "21", "14", "5", "44", "2", "3", "11", "15", "23" ]
[ "nonn", "base" ]
29
1
5
[ "A007732", "A007733", "A007734", "A007735", "A007736", "A007737", "A007738", "A007739", "A007740" ]
null
N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)
2024-08-26T04:56:02
oeisdata/seq/A007/A007740.seq
242826822f600926640aa205f350bf92
A007741
a(n) = prime(n)*...*prime(m), the least product of consecutive primes which is abundant.
[ "30", "15015", "33426748355", "1357656019974967471687377449", "7105630242567996762185122555313528897845637444413640621" ]
[ "nonn" ]
34
1
1
[ "A005101", "A006038", "A007702", "A007707", "A007708", "A007741", "A091191", "A108227", "A285993" ]
null
Walter Nissen
2019-06-29T19:52:00
oeisdata/seq/A007/A007741.seq
1eb381101a05029d743bd1ea9a6222e3
A007742
a(n) = n*(4*n+1).
[ "0", "5", "18", "39", "68", "105", "150", "203", "264", "333", "410", "495", "588", "689", "798", "915", "1040", "1173", "1314", "1463", "1620", "1785", "1958", "2139", "2328", "2525", "2730", "2943", "3164", "3393", "3630", "3875", "4128", "4389", "4658", "4935", "5220", "5513", "5814", "6123", "6440", "6765", "7098", "7439", "7788", "8145" ]
[ "nonn", "easy", "nice" ]
104
0
2
[ "A000217", "A000290", "A000384", "A001107", "A002061", "A002378", "A002620", "A002939", "A002943", "A007742", "A014105", "A016742", "A016754", "A033951", "A033952", "A033953", "A033954", "A033988", "A033989", "A033990", "A033991", "A033996", "A035608", "A053755", "A054552", "A054554", "A054556", "A054567", "A054569", "A074378", "A080335", "A081266", "A137932", "A140090", "A156859", "A267682", "A317186" ]
null
N. J. A. Sloane
2024-05-31T05:52:04
oeisdata/seq/A007/A007742.seq
e2d5408465c3a21c7eaf2dd071c11647
A007743
Number of achiral polyominoes with n cubical cells of the regular tiling with Schläfli symbol {4,3,4} (or polycubes).
[ "1", "1", "2", "6", "17", "58", "191", "700", "2515", "9623", "36552", "143761", "564443", "2259905", "9057278", "36705846", "149046429", "609246350", "2495727647", "10267016450", "42322763940", "174974139365" ]
[ "nonn", "nice" ]
22
1
3
[ "A000162", "A001931", "A007743", "A038119", "A371397" ]
null
Arlin Anderson (starship1(AT)gmail.com)
2024-09-20T06:06:29
oeisdata/seq/A007/A007743.seq
bd6dc68e73fcec804fd903b0acce35ed
A007744
Expansion of (1+6*x)/(1-4*x)^(7/2).
[ "1", "20", "210", "1680", "11550", "72072", "420420", "2333760", "12471030", "64664600", "327202876", "1622493600", "7909656300", "38003792400", "180324117000", "846321189120", "3934071152550", "18132120329400", "82937661506700" ]
[ "nonn", "changed" ]
43
0
2
null
null
N. J. A. Sloane
2025-04-24T02:14:05
oeisdata/seq/A007/A007744.seq
aaf4bac58b999627b264ddb0abbfd510
A007745
a(n) = n OR n^2 (applied to binary expansions).
[ "1", "6", "11", "20", "29", "38", "55", "72", "89", "110", "123", "156", "173", "206", "239", "272", "305", "342", "379", "404", "445", "502", "535", "600", "633", "702", "731", "796", "861", "926", "991", "1056", "1121", "1190", "1259", "1332", "1405", "1446", "1527", "1640", "1721", "1774", "1851", "1980", "2029", "2158", "2223", "2352", "2417", "2550" ]
[ "base", "nonn", "easy" ]
36
1
2
[ "A002378", "A007745", "A169810", "A213541" ]
null
J. P. Mocquard and D. Bouchon (BOUCHON(AT)zeus.univ-poitiers.fr)
2022-09-08T08:44:35
oeisdata/seq/A007/A007745.seq
cb0e37aec53527053440f326bedb24c2
A007746
Number of ways for n-3 nonintersecting loops to cross a line 2n times.
[ "42", "640", "5894", "42840", "271240", "1569984", "8536890", "44346456", "222516030", "1086685600", "5193298110", "24384586200", "112831907760", "515709552000", "2332549535400", "10455495457248", "46500885666900", "205401168733824", "901819865269180", "3938266773556720", "17116175702216624" ]
[ "nonn" ]
21
4
1
[ "A007746", "A008828" ]
null
Philippe Di Francesco (philippe(AT)amoco.saclay.cea.fr)
2022-09-08T08:44:35
oeisdata/seq/A007/A007746.seq
fd7f51938877970185194a687c06364e
A007747
Number of nonnegative integer points (p_1,p_2,...,p_n) in polytope defined by p_0 = p_{n+1} = 0, 2p_i - (p_{i+1} + p_{i-1}) <= 2, p_i >= 0, i=1,...,n. Number of score sequences in a chess tournament with n+1 players (with 3 outcomes for each game).
