sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A007801
Expansion of f(f(x)), where f = x + x^2 + x^4 + x^8 + x^16 + ...
[ "1", "2", "2", "3", "6", "8", "8", "16", "22", "40", "80", "146", "240", "356", "488", "661", "870", "1184", "1936", "3750", "7976", "17628", "37528", "74828", "140480", "249444", "420392", "678432", "1056600", "1593512", "2334928", "3337410", "4660246", "6364080", "8527984", "11258182", "14753032", "19622940", "27836440" ]
[ "nonn" ]
28
1
2
null
null
Jeffrey Shallit
2020-03-20T19:15:18
oeisdata/seq/A007/A007801.seq
ccbd7157dde240dbaeb5574542932ebc
A007802
Numbers n such that game of n X n Button Madness need have no solution; this lists only the primitive elements of the set.
[ "3", "5", "17", "31", "127", "257", "511", "683", "2047", "2731", "3277", "3641", "8191", "43691", "52429", "61681", "65537", "85489", "131071", "174763", "178481", "233017", "253241", "256999", "486737", "524287", "704093", "838861", "1016801", "1082401", "1657009", "1838599", "1965379", "2304167", "2796203", "3033169", "3303821" ]
[ "nonn" ]
37
1
1
[ "A000668", "A007802", "A019434", "A165740" ]
null
Aart Blokhuis (aartb(AT)win.tue.nl), Mar 15 1996
2015-04-22T16:04:57
oeisdata/seq/A007/A007802.seq
9231f6550d75705371256f0fe3e4b193
A007803
Number of connected series-parallel graphs with a longest path of at most n edges and also a largest cut set of at most n edges.
[ "1", "7", "87", "3503", "425803", "154793519" ]
[ "nonn", "more" ]
7
1
2
null
null
michelb(AT)watson.ibm.com (Michel Berkelaar)
2023-10-11T23:14:51
oeisdata/seq/A007/A007803.seq
381e54c9c2a6d981033e0be403ffb8a7
A007804
Related to the asymptotic expansion of Sum_{k = 0..n} C(n,k)^4.
[ "1", "30", "1730", "152340", "18177750", "2742927876", "500848449300", "107365679361000", "26431620161451750", "7348772237141884500", "2277376143931016207100", "778374526612873263759000", "290867891728117751744917500" ]
[ "nonn" ]
13
0
2
[ "A005260", "A007804" ]
null
Bruno Haible
2013-10-07T01:26:32
oeisdata/seq/A007/A007804.seq
11a3c6f5c14270f1a6d3349f18fc8d8d
A007805
a(n) = Fibonacci(6*n + 3)/2.
[ "1", "17", "305", "5473", "98209", "1762289", "31622993", "567451585", "10182505537", "182717648081", "3278735159921", "58834515230497", "1055742538989025", "18944531186571953", "339945818819306129", "6100080207560938369" ]
[ "nonn", "nice", "easy" ]
116
0
2
[ "A000045", "A007805", "A094954", "A188647", "A238379" ]
null
James A. Raymond, Clark Kimberling
2023-02-25T03:07:51
oeisdata/seq/A007/A007805.seq
83d7b05f502c986b6230ace5b8bfbaf6
A007806
Integer part of Sum_{i=1..n} binomial(n,i) * (n/i)^i.
[ "1", "5", "16", "50", "147", "422", "1210", "3459", "9878", "28189", "80425", "229411", "654311", "1866003", "5321194", "15173321", "43264523", "123357771", "351712022", "1002758190", "2858875748", "8150529454", "23236408366", "66243882238", "188849982251", "538372895393", "1534776215805", "4375251800924" ]
[ "nonn" ]
19
1
2
null
null
Joseph Lavinus Ganley [ ganley(AT)virginia.edu ]
2020-03-06T09:52:32
oeisdata/seq/A007/A007806.seq
5380c83d9b240cbc8516e0570ac4f53d
A007807
A variation on Euclid: a(n)=g(n)-1, where g(0)=0, g(1)=1, g(n+1)=g(n)(g(n-1)+1).
[ "0", "0", "1", "3", "11", "59", "779", "47579", "37159979", "1768109008379", "65702897157329640779", "116169884340604934905464739377179", "7632697963609645128663145969343357330533515068777579" ]
[ "nonn" ]
12
1
4
[ "A005831", "A007807" ]
null
mays(AT)math.wvu.edu (Mike Mays)
2025-01-05T19:51:34
oeisdata/seq/A007/A007807.seq
ab7c6f8ddf2ba201cc5f6a6e75be376f
A007808
Number of directed column-convex polyominoes of height n: a(k+1)=(k+1)*a(k)+(a(1)+...+a(k)).