[ "1", "2", "5", "16", "59", "247", "1111", "5302", "26376", "135670", "716542", "3868142", "21265884", "118741369", "671906876", "3846342253", "22243294360", "129793088770", "763444949789", "4522896682789", "26968749517543", "161750625450884" ]
[ "nonn", "nice" ]
31
0
2
[ "A000571", "A007747", "A047730", "A064422", "A064626" ]
null
P. Di Francesco (philippe(AT)amoco.saclay.cea.fr), N. J. A. Sloane
2023-07-08T19:24:25
oeisdata/seq/A007/A007747.seq
22c64f102a763367370e95bad42ecec0
A007748
Number of self-converse oriented trees with n nodes.
[ "1", "1", "1", "2", "3", "7", "10", "26", "39", "107", "160", "458", "702", "2058", "3177", "9498", "14830", "44947", "70678", "216598", "342860", "1059952", "1686486", "5251806", "8393681", "26297238", "42187148", "132856766", "213828802", "676398395", "1091711076" ]
[ "nonn", "nice" ]
24
1
4
[ "A000238", "A007748" ]
null
N. J. A. Sloane
2021-12-16T22:18:38
oeisdata/seq/A007/A007748.seq
3fbabc8c02eddd6c3c824a3dcf5dc225
A007749
Numbers k such that k!! - 1 is prime.
[ "3", "4", "6", "8", "16", "26", "64", "82", "90", "118", "194", "214", "728", "842", "888", "2328", "3326", "6404", "8670", "9682", "27056", "44318", "76190", "100654", "145706" ]
[ "nonn", "hard", "nice" ]
63
1
1
[ "A006882", "A007749", "A091415", "A117141" ]
null
N. J. A. Sloane
2025-03-19T08:24:52
oeisdata/seq/A007/A007749.seq
2cb396aee0dbdea2d7ae6d94caef6c35
A007750
Nonnegative integers n such that n^2*(n+1)*(2*n+1)^2*(7*n+1)/36 is a square.
[ "0", "1", "7", "24", "120", "391", "1921", "6240", "30624", "99457", "488071", "1585080", "7778520", "25261831", "123968257", "402604224", "1975713600", "6416405761", "31487449351", "102259887960", "501823476024", "1629741801607", "7997688167041", "25973608937760" ]
[ "nonn", "easy" ]
37
0
3
[ "A007750", "A007751", "A007752", "A077412" ]
null
John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)
2024-12-29T16:10:42
oeisdata/seq/A007/A007750.seq
bce520fe8c1eb81558f26fd295e2f87d
A007751
Even bisection of A007750.
[ "0", "7", "120", "1921", "30624", "488071", "7778520", "123968257", "1975713600", "31487449351", "501823476024", "7997688167041", "127461187196640", "2031381306979207", "32374639724470680", "515962854284551681", "8223031028828356224" ]
[ "nonn" ]
26
0
2
[ "A007750", "A007751", "A007752", "A077412" ]
null
John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)
2023-12-30T10:56:55
oeisdata/seq/A007/A007751.seq
adb62f4c2333d9a9cad518496b1e619d
A007752
Odd bisection of A007750.
[ "1", "24", "391", "6240", "99457", "1585080", "25261831", "402604224", "6416405761", "102259887960", "1629741801607", "25973608937760", "413948001202561", "6597194410303224", "105141162563649031", "1675661406608081280" ]
[ "nonn", "easy" ]
23
1
2
[ "A007750", "A007751", "A007752" ]
null
John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)
2024-07-04T14:33:15
oeisdata/seq/A007/A007752.seq
a0240f05bbd8651b712b9db36648067c
A007753
a(n) = Sum_{k=0..n-1} binomial(a(k)^2, k).
[ "1", "1", "2", "8", "41672", "378916495683075745757412513402693048" ]
[ "easy", "nonn" ]
16
0
3
null
null
Barry Brunson (bbrunson(AT)wku.edu)
2021-06-11T20:50:26
oeisdata/seq/A007/A007753.seq
e210229b22b1ef84e883c79150fb4620
A007754
Array (a frieze pattern) defined by a(n,k) = (a(n-1,k)*a(n-1,k+1) - 1) / a(n-2,k+1), read by antidiagonals.
[ "1", "1", "1", "1", "2", "1", "1", "3", "5", "2", "1", "4", "11", "18", "7", "1", "5", "19", "52", "85", "33", "1", "6", "29", "110", "301", "492", "191", "1", "7", "41", "198", "751", "2055", "3359", "1304", "1", "8", "55", "322", "1555", "5898", "16139", "26380", "10241", "1", "9", "71", "488", "2857", "13797", "52331", "143196", "234061", "90865", "1", "10", "89", "702" ]
[ "nonn", "easy", "nice", "tabl" ]
33
0
5
[ "A000012", "A000027", "A007754", "A028387", "A058794", "A058796", "A058797", "A058799", "A099933" ]
null
N. J. A. Sloane, Nov 28 2000
2023-06-06T05:05:58
oeisdata/seq/A007/A007754.seq
cef56ac6081788ade406042c0259add7
A007755
Smallest number m such that the trajectory of m under iteration of Euler's totient function phi(n) [A000010] contains exactly n distinct numbers, including m and the fixed point.