[ "1", "1", "3", "13", "69", "431", "3103", "25341", "231689", "2345851", "26065011", "315386633", "4128697741", "58145826519", "876660153671", "14089181041141", "240455356435473", "4343224875615731", "82776756452911579", "1660133837750060001", "34950186057896000021", "770651602576606800463" ]
[ "nonn" ]
65
0
3
[ "A007808", "A056542" ]
null
Paul Zimmermann
2024-08-03T07:10:15
oeisdata/seq/A007/A007808.seq
47f259ca3266a7dbbb1b66c18b4241e2
A007809
Smallest prime with n distinct digits.
[ "2", "13", "103", "1039", "10243", "102359", "1023467", "10234589", "102345689" ]
[ "nonn", "fini", "base", "full" ]
23
1
1
[ "A007809", "A007810", "A038378", "A071360", "A071361", "A071362", "A071363" ]
null
N.B. Backhouse (sx52(AT)liverpool.ac.uk)
2021-02-13T14:00:30
oeisdata/seq/A007/A007809.seq
4a0d7a858bd7b5e0b3b943389a55a92a
A007810
Largest prime with n distinct decimal digits.
[ "7", "97", "983", "9871", "98731", "987631", "9876413", "98765431", "987654103" ]
[ "nonn", "fini", "base", "full" ]
14
1
1
[ "A007810", "A071360", "A071361", "A071362", "A071363" ]
null
N. B. Backhouse (sx52(AT)liverpool.ac.uk)
2019-09-16T17:11:06
oeisdata/seq/A007/A007810.seq
597a86bac6d5b68ee37e76fd35c0fc31
A007811
Numbers k for which 10k+1, 10k+3, 10k+7 and 10k+9 are primes.
[ "1", "10", "19", "82", "148", "187", "208", "325", "346", "565", "943", "1300", "1564", "1573", "1606", "1804", "1891", "1942", "2101", "2227", "2530", "3172", "3484", "4378", "5134", "5533", "6298", "6721", "6949", "7222", "7726", "7969", "8104", "8272", "8881", "9784", "9913", "10111", "10984", "11653", "11929", "12220", "13546", "14416", "15727" ]
[ "nonn" ]
65
1
2
[ "A007530", "A007811", "A008471", "A010051", "A014561", "A024912", "A032352", "A102338", "A102342", "A102700", "A125855", "A216292", "A216293", "A245304", "A245305" ]
null
N. J. A. Sloane and J. H. Conway, Mar 15 1996
2024-07-07T21:05:29
oeisdata/seq/A007/A007811.seq
ab2313794403a69885b6b4edbb79d64b
A007812
Number of n-node Steinhaus graphs whose complements have at least one cut-vertex.
[ "0", "1", "3", "2", "6", "17", "33", "56", "72", "88", "114", "140", "160", "190", "211", "250", "290", "322", "356", "404", "438", "474", "530", "580", "626", "682", "728" ]
[ "nonn", "more" ]
14
1
3
null
null
Wayne M. Dymacek (dymacek(AT)fs.sciences.wlu.edu)
2020-04-25T03:54:40
oeisdata/seq/A007/A007812.seq
4f9930e1d3090b3cecdfec2de630a4e2
A007813
Number of planar Steinhaus graphs with n nodes.
[ "1", "2", "4", "8", "16", "32", "59", "75", "65", "56", "50", "44", "36", "31", "27", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26", "26" ]
[ "nonn" ]
6
1
2
null
null
Wayne M. Dymacek (wdymacek(AT)wlu.edu)
2004-06-12T03:00:00
oeisdata/seq/A007/A007813.seq
9992d7747555080c34f8d44285e0de45
A007814
Exponent of highest power of 2 dividing n, a.k.a. the binary carry sequence, the ruler sequence, or the 2-adic valuation of n.
[ "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "4", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "5", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "4", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "6", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "4", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "5", "0", "1", "0", "2", "0", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0" ]
[ "nonn", "nice", "easy" ]
502
1
4
[ "A000079", "A002487", "A006519", "A007814", "A007949", "A011371", "A050602", "A050603", "A050605", "A051064", "A053398", "A055457", "A063787", "A086463", "A088705", "A094267", "A112765", "A122840", "A122841", "A135416", "A136480", "A214411", "A215366", "A220466", "A281264", "A285406", "A346070" ]
null
John Tromp, Dec 11 1996
2025-02-16T08:32:31
oeisdata/seq/A007/A007814.seq
a84881646e0dc8d8305e4dcfe3d21027
A007815
Number of triangulations of cyclic 3-polytope C(3,n+3).
[ "1", "2", "6", "25", "138", "972", "8477", "89405", "1119280", "16384508", "276961252", "5349351298", "116985744912", "2873993336097", "78768494976617", "2393723937214795", "80219694787925916", "2950178878348113995", "118538338070529618803" ]
[ "hard", "nonn", "changed" ]
30
1
2
[ "A007815", "A028441" ]
null
reiner(AT)math.umn.edu (Victor Reiner), edelman(AT)math.umn.edu (Paul Edelman)
2025-04-22T12:38:39
oeisdata/seq/A007/A007815.seq
ce6bbcd10073908f434779e67866587a
A007816
Number of abstract simplicial 2-complexes on {1,2,3,...,n+3} which triangulate the 2-sphere: C(n+3,2)*(4n+1)!/(3n+3)!.
[ "1", "10", "195", "5712", "223440", "10929600", "641277000", "43859692800", "3424685806080", "300495408595200", "29262949937020800", "3131187613956864000", "365112996737448960000", "46075561988281233408000" ]
[ "nonn", "easy", "nice" ]
32
1
2
null
null
Victor Reiner (reiner(AT)math.umn.edu), Paul Edelman (edelman(AT)math.umn.edu)
2022-11-17T09:19:34
oeisdata/seq/A007/A007816.seq
2cd5eeaaa4da59c84ac6590145f3c34a
A007817
Number of abstract simplicial 2-complexes on {1,2,3,...,n+4} which triangulate a Moebius band in such a way that all vertices lie on the boundary and are traversed in the order 1,2,3,... as one goes around the boundary.
[ "1", "14", "113", "720", "4033", "20864", "102356", "483680", "2223482", "10009570", "44330931", "193798624", "838329841", "3595080184", "15305823256", "64766503744", "272635026526", "1142528179324", "4769415499234", "19842220567264", "82303947852506", "340491603805344", "1405318295426488", "5788074933453632", "23794580648906708", "97653338015578634", "400157876088981431" ]
[ "nonn", "easy", "nice" ]
36
5
2
null
null
Victor Reiner (reiner(AT)math.umn.edu), Paul Edelman (edelman(AT)math.umn.edu)
2022-09-08T08:44:35
oeisdata/seq/A007/A007817.seq
8adc3a17d6f127640ff59aa19ee3734b
A007818
Maximal number of bonds joining n nodes in simple cubic lattice.
[ "0", "1", "2", "4", "5", "7", "9", "12", "13", "15", "17", "20", "21", "23", "25", "28", "30", "33", "34", "36", "38", "41", "43", "46", "48", "51", "54", "55", "57", "59", "62", "64", "67", "69", "72", "75", "76", "78", "80", "83", "85", "88", "90", "93", "96", "98", "101", "104", "105", "107", "109", "112", "114", "117", "119", "122", "125", "127", "130", "133", "135", "138", "141" ]
[ "nonn" ]
25
1
3
[ "A007818", "A193416" ]
null
D. Heuer (heuer(AT)isnd23.in2p3.fr)
2021-08-22T19:15:10
oeisdata/seq/A007/A007818.seq
5f9df4dfbb9290ae1467d5b788f04e64
A007819
a(n) = Sum_{j=1..n} binomial(n^2, j).
[ "1", "10", "129", "2516", "68405", "2391495", "102022809", "5130659560", "296881218693", "19415908147835", "1415538531617771", "113796709835547766", "9998149029974754103", "952980844872975079231", "97930011125976327934825" ]
[ "nonn", "easy" ]
15
1
2
[ "A007819", "A066382" ]
null
Joseph Lavinus Ganley (jwl8k(AT)server.cs.Virginia.EDU)
2022-09-08T08:44:35
oeisdata/seq/A007/A007819.seq
e7ad50b9ed2e32ab555649c657b7b84c
A007820
Stirling numbers of second kind S(2n,n).
[ "1", "1", "7", "90", "1701", "42525", "1323652", "49329280", "2141764053", "106175395755", "5917584964655", "366282500870286", "24930204590758260", "1850568574253550060", "148782988064375309400", "12879868072770626040000", "1194461517469807833782085", "118144018577011378596484455" ]
[ "nonn", "easy", "changed" ]
72
0
3
[ "A002465", "A007820", "A008277", "A187646", "A191236", "A217913", "A217914", "A217915", "A247238" ]
null
kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)
2025-04-15T05:09:47
oeisdata/seq/A007/A007820.seq
aa01620c1dfb19b98961816d5e798884
A007821
Primes p such that pi(p) is not prime.
[ "2", "7", "13", "19", "23", "29", "37", "43", "47", "53", "61", "71", "73", "79", "89", "97", "101", "103", "107", "113", "131", "137", "139", "149", "151", "163", "167", "173", "181", "193", "197", "199", "223", "227", "229", "233", "239", "251", "257", "263", "269", "271", "281", "293", "307", "311", "313", "317", "337", "347", "349", "359", "373" ]
[ "nonn" ]
73
1
1
[ "A000040", "A006450", "A007821", "A018252", "A038580", "A049076", "A049078", "A049079", "A049080", "A049081", "A058322", "A058324", "A058325", "A058326", "A058327", "A058328", "A078782", "A093046", "A102615", "A102616", "A102617", "A270792", "A270794", "A270795", "A270796" ]
null
Monte J. Zerger (mzerger(AT)cc4.adams.edu), Clark Kimberling
2024-10-20T03:54:11
oeisdata/seq/A007/A007821.seq
fe27ccd5200d1940e2517b37350df123
A007822
Number of symmetric foldings of 2n+1 stamps.