[ "1", "2", "3", "5", "11", "17", "41", "83", "137", "257", "641", "1097", "2329", "4369", "10537", "17477", "35209", "65537", "140417", "281929", "557057", "1114129", "2384897", "4227137", "8978569", "16843009", "35946497", "71304257", "143163649", "286331153", "541073537", "1086374209", "2281701377", "4295098369" ]
[ "nonn", "nice" ]
49
1
2
[ "A000010", "A003434", "A007755", "A049108", "A060611", "A092873", "A098196", "A227946" ]
null
Pepijn van Erp [ vanerp(AT)sci.kun.nl ]
2019-03-26T23:41:00
oeisdata/seq/A007/A007755.seq
47a869a760d1327dd1172f915ab8fd86
A007756
Number of irreducible indecomposable spherical curves with n crossings (only ordinary double points), the circle is oriented, the sphere is not oriented (OU case).
[ "0", "0", "1", "1", "2", "3", "11", "38", "156", "638", "2973", "13882", "67868", "338147", "1720303", "8905996", "46774728", "248918004", "1340083514", "7288922610", "40019870539", "221582395052", "1236358849827" ]
[ "nonn", "more" ]
34
1
5
[ "A007756", "A008986", "A008987", "A008988", "A008989", "A264759", "A264760", "A264761" ]
null
Jean Betrema
2024-03-30T12:15:08
oeisdata/seq/A007/A007756.seq
3fadbc8582f3afadbe01d332c5a2ecc7
A007757
Dwork-Kontsevich sequence evaluated at 2*n.
[ "1", "2", "36", "144", "1440", "17280", "241920", "29030400", "1567641600", "156764160000", "217275125760000", "1738201006080000", "45193226158080000", "3796230997278720000", "113886929918361600000", "1822190878693785600000", "22489479824838701875200000", "28336744579296764362752000000", "1076796294013277045784576000000", "1679802218660712191423938560000000" ]
[ "nonn" ]
35
1
2
[ "A007757", "A056612", "A131657", "A131658" ]
null
Richard E. Borcherds (reb(AT)math.berkeley.edu)
2020-05-24T02:46:03
oeisdata/seq/A007/A007757.seq
3e89877dd825f66ecf20a4c9ce9b142b
A007758
a(n) = 2^n*n^2.
[ "0", "2", "16", "72", "256", "800", "2304", "6272", "16384", "41472", "102400", "247808", "589824", "1384448", "3211264", "7372800", "16777216", "37879808", "84934656", "189267968", "419430400", "924844032", "2030043136", "4437573632", "9663676416", "20971520000", "45365592064", "97844723712", "210453397504" ]
[ "nonn", "easy" ]
60
0
2
[ "A007758", "A014477", "A248917", "A355234" ]
null
David J. Snook (ua532(AT)freenet.victoria.bc.ca)
2022-06-28T10:59:22
oeisdata/seq/A007/A007758.seq
6c959b4dc86679369edbf3fbb632e744
A007759
Knopfmacher expansion of sqrt(2): a(2n) = 2*(a(2n-1) + 1)^2 - 1, a(2n+1) = 2*(a(2n)^2 - 1).
[ "2", "17", "576", "665857", "886731088896", "1572584048032918633353217", "4946041176255201878775086487573351061418968498176", "48926646634423881954586808839856694558492182258668537145547700898547222910968507268117381704646657" ]
[ "nonn" ]
19
1
1
[ "A001601", "A002193", "A007759" ]
null
Arnold Knopfmacher
2022-09-08T08:44:35
oeisdata/seq/A007/A007759.seq
0886a93d9d3e80dd3e856dbcb6ad34bb
A007760
Number of solid partitions of height n in a cube of side n.
[ "1", "2", "168", "17792748", "75241806496951632" ]
[ "nonn", "hard", "more" ]
8
0
2
null
null
destain(AT)clipper.ens.fr (Nicolas DESTAINVILLE)
2017-08-20T21:40:18
oeisdata/seq/A007/A007760.seq
708c64ca5b2e66b967b08bb20002d535
A007761
(n+1) * a(n+1) - 2 (68*n^2+68*n+27) * a(n) + 6 * n * (772*n^2+35) * a(n-1) - 2 * (2*n-1)^2 * (68*n^2-68*n+27) * a(n-2) + (2*n-1)^2 * (n-1) * (2*n-3)^2 * a(n-3) = 0.
[ "1", "54", "6381", "1176900", "295843509", "94263721650", "36391089828249", "16506884910849480", "8603605199199386025", "5066519768097762780270", "3326644994941284848273925", "2409605195467508091244871820" ]
[ "nonn" ]
22
0
2
null
null
Bruno Haible
2020-03-04T16:28:23
oeisdata/seq/A007/A007761.seq
fb72b8c260861cd512a34f77e7298870
A007762
Number of domino tilings of a certain region.
[ "1", "8", "120", "2288", "49680", "1170968", "29206632", "759265760", "20371816992", "560386232744" ]
[ "nonn", "unkn", "more" ]
22
1
2
null
null
James Propp
2021-11-19T02:47:58
oeisdata/seq/A007/A007762.seq
d9f70632e8fccff9b21194d6b69857e5
A007763
Number of pairs of length n permutations achievable by double-ended priority queue.