[ "1", "1", "3", "9", "28", "89", "287", "935", "3072", "10157", "33767", "112736", "377836", "1270203", "4282311", "14470629", "49005732", "166261653", "565055147", "1923186472", "6554868916", "22367933148", "76417819396", "261335128098", "894597454360", "3064970675173" ]
[ "nonn" ]
23
1
3
[ "A001010", "A007822" ]
null
Stéphane Legendre
2014-01-13T09:35:55
oeisdata/seq/A007/A007822.seq
4b10df21b9af6ac1d2d5bc4c0bffd475
A007823
A007824(n)/16.
[ "1", "2", "5", "14", "45", "186", "945", "5778", "44037", "403470", "4344877", "56072378", "793804721", "12734185106", "229632768005", "4628786367502", "105803768420397", "2626282179198138", "71539181027191729", "2076395667668755090", "65704452165048754181" ]
[ "nonn" ]
11
0
2
null
null
Ralph Buchholz [ ralph(AT)defcen.gov.au ], Leisa Condie
2013-07-19T05:02:43
oeisdata/seq/A007/A007823.seq
f489245290ab32ccfb05d8c5e2531bfe
A007824
a(n) = f(a(n-1)), with f(m) = Sum i*b(i)*2^(i-1), m = Sum b(i)*2^i, and starting value 16.
[ "16", "32", "80", "224", "720", "2976", "15120", "92448", "704592", "6455520", "69518032", "897158048", "12700875536", "203746961696", "3674124288080", "74060581880032", "1692860294726352", "42020514867170208", "1144626896435067664", "33222330682700081440" ]
[ "nonn" ]
17
0
1
[ "A007823", "A007824", "A136013" ]
null
Ralph Buchholz [ ralph(AT)defcen.gov.au ], Leisa Condie
2020-09-06T11:12:28
oeisdata/seq/A007/A007824.seq
824758e070e1cc6cfac8f3efb567d3ca
A007825
Number of n step self-avoiding walks on 3 X infinity grid starting from (0,1).
[ "1", "4", "10", "22", "42", "90", "182", "382", "742", "1486", "2866", "5646", "10878", "21198", "40694", "78758", "151018", "291046", "557746", "1072050", "2053586", "3941038", "7547726", "14471102", "27711106", "53099670", "101675030", "194762778", "372916642", "714195242" ]
[ "nonn", "walk" ]
19
0
2
[ "A001411", "A007825", "A038577", "A302408" ]
null
Lauren Williams (lwilliam(AT)MIT.EDU)
2018-04-15T21:48:45
oeisdata/seq/A007/A007825.seq
d728153cb0c206fd8eb6aca2cc7257ed
A007826
Numbered stops on the Market-Frankford rapid transit (SEPTA) railway line in Philadelphia, PA USA.
[ "2", "5", "8", "11", "13", "15", "30", "34", "40", "46", "52", "56", "60", "63", "69" ]
[ "nonn", "fini", "full" ]
29
1
1
[ "A000053", "A000054", "A001049", "A007826" ]
null
N. J. A. Sloane
2018-11-27T08:22:02
oeisdata/seq/A007/A007826.seq
c7a9c1db65bc676d728dbf435fbf7b75
A007827
Number of homeomorphically irreducible (or series-reduced) trees with n pendant nodes, or continua with n non-cut points, or leaves.
[ "1", "1", "1", "1", "2", "3", "7", "13", "32", "73", "190", "488", "1350", "3741", "10765", "31311", "92949", "278840", "847511", "2599071", "8044399", "25082609", "78758786", "248803504", "790411028", "2523668997", "8095146289", "26076714609", "84329102797", "273694746208" ]
[ "nonn", "nice", "easy" ]
38
0
5
[ "A000014", "A000055", "A000311", "A000669", "A007827", "A059123", "A064060", "A271205" ]
null
Matthew Cropper (mmcrop01(AT)athena.louisville.edu).
2023-11-20T09:27:51
oeisdata/seq/A007/A007827.seq
1045afae8d1399818d60df009cd577e8
A007828
Largest t such that a spherical t-design with n points exists in 3 dimensions.
[ "0", "1", "1", "2", "1", "3", "2", "3", "2", "3", "3", "5", "3", "4", "3", "5", "4", "5", "4", "5", "4", "5", "5", "7", "5", "6", "5", "6", "6", "7", "6", "7", "6", "7", "6", "8", "7", "7", "7", "8", "7", "8", "7", "8", "8", "8", "8", "9", "8", "9", "8", "9", "8", "9", "9", "9", "9", "9", "9", "10", "9", "9", "9", "10" ]
[ "nonn", "nice" ]
12
1
4
[ "A007828", "A076868", "A076870" ]
null
N. J. A. Sloane, R. H. Hardin
2018-07-08T19:55:47
oeisdata/seq/A007/A007828.seq
0fb7fffd5551baa711c731a6e886f645
A007829
From random walks on complete directed triangle.
[ "0", "0", "0", "0", "0", "6", "8", "28", "44", "100", "162", "318", "514", "942", "1518", "2672", "4302", "7380", "11882", "20040", "32276", "53810", "86710", "143396", "231204", "380152", "613286", "1004188", "1620864", "2645928", "4272744", "6959326", "11242518", "18281222", "29542078", "47978666", "77552928", "125836374", "203445784" ]
[ "nonn", "walk" ]
19
0
6
[ "A000931", "A007829", "A084338" ]
null
Eric Bussian [ ebussian(AT)math.gatech.edu ]
2020-03-11T17:18:22
oeisdata/seq/A007/A007829.seq
bbe54c098098e56b875abe232bbf8b3b
A007830
a(n) = (n+3)^n.
[ "1", "4", "25", "216", "2401", "32768", "531441", "10000000", "214358881", "5159780352", "137858491849", "4049565169664", "129746337890625", "4503599627370496", "168377826559400929", "6746640616477458432", "288441413567621167681", "13107200000000000000000", "630880792396715529789561" ]
[ "nonn", "nice", "easy" ]
78
0
2
[ "A000169", "A000272", "A000312", "A007778", "A007830", "A008785", "A008786", "A008787", "A008788", "A008789", "A008790", "A008791" ]
null
Peter J. Cameron, Mar 15 1996
2023-01-20T17:43:58
oeisdata/seq/A007/A007830.seq
eea7c0d827eeff8e74ed2a0866f9dbff
A007831
Number of edge-labeled series-reduced trees with n nodes.
[ "1", "0", "1", "1", "16", "61", "806", "6329", "89272", "1082281", "17596162", "284074165", "5407229972", "107539072733", "2380274168806", "55833426732529", "1418006883852784", "38195636967960913", "1097755724834189834", "33345176998235584301", "1071124330593423824908", "36203857373308709200645" ]
[ "nonn" ]
21
1
5
[ "A005512", "A007831" ]
null
Peter J. Cameron
2022-09-08T08:44:35
oeisdata/seq/A007/A007831.seq
efdf2e5e6694e32a3167f46475b90c5d
A007832
Number of point labeled 5,6-free two-graphs with n nodes.
[ "1", "1", "2", "8", "52", "457", "4979", "64591", "972906", "16701834", "322063458", "6894918021", "162316253829", "4168330738093", "115980086558470", "3476156853885992", "111665862911781864", "3827642575341002133", "139457935266705019299", "5382149182666970080019", "219344947692643001216702" ]
[ "nonn" ]
17
1
3
[ "A007831", "A007832" ]
null
Peter J. Cameron
2024-10-15T18:07:08
oeisdata/seq/A007/A007832.seq
8d8570281de61f403ff6c5168849f36e
A007833
Number of point-labeled reduced two-graphs with n nodes.
[ "1", "0", "1", "1", "28", "448", "18788", "1419852", "207249896", "58206408344", "31725488477648", "33830818147141904", "71068681534173472576", "295648155633330113713344", "2444510010072634827916776064", "40269686339597630128483872278656", "1323732128140903183968664175047409152" ]
[ "nonn" ]
17
1
5
[ "A007833", "A092430" ]
null
Peter J. Cameron
2019-04-29T16:36:57
oeisdata/seq/A007/A007833.seq
a22568376713693cbc0d52cfa305ab8e
A007834
Number of point labeled reduced 5-free two-graphs with n nodes.
[ "1", "0", "1", "1", "16", "76", "1016", "10284", "157340", "2411756", "44953712", "899824256", "20283419872", "495216726096", "13202082981712", "378896535199888", "11690436112988224", "385173160930360192", "13509981115738946816", "502374681770910293568", "19746124320077115154112", "817908018939079281840320" ]
[ "nonn" ]
18
1
5
[ "A007831", "A007832", "A007833", "A007834", "A359986", "A361355" ]
null
Peter J. Cameron
2024-10-15T18:07:03
oeisdata/seq/A007/A007834.seq
178e19bf7577768e5d13a1920d708d9a
A007835
Number of unordered sets of pairs (in-degree, out-degree) for nodes of directed trees on n unlabeled nodes (the edges are directed in arbitrary directions, the tree is unrooted).
[ "1", "1", "3", "8", "21", "52", "124", "284", "629", "1352", "2829", "5777", "11544" ]
[ "nonn", "more" ]
22
1
3
[ "A000238", "A007835" ]
null
Philippe Aubry (philippe.aubry(AT)oncfs.gouv.fr), Oct 02 1994
2018-02-05T03:20:24
oeisdata/seq/A007/A007835.seq
012898fb0718570b439fa1fcd9ac5426
A007836
Springer numbers associated with symplectic group.
[ "1", "1", "1", "5", "23", "151", "1141", "10205", "103823", "1190191", "15151981", "212222405", "3242472023", "53670028231", "956685677221", "18271360434605", "372221031054623", "8056751598834271", "184647141575344861", "4466900836910758805" ]
[ "nonn", "nice" ]
49
0
4
[ "A001586", "A007836", "A104035", "A155100", "A156142" ]
null
N. J. A. Sloane
2021-12-17T05:28:29
oeisdata/seq/A007/A007836.seq
31ce7d9bef82c446995abe2fe6392782
A007837
Number of partitions of n-set with distinct block sizes.