[ "1", "4", "32", "392", "6488", "135360", "3408120", "100520432", "3398723928", "129588803696", "5500585388616", "257232445666832" ]
[ "nonn", "more" ]
16
1
2
[ "A000272", "A007763" ]
null
mda(AT)cs.st-andrews.ac.uk (Michael Atkinson)
2024-06-19T18:58:47
oeisdata/seq/A007/A007763.seq
1030a80bea15928479d9a75e3dd831df
A007764
Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of an n X n grid.
[ "1", "2", "12", "184", "8512", "1262816", "575780564", "789360053252", "3266598486981642", "41044208702632496804", "1568758030464750013214100", "182413291514248049241470885236", "64528039343270018963357185158482118", "69450664761521361664274701548907358996488" ]
[ "nonn", "walk", "hard", "nice", "changed" ]
143
1
2
[ "A000532", "A001184", "A007764", "A064297", "A064298", "A271507" ]
null
David Radcliffe and Don Knuth
2025-04-16T10:56:41
oeisdata/seq/A007/A007764.seq
ace17119797fe9335472ba473a21370a
A007765
Primes p == 1 (mod 8), p = a^2 +64*b^2 such that y^2 = x^3 + p*x has rank 0.
[ "257", "577", "1097", "1201", "1217", "1481", "1721", "2441", "2657", "2833", "2857", "3121", "3449", "3761", "4001", "4057", "4177", "4217", "4297", "4409", "4481", "4657", "4721", "4817", "4937", "5297", "5569", "5737", "6121", "6481", "6521", "6793", "6841", "6857", "7121", "7129", "7793", "7817", "7841", "8081", "8161", "8761" ]
[ "nonn" ]
12
1
1
[ "A007765", "A007766" ]
null
H. E Rose [ H.E.Rose(AT)bristol.ac.uk ]
2018-01-09T17:55:17
oeisdata/seq/A007/A007765.seq
13fe0432dce3d1ed895b835116e8c508
A007766
Primes p == 1 (mod 8), p = a^2 + 64*b^2 such that y^2 = x^3 + p*x has rank 2.
[ "73", "89", "113", "233", "281", "337", "353", "593", "601", "617", "881", "937", "1033", "1049", "1153", "1193", "1249", "1289", "1433", "1553", "1601", "1609", "1753", "1777", "1801", "1889", "1913", "2089", "2113", "2129", "2273", "2281", "2393", "2473", "2593", "2689", "2969", "3049", "3089", "3137", "3217", "3257", "3313", "3361", "3529" ]
[ "nonn" ]
8
1
1
[ "A007765", "A007766" ]
null
H. E Rose [ H.E.Rose(AT)bristol.ac.uk ]
2017-10-12T08:23:03
oeisdata/seq/A007/A007766.seq
56d0f7eb94f6cfe43d39f14323c7770c
A007767
Number of pairs of permutations of degree n that avoid (12,21).
[ "1", "1", "3", "17", "151", "1899", "31711", "672697", "17551323", "549500451", "20246665349", "864261579999", "42190730051687", "2329965898878307", "144220683681814515", "9926440976428215117", "754465679498026783923", "62939664181821196179459", "5732069150321309755351161", "567176164248814234096702451" ]
[ "nonn" ]
83
0
3
[ "A000260", "A007767", "A263754" ]
null
Steve Linton
2025-01-02T22:20:08
oeisdata/seq/A007/A007767.seq
e0ba636f4fc74fc75f35d70310604a8a
A007768
From Engel product expansion of 4/7.
[ "3", "3", "4", "4", "6", "17", "36", "44", "49", "74", "122", "126", "744", "7814", "9238", "9432", "52114", "33241100", "85747623", "353210861", "355051655", "1950030118", "32235431345", "50590143817", "58937626393", "482819610949", "1515905452711", "2679281166868", "25090147463646", "207012319502700" ]
[ "nonn" ]
14
1
1
null
null
Arnold Knopfmacher
2018-01-24T03:35:14
oeisdata/seq/A007/A007768.seq
631ebc81f3055a30ab58af4d156ba170
A007769
Number of chord diagrams with n chords; number of pairings on a necklace.
[ "1", "1", "2", "5", "18", "105", "902", "9749", "127072", "1915951", "32743182", "624999093", "13176573910", "304072048265", "7623505722158", "206342800616597", "5996837126024824", "186254702826289089", "6156752656678674792", "215810382466145354405", "7995774669504366055054" ]
[ "nonn", "easy", "nice" ]
71
0
3
[ "A007769", "A054499", "A104255", "A279207", "A279208" ]
null
Jean.Betrema(AT)labri.u-bordeaux.fr
2019-04-30T09:54:22
oeisdata/seq/A007/A007769.seq
9bfe83b2b261182b3f63c251323477de
A007770
Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1.
[ "1", "7", "10", "13", "19", "23", "28", "31", "32", "44", "49", "68", "70", "79", "82", "86", "91", "94", "97", "100", "103", "109", "129", "130", "133", "139", "167", "176", "188", "190", "192", "193", "203", "208", "219", "226", "230", "236", "239", "262", "263", "280", "291", "293", "301", "302", "310", "313", "319", "320", "326", "329", "331", "338" ]
[ "nonn", "base", "nice", "easy" ]
129
1
2
[ "A001273", "A002025", "A003132", "A007770", "A031177", "A035497", "A035502", "A046519", "A050972", "A050973", "A068571", "A072494", "A074902", "A090425", "A103369", "A124095", "A219667", "A239320", "A240849" ]
null
N. J. A. Sloane, A.R.McKenzie(AT)bnr.co.uk
2025-02-16T08:32:31
oeisdata/seq/A007/A007770.seq
9fdc87b40e678920eb4b4333591f34f0
A007771
Values of Ehrhart polynomial of dilation by 2 of Relaxed Boolean Quadric Polytope of order 4.