[ "1", "1", "1", "4", "5", "16", "82", "169", "541", "2272", "17966", "44419", "201830", "802751", "4897453", "52275409", "166257661", "840363296", "4321172134", "24358246735", "183351656650", "2762567051857", "10112898715063", "62269802986835", "343651382271526", "2352104168848091", "15649414071734847" ]
[ "nonn" ]
80
0
4
[ "A000110", "A005651", "A007837", "A007838", "A032011", "A035470", "A038041", "A131632", "A178682", "A262072", "A262078", "A265950", "A271423", "A275780", "A309992", "A326026", "A326514", "A326517", "A326533", "A327869" ]
null
Arnold Knopfmacher
2022-03-18T13:05:52
oeisdata/seq/A007/A007837.seq
029a67a770eb4acdef14550b03a364de
A007838
Number of permutations of n elements with distinct cycle lengths.
[ "1", "1", "1", "5", "14", "74", "474", "3114", "24240", "219456", "2231280", "23753520", "288099360", "3692907360", "51677246880", "775999798560", "12364465397760", "208583679951360", "3770392002048000", "71251563061002240", "1421847102467635200", "29861872557056870400", "655829140087057305600" ]
[ "nonn" ]
70
0
4
[ "A000142", "A007838", "A080130", "A087639", "A088994", "A317166" ]
null
Arnold Knopfmacher
2022-02-24T20:25:49
oeisdata/seq/A007/A007838.seq
8ffbcb77bc6b2620207b46f6322f449c
A007839
Number of polynomials of degree n over GF(2) in which the degrees of all irreducible factors are distinct.
[ "1", "2", "1", "4", "7", "14", "28", "54", "111", "218", "436", "854", "1735", "3432", "6825", "13664", "27352", "54218", "108714", "216616", "432239", "864548", "1727408", "3441364", "6891458", "13756440", "27466896", "54922134", "109751871", "219035562", "438319568", "875529382" ]
[ "nonn", "easy", "nice" ]
31
0
2
null
null
Arnold Knopfmacher
2017-02-08T12:52:38
oeisdata/seq/A007/A007839.seq
1021468c25a3a40f4789b65b2ccf3588
A007840
Number of factorizations of permutations of n letters into ordered cycles.
[ "1", "1", "3", "14", "88", "694", "6578", "72792", "920904", "13109088", "207360912", "3608233056", "68495486640", "1408631978064", "31197601660080", "740303842925184", "18738231641600256", "503937595069600896", "14349899305396086912", "431322634732516137216", "13646841876634025159424" ]
[ "nonn" ]
92
0
3
[ "A007840", "A039814", "A052860", "A111492", "A238385" ]
null
Arnold Knopfmacher
2021-04-17T03:40:21
oeisdata/seq/A007/A007840.seq
2d356e047105d91d911c57ba06b86ba8
A007841
Number of factorizations of permutations of n letters into cycles in nondecreasing length order.
[ "1", "1", "3", "11", "56", "324", "2324", "18332", "167544", "1674264", "18615432", "223686792", "2937715296", "41233157952", "623159583552", "10008728738304", "171213653641344", "3092653420877952", "59086024678203264", "1185657912197967744", "25015435198774723584", "552130504313534175744" ]
[ "nonn" ]
48
0
3
[ "A007837", "A007838", "A007841", "A249078", "A249480", "A249588", "A249593", "A269791", "A269793", "A269794" ]
null
Arnold Knopfmacher
2019-07-24T08:09:21
oeisdata/seq/A007/A007841.seq
5abdf0626417d6c4b01d33e7212cae52
A007842
Largest determinant of 2n+1 X 2n+1 matrix with entries +-1 and 0 diagonal.
[ "2", "22", "394", "8760", "240786" ]
[ "nonn", "hard", "more" ]
8
1
1
null
null
N. J. A. Sloane.
2012-03-30T16:45:17
oeisdata/seq/A007/A007842.seq
a7d3b009700f30400cb66ec64ca4e754
A007843
Least positive integer k for which 2^n divides k!.
[ "1", "2", "4", "4", "6", "8", "8", "8", "10", "12", "12", "14", "16", "16", "16", "16", "18", "20", "20", "22", "24", "24", "24", "26", "28", "28", "30", "32", "32", "32", "32", "32", "34", "36", "36", "38", "40", "40", "40", "42", "44", "44", "46", "48", "48", "48", "48", "50", "52", "52", "54", "56", "56", "56", "58", "60", "60", "62", "64", "64", "64", "64", "64", "64", "66", "68", "68", "70", "72", "72", "72", "74", "76", "76", "78" ]
[ "nonn", "easy", "nice" ]
83
0
2
[ "A007814", "A007843", "A007844", "A007845", "A020646", "A048841", "A048846" ]
null
Bruce Dearden and Jerry Metzger; R. Muller
2022-08-06T07:18:32
oeisdata/seq/A007/A007843.seq
748e5cf48ec0d8f697584e18986a1b68
A007844
Least positive integer k for which 3^n divides k!.