[ "1", "224", "10473", "173760", "1569465", "9559392", "44220785", "167026432", "540036369", "1544011360" ]
[ "nonn" ]
3
0
2
null
null
Einar Steingrimsson [ einar(AT)math.chalmers.se ]
2003-05-16T03:00:00
oeisdata/seq/A007/A007771.seq
f8bbf7b1c1413af67ed75af7786325c0
A007772
Values of Ehrhart polynomial of dilation by 2 of Relaxed Boolean Quadric Polytope of order 3.
[ "1", "40", "417", "2272", "8545", "25320", "63553" ]
[ "nonn" ]
3
0
2
null
null
Einar Steingrimsson [ einar(AT)math.chalmers.se ]
2003-05-16T03:00:00
oeisdata/seq/A007/A007772.seq
2417887486b89bf0636e42b61c9cf95e
A007773
For any circular arrangement of 0..n-1, let S = sum of squares of every sum of two contiguous numbers; then a(n) = # of distinct values of S.
[ "1", "1", "1", "3", "8", "21", "43", "69", "102", "145", "197", "261", "336", "425", "527", "645", "778", "929", "1097", "1285", "1492", "1721", "1971", "2245", "2542", "2865", "3213", "3589", "3992", "4425", "4887", "5381", "5906", "6465", "7057", "7685", "8348", "9049", "9787", "10565", "11382", "12241", "13141", "14085", "15072", "16105" ]
[ "nonn", "easy" ]
27
1
4
null
null
K. S. Brown (kevin2003(AT)delphi.com), Hugh L. Montgomery
2022-09-08T08:44:35
oeisdata/seq/A007/A007773.seq
040b2cbdf806e46b0f9d68d8f8000b80
A007774
Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.
[ "6", "10", "12", "14", "15", "18", "20", "21", "22", "24", "26", "28", "33", "34", "35", "36", "38", "39", "40", "44", "45", "46", "48", "50", "51", "52", "54", "55", "56", "57", "58", "62", "63", "65", "68", "69", "72", "74", "75", "76", "77", "80", "82", "85", "86", "87", "88", "91", "92", "93", "94", "95", "96", "98", "99", "100", "104", "106", "108", "111", "112", "115", "116", "117", "118" ]
[ "nonn" ]
69
1
1
[ "A000040", "A001358", "A006881", "A007774", "A014612", "A014613", "A014614", "A046386", "A046387", "A067885", "A085736", "A112801", "A125666", "A256617" ]
null
Luke Pebody (ltp1000(AT)hermes.cam.ac.uk)
2024-04-14T03:49:31
oeisdata/seq/A007/A007774.seq
eac3277a599152d603c1577744f97bb9
A007775
Numbers not divisible by 2, 3 or 5.
[ "1", "7", "11", "13", "17", "19", "23", "29", "31", "37", "41", "43", "47", "49", "53", "59", "61", "67", "71", "73", "77", "79", "83", "89", "91", "97", "101", "103", "107", "109", "113", "119", "121", "127", "131", "133", "137", "139", "143", "149", "151", "157", "161", "163", "167", "169", "173", "179", "181", "187", "191", "193", "197", "199", "203", "209" ]
[ "nonn", "easy" ]
187
1
2
[ "A000027", "A000538", "A005408", "A007310", "A007775", "A008364", "A008365", "A008366", "A054403", "A080671", "A145011", "A166061", "A166063", "A227896" ]
null
N. J. A. Sloane
2025-02-16T08:32:31
oeisdata/seq/A007/A007775.seq
ed0b70e1fe9d2a102e1138d2eb1018d7
A007776
Number of connected posets with n elements of height 1.
[ "1", "2", "4", "10", "27", "88", "328", "1460", "7799", "51196", "422521", "4483460", "62330116", "1150504224", "28434624153", "945480850638", "42417674401330", "2572198227615998", "211135833162079184", "23487811567341121158", "3545543330739039981738", "727053904070651775719646" ]
[ "nonn" ]
40
2
2
[ "A002031", "A005142", "A007776", "A048194", "A049312", "A055192", "A318870", "A342500" ]
null
Georg Wambach (gw(AT)informatik.Uni-Koeln.de)
2023-11-29T11:42:04
oeisdata/seq/A007/A007776.seq
d6b737b9e2460c273a78170137a6bff4
A007777
Number of overlap-free binary words of length n.
[ "1", "2", "4", "6", "10", "14", "20", "24", "30", "36", "44", "48", "60", "60", "62", "72", "82", "88", "96", "112", "120", "120", "136", "148", "164", "152", "154", "148", "162", "176", "190", "196", "210", "216", "224", "228", "248", "272", "284", "296", "300", "296", "320", "332", "356", "356", "376", "400", "416", "380", "382", "376", "382", "356", "374", "392", "410" ]
[ "nonn", "easy", "nice" ]
52
0
2
[ "A007777", "A028445", "A038952", "A082379", "A082380" ]
null
Julien Cassaigne (cassaign(AT)clipper.ens.fr)
2025-02-16T08:32:31
oeisdata/seq/A007/A007777.seq
edbd405a6c91ef25e49e5682138127a7
A007778
a(n) = n^(n+1).
[ "0", "1", "8", "81", "1024", "15625", "279936", "5764801", "134217728", "3486784401", "100000000000", "3138428376721", "106993205379072", "3937376385699289", "155568095557812224", "6568408355712890625", "295147905179352825856", "14063084452067724991009", "708235345355337676357632" ]
[ "nonn", "easy" ]
79
0
3
[ "A000169", "A000272", "A000312", "A007778", "A007830", "A008785", "A008786", "A008787", "A008788", "A008789", "A008790", "A008791", "A061250", "A065440", "A135608", "A143857" ]
null
N. J. A. Sloane
2025-02-18T14:26:45
oeisdata/seq/A007/A007778.seq
f50eb361dce7fb0f2b180485a4b618ab
A007779
Coefficients of asymptotic expansion of Ramanujan false theta series.
[ "1", "1", "1", "2", "5", "17", "72", "367", "2179", "14750", "112023", "942879", "8708912", "87563937", "951933849", "11125383714", "139092236301", "1852257089937", "26173848663000", "391153031777263", "6163682285356171", "102136840106457790", "1775499429402739247", "32307194057014483391" ]
[ "nonn", "nice", "easy" ]
27
0
4
[ "A000111", "A007779", "A115455" ]
null
William F. Galway (galway(AT)math.uiuc.edu)
2024-08-03T07:10:20
oeisdata/seq/A007/A007779.seq
2c1ec7815a2d8ac52dbe6795708c7cfc
A007780
Losing initial configurations in 2-hole Tchuka Ruma.
[ "1", "2", "3", "6", "9", "11", "18", "20", "27", "30", "54", "81", "162", "168", "243", "486", "729", "1458", "2187", "4374", "6561", "13122", "19683", "39366", "59049", "118098", "177147", "354294", "531441", "1062882", "1594323", "3188646", "4782969", "9565938", "14348907", "28697814", "43046721", "86093442" ]
[ "nonn" ]
20
1
2
null
null
Darrah Chavey
2018-01-25T14:09:38
oeisdata/seq/A007/A007780.seq
ae5c817b2821a4a7bd2a6652d1c36b3b
A007781
a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.
[ "1", "3", "23", "229", "2869", "43531", "776887", "15953673", "370643273", "9612579511", "275311670611", "8630788777645", "293959006143997", "10809131718965763", "426781883555301359", "18008850183328692241", "808793517812627212561" ]
[ "nonn", "easy" ]
53
0
2
[ "A000312", "A002407", "A003215", "A007781", "A068146", "A068954", "A068955", "A068956", "A068957", "A127854" ]
null
Peter McCormack (peter.mccormack(AT)its.csiro.au)
2025-02-16T08:32:31
oeisdata/seq/A007/A007781.seq
965d40b1b9ff7b52351564aa1cb715da
A007782
Number of factors in the infinite word formed by the Kolakoski sequence A000002.
[ "1", "2", "4", "6", "10", "14", "18", "26", "34", "42", "50", "62", "78", "94", "110", "126", "142", "162", "186", "218", "250", "282", "314", "346", "378", "410", "446", "486", "534", "590", "654", "718", "782", "846", "910", "974", "1038", "1102", "1166", "1234", "1302", "1378", "1458", "1554", "1658", "1774", "1898", "2026", "2154", "2282", "2410", "2538", "2666" ]
[ "nonn", "nice" ]
17
0
2
[ "A000002", "A007782" ]
null
Patricia Lamas (lamas(AT)math.uqam.ca)
2015-02-04T15:46:34
oeisdata/seq/A007/A007782.seq
42d2822c404ac03c69b87285567ede87
A007783
Mixed Van der Waerden numbers w(n, 3; 2).
[ "3", "6", "9", "18", "22", "32", "46", "58", "77", "97", "114", "135", "160", "186", "218", "238", "279", "312", "349" ]
[ "nonn", "hard", "more" ]
27
1
1
[ "A002886", "A007783" ]
null
Matthew Klimesh (matthew(AT)engin.umich.edu)
2024-08-03T05:43:31
oeisdata/seq/A007/A007783.seq
f43462f3783f577f58892a31ba414643
A007784
Van der Waerden numbers W(4,n).
[ "4", "8", "18", "35", "55", "73", "109", "146", "309" ]
[ "nonn", "hard", "more" ]
11
1
1
null
null
Matthew Klimesh (matthew(AT)engin.umich.edu)
2018-05-13T08:54:17
oeisdata/seq/A007/A007784.seq
f1d94e4ce9f36ace60fb773b0dcf5a08
A007785
Number of sets of positive integers <= n^2 whose sum is (n^3 + n)/2.