[ "1", "3", "6", "9", "9", "12", "15", "18", "18", "21", "24", "27", "27", "27", "30", "33", "36", "36", "39", "42", "45", "45", "48", "51", "54", "54", "54", "57", "60", "63", "63", "66", "69", "72", "72", "75", "78", "81", "81", "81", "81", "84", "87", "90", "90", "93", "96", "99", "99", "102", "105", "108", "108", "108", "111", "114", "117", "117", "120", "123", "126", "126", "129", "132", "135", "135", "135" ]
[ "nonn" ]
27
0
2
[ "A007843", "A007844", "A007845", "A120503" ]
null
Bruce Dearden and Jerry Metzger, R. Muller
2019-12-30T12:22:02
oeisdata/seq/A007/A007844.seq
e3bb900a3ddb004d652579300acfc1de
A007845
Least positive integer k for which 5^n divides k!.
[ "1", "5", "10", "15", "20", "25", "25", "30", "35", "40", "45", "50", "50", "55", "60", "65", "70", "75", "75", "80", "85", "90", "95", "100", "100", "105", "110", "115", "120", "125", "125", "125", "130", "135", "140", "145", "150", "150", "155", "160", "165", "170", "175", "175", "180", "185", "190", "195", "200", "200", "205", "210", "215", "220", "225", "225", "230", "235", "240", "245" ]
[ "nonn" ]
32
0
2
[ "A007843", "A007844", "A007845", "A027868" ]
null
Bruce Dearden and Jerry Metzger
2020-01-03T05:28:55
oeisdata/seq/A007/A007845.seq
7d17631ffe021f20fe5bdaab6cfee4fb
A007846
There are three equivalent descriptions: 1. Number of (horizontally or vertically) connected arrays of 1..n on rectangular grid (otherwise zero) with only one local maximum. 2. Number of n-polyominoes labeled 1...n such that each successive labeled cell is the neighbor of a previously labeled cell. 3. Number of connected n-step paths on a rectangular lattice, diagonal or repeated steps not allowed.
[ "1", "1", "4", "24", "176", "1504", "14560", "156768", "1852512", "23783264", "329070176", "4874845920", "76898357216", "1285734871520", "22695759641440", "421508294003424", "8211642378316768" ]
[ "nonn", "nice" ]
9
0
3
[ "A000079", "A007846", "A087518", "A087783" ]
null
Joel Yellin (yellin(AT)soe.ucsc.edu)
2012-03-31T12:34:49
oeisdata/seq/A007/A007846.seq
82453d1d41a1bd0f44c15900a831b008
A007847
Number of hyperplanes spanned by the vertices of an n-cube.
[ "2", "6", "20", "140", "3254", "252434", "71343208", "86246755608", "448691419804586" ]
[ "nonn", "hard", "more" ]
32
1
1
[ "A007847", "A333539", "A363505", "A363506", "A363512" ]
null
Oswin Aichholzer (oaich(AT)igi.tu-graz.ac.at)
2023-06-09T09:54:06
oeisdata/seq/A007/A007847.seq
db996faca66460bb4ad7beb190bed578
A007848
Number of skew hyperplanes spanned by the vertices of an n-cube.
[ "2", "2", "8", "88", "2704", "234688", "69640192", "85682904704" ]
[ "nonn", "hard" ]
6
1
1
null
null
Oswin Aichholzer (oaich(AT)igi.tu-graz.ac.at)
2015-04-05T02:07:39
oeisdata/seq/A007/A007848.seq
85ffb8fb27aa3927427c6cc3e9b2f007
A007849
Number of hyperplanes spanned by the vertices of an n-cube that cover exactly n vertices.
[ "2", "6", "8", "80", "2112", "123648", "23963648", "25806963456" ]
[ "nonn", "hard", "nice" ]
6
1
1
null
null
Oswin Aichholzer (oaich(AT)igi.tu-graz.ac.at)
2015-04-05T02:10:57
oeisdata/seq/A007/A007849.seq
592dd8bc7af136f37a6c924023575505
A007850
Giuga numbers: composite numbers n such that p divides n/p - 1 for every prime divisor p of n.
[ "30", "858", "1722", "66198", "2214408306", "24423128562", "432749205173838", "14737133470010574", "550843391309130318", "244197000982499715087866346", "554079914617070801288578559178", "1910667181420507984555759916338506" ]
[ "nonn", "nice", "hard", "more" ]
170
1
1
[ "A007850", "A054377", "A216823", "A216824", "A235137", "A235138", "A235140", "A235363", "A236434", "A326690" ]
null
D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn
2025-02-16T08:32:31
oeisdata/seq/A007/A007850.seq
eec884fc036599d7c48d38f127b00501
A007851
Number of elements w of the Weyl group D(n) such that the roots sent negative by w span an Abelian subalgebra of the Lie algebra.