[ "1", "1", "2", "17", "306", "10828", "654857", "63019177", "9183937890", "1953896126383", "589909767142505", "247074213707554144", "140902072248206260266", "107704589610917073318533", "108877374411946899963718973", "143864444783939220165210185294", "245934054410000090878614435736720" ]
[ "nonn" ]
28
0
3
[ "A007785", "A052456" ]
null
Hidetoshi MINO [ mino(AT)hep.esb.yamanashi.ac.jp, mino(AT)mino.scri.fsu.edu ]
2022-05-20T05:17:20
oeisdata/seq/A007/A007785.seq
a6cb224d80e200189d536f4825d30344
A007786
Number of nonintersecting rook paths joining opposite corners of 4 X n board.
[ "1", "8", "38", "184", "976", "5382", "29739", "163496", "896476", "4913258", "26932712", "147657866", "809563548", "4438573234", "24335048679", "133419610132", "731487691902", "4010463268476", "21987818897998", "120550710615560", "660932932108467" ]
[ "nonn", "easy", "nice", "walk" ]
28
1
2
[ "A006192", "A007764", "A007786", "A007787", "A064298" ]
null
Heiner Marxen
2024-02-07T09:36:36
oeisdata/seq/A007/A007786.seq
870906a4f0021967289728d86483bbd2
A007787
Number of nonintersecting rook paths joining opposite corners of 5 X n board.
[ "1", "16", "125", "976", "8512", "79384", "752061", "7110272", "67005561", "630588698", "5933085772", "55827318685", "525343024814", "4943673540576", "46521924780255", "437788749723725", "4119750109152730", "38768318191017931", "364823700357765771", "3433121323699285343" ]
[ "nonn", "walk" ]
26
1
2
[ "A007764", "A007786", "A007787", "A064298" ]
null
Heiner Marxen
2020-04-06T06:29:11
oeisdata/seq/A007/A007787.seq
e0a79c494a3c67decb2ff0ac5631f133
A007788
Number of augmented Andre 3-signed permutations: E.g.f. (1-sin(3*x))^(-1/3).
[ "1", "1", "4", "19", "136", "1201", "13024", "165619", "2425216", "40132801", "740882944", "15091932019", "336257744896", "8134269015601", "212309523595264", "5946914908771219", "177934946000306176", "5663754614516217601" ]
[ "nonn" ]
31
0
3
[ "A007788", "A007863", "A235132", "A235135" ]
null
R. Ehrenborg (ehrenbor(AT)lacim.uqam.ca) and M. A. Readdy (readdy(AT)lacim.uqam.ca)
2022-09-08T08:44:35
oeisdata/seq/A007/A007788.seq
0bc84372ceff9f3540b8201b1f109b7b
A007789
From a problem concerning circulant matrices and Gauss sums.
[ "1", "1", "0", "4", "1", "0", "13", "4", "27", "1", "1", "0", "25", "13", "0", "16", "1", "27", "37", "4", "0", "1", "1", "0", "25", "25", "81", "52", "1", "0", "61", "16", "0", "1", "13", "108", "73", "37", "0", "4", "1", "0", "85", "4", "27", "1", "1", "0", "133", "25", "0", "100", "1", "81", "1", "52", "0", "1", "1", "0", "121", "61" ]
[ "nonn", "more" ]
28
0
4
[ "A007789", "A007790", "A007791", "A007792" ]
null
Zoltan Reti
2024-11-19T16:32:36
oeisdata/seq/A007/A007789.seq
a001c4bf2324ae347d7259d56eeb8cc1
A007790
From a problem concerning circulant matrices and Gauss sums.
[ "1", "0", "11", "32", "61", "0", "55", "256", "153", "0", "131", "352", "469", "0", "671", "2048", "817", "0" ]
[ "nonn", "more" ]
21
0
3
[ "A007789", "A007790", "A007791", "A007792" ]
null
Zoltan Reti
2024-11-19T16:31:41
oeisdata/seq/A007/A007790.seq
14f3974f22b46ec830571292be0f092c
A007791
From a problem concerning circulant matrices and Gauss sums.
[ "1", "1", "1", "16", "0", "1", "1", "256", "81", "0", "4641", "16", "1", "1", "0", "4096", "1", "81", "721", "0", "1", "4641", "1", "256", "78125", "1", "6561", "16" ]
[ "nonn", "more" ]
19
0
4
[ "A007789", "A007790", "A007791", "A007792" ]
null
Zoltan Reti
2024-11-19T16:31:34
oeisdata/seq/A007/A007791.seq
c45e59a5499724bb54b1006b8e7ac291
A007792
From a problem concerning circulant matrices and Gauss sums.
[ "1", "8", "81", "640", "821", "648", "9031", "14336", "32805", "6568", "17051", "51840", "122461", "72248", "66501", "360448", "92753", "262440", "586531" ]
[ "nonn", "more" ]
18
0
2
[ "A007789", "A007790", "A007791", "A007792" ]
null
Zoltan Reti
2024-11-19T16:32:15
oeisdata/seq/A007/A007792.seq
b17089ac496913fc9be67cf492f652e7
A007793
Number of conjugacy classes of compact Cartan subgroups in Sp_{2n}(F), where p>n and the p-adic field F contains all r-th roots of unity for all r <= 2n.
[ "6", "39", "188", "861", "3510", "13623", "49524", "172893", "577728", "1868109", "5847054", "17814077", "52890972", "153535575", "436304266", "1216282521", "3329926392", "8966547362", "23769745656", "62101564899", "160033141790", "407108557269" ]
[ "nonn" ]
4
1
1
null
null
Jeff Adler (adler(AT)uakron.edu)
2004-06-12T03:00:00
oeisdata/seq/A007/A007793.seq
7e5b10def3e21c96c3e41a28e94d2ff8
A007794
Juxtapose pairs of primes (starting at 1).
[ "12", "35", "711", "1317", "1923", "2931", "3741", "4347", "5359", "6167", "7173", "7983", "8997", "101103", "107109", "113127", "131137", "139149", "151157", "163167", "173179", "181191", "193197", "199211", "223227", "229233" ]
[ "nonn", "base" ]
10
1
1
null
null
bmoore(AT)artemis.ess.ucla.edu (William B. Moore)
2019-07-12T14:00:13
oeisdata/seq/A007/A007794.seq
a63685ec0c0d5f50ac742dc51df36693
A007795
Juxtapose pairs of primes.
[ "23", "57", "1113", "1719", "2329", "3137", "4143", "4753", "5961", "6771", "7379", "8389", "97101", "103107", "109113", "127131", "137139", "149151", "157163", "167173", "179181", "191193", "197199", "211223", "227229", "233239", "241251", "257263", "269271", "277281", "283293", "307311", "313317", "331337", "347349", "353359" ]
[ "nonn", "base" ]
19
1
1
null
null
William B. Moore (bmoore(AT)artemis.ess.ucla.edu)
2022-09-08T08:44:35
oeisdata/seq/A007/A007795.seq
7d553a92948a32cb249725d3d830a3ef
A007796
List of pairs of primes in reverse order, starting at 1.
[ "21", "53", "117", "1713", "2319", "3129", "4137", "4743", "5953", "6761", "7371", "8379", "9789", "103101", "109107", "127113", "137131", "149139", "157151", "167163", "179173", "191181", "197193", "211199", "227223" ]
[ "nonn", "base" ]
11
1
1
null
null
bmoore(AT)artemis.ess.ucla.edu (William B. Moore)
2015-05-10T15:43:21
oeisdata/seq/A007/A007796.seq
38ee85705e3f4369794ffecc6cdb72d7
A007797
List of pairs of primes in reverse order.
[ "32", "75", "1311", "1917", "2923", "3731", "4341", "5347", "6159", "7167", "7973", "8983", "10197", "107103", "113109", "131127", "139137", "151149", "163157", "173167", "181179", "193191", "199197", "223211", "229227", "239233", "251241", "263257", "271269", "281277", "293283", "311307", "317313", "337331", "349347", "359353" ]
[ "nonn", "base" ]
11
1
1
[ "A007795", "A007797" ]
null
William B. Moore (bmoore(AT)artemis.ess.ucla.edu)
2022-09-08T08:44:35
oeisdata/seq/A007/A007797.seq
3ce5cc44c233447d73bdecb7092c2dc0
A007798
Expected number of random moves in Tower of Hanoi problem with n disks starting with a randomly chosen position and ending at a position with all disks on the same peg.
[ "0", "0", "2", "18", "116", "660", "3542", "18438", "94376", "478440", "2411882", "12118458", "60769436", "304378620", "1523487422", "7622220078", "38125449296", "190670293200", "953480606162", "4767790451298", "23840114517956", "119204059374180", "596030757224102", "2980185167180118", "14901019979079416" ]
[ "nonn", "easy" ]
39
0
3
[ "A005058", "A007798", "A134939" ]
null
David G. Poole (dpoole(AT)trentu.ca)
2022-09-08T08:44:35
oeisdata/seq/A007/A007798.seq
bd28f99852e575f7130ef6d96088bdea
A007799
Irregular triangle read by rows: Whitney numbers of the second kind a(n,k), n >= 1, k >= 0, for the star poset.
[ "1", "1", "1", "1", "2", "2", "1", "1", "3", "6", "9", "5", "1", "4", "12", "30", "44", "26", "3", "1", "5", "20", "70", "170", "250", "169", "35", "1", "6", "30", "135", "460", "1110", "1689", "1254", "340", "15", "1", "7", "42", "231", "1015", "3430", "8379", "13083", "10408", "3409", "315", "1", "8", "56", "364", "1960", "8540", "28994", "71512", "114064", "96116", "36260" ]
[ "nonn", "tabf", "easy", "nice" ]
44
1
5
[ "A007799", "A192837" ]
null
Frederick J. Portier [fportier(AT)msmary.edu]
2025-02-16T08:32:31
oeisdata/seq/A007/A007799.seq
514dae357303dd64d671b4534d758c95
A007800
From a problem in AI planning: a(n) = 4+a(n-1)+a(n-2)+a(n-3)+a(n-4)-a(n-5)-a(n-6)-a(n-7), n>7.
[ "1", "2", "4", "8", "16", "31", "59", "111", "207", "384", "710", "1310", "2414", "4445", "8181", "15053", "27693", "50942", "93704", "172356", "317020", "583099", "1072495", "1972635", "3628251", "6673404", "12274314", "22575994", "41523738", "76374073", "140473833", "258371673", "475219609", "874065146" ]
[ "nonn", "easy" ]
33
1
2
[ "A007800", "A062544" ]
null
Peter Jonsson [ petej(AT)ida.liu.se ]
2024-05-22T02:11:20
oeisdata/seq/A007/A007800.seq
496a70af87c10f5d3c683ca86bc87fac