[ "1", "4", "14", "48", "167", "593", "2144", "7864", "29171", "109173", "411501", "1560089", "5943199", "22732739", "87253604", "335897864", "1296447899", "5015206349", "19439895089", "75487384829", "293595204239", "1143532045499", "4459774977449", "17413705988873" ]
[ "nonn", "easy" ]
13
1
2
null
null
C. Kenneth Fan [ ckfan(AT)MIT.EDU ]
2020-01-30T21:29:14
oeisdata/seq/A007/A007851.seq
a6fbd3380693322e3e9a4ee40d148b98
A007852
Antichains in rooted plane trees on n nodes.
[ "1", "2", "7", "29", "131", "625", "3099", "15818", "82595", "439259", "2371632", "12967707", "71669167", "399751019", "2247488837", "12723799989", "72474333715", "415046380767", "2388355096446", "13803034008095", "80082677184820", "466263828731640", "2723428895205210", "15954063529603565", "93711351580424391" ]
[ "nonn", "changed" ]
66
1
2
[ "A007440", "A007852", "A153294" ]
null
Martin Klazar, Mar 15 1996
2025-04-16T03:06:12
oeisdata/seq/A007/A007852.seq
5d35fff7003036d039884cfa5b40fbae
A007853
Number of maximal antichains in rooted plane trees on n nodes.
[ "1", "2", "5", "15", "50", "178", "663", "2553", "10086", "40669", "166752", "693331", "2917088", "12398545", "53164201", "229729439", "999460624", "4374546305", "19250233408", "85120272755", "378021050306", "1685406494673", "7541226435054", "33852474532769", "152415463629568", "688099122024944" ]
[ "nonn" ]
39
1
2
[ "A000081", "A000108", "A001003", "A001006", "A007853", "A126120", "A213705", "A317713", "A318046", "A318048", "A318049" ]
null
Martin Klazar
2019-11-07T19:37:11
oeisdata/seq/A007/A007853.seq
aab0a5b5eb3b1d2bcfeff8e788d0112d
A007854
Expansion of 1/(1 - 3*x*C(x)), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) = g.f. for the Catalan numbers A000108.
[ "1", "3", "12", "51", "222", "978", "4338", "19323", "86310", "386250", "1730832", "7763550", "34847796", "156503064", "703149438", "3160160811", "14206181382", "63874779714", "287242041528", "1291872728826", "5810776384932", "26138647551564", "117587214581508" ]
[ "nonn", "easy" ]
73
0
2
[ "A000108", "A000984", "A007854", "A067347", "A076035", "A076036", "A116395", "A126694" ]
null
Martin Klazar
2024-06-01T11:53:25
oeisdata/seq/A007/A007854.seq
a09a133d41144f8783aec2b93baae201
A007855
Infima closed sets in rooted plane trees on n nodes.
[ "1", "3", "13", "63", "326", "1769", "9964", "57843", "344203", "2090470", "12912988", "80899801", "512896540", "3284651548", "21217493460", "138080484819", "904454380446", "5958186674879", "39448465279220", "262359379484522", "1751912981641794", "11741044418866476" ]
[ "nonn" ]
19
1
2
null
null
Martin Klazar
2019-04-05T10:06:14
oeisdata/seq/A007/A007855.seq
9d29312c75cb9a5395029416111c9f24
A007856
Subtrees in rooted plane trees on n nodes.
[ "1", "3", "12", "52", "236", "1109", "5366", "26639", "135300", "701269", "3700400", "19834973", "107784622", "592705377", "3292970302", "18458954896", "104276682820", "593056996445", "3392898090908", "19512100041995", "112729617387020", "653965783541960", "3807766434556940" ]
[ "nonn" ]
29
1
2
null
null
Martin Klazar
2019-08-04T18:22:23
oeisdata/seq/A007/A007856.seq
20d04c121b6fccb0c813d053a0563045
A007857
Number of independent sets in rooted plane trees on n nodes.
[ "1", "2", "8", "37", "184", "959", "5172", "28641", "162008", "932503", "5445934", "32197334", "192357788", "1159603592", "7045356104", "43098733353", "265240985112", "1641100253735", "10202295895890", "63696629668980", "399216722146770", "2510833297584165" ]
[ "nonn" ]
42
1
2
[ "A000108", "A001764", "A007226", "A007857", "A130523" ]
null
Martin Klazar
2020-08-06T10:14:21
oeisdata/seq/A007/A007857.seq
68eae5d3bc53cb6f23ea9e48dbc7d1ad
A007858
G.f. is 1 - 1/f(x), where f(x) = 1+x+3*x^2+9*x^3+32*x^4+... is 1/x times g.f. for A063020.
[ "1", "2", "4", "13", "44", "164", "636", "2559", "10556", "44440", "190112", "824135", "3612244", "15981632", "71277736", "320121747", "1446537564", "6571858168", "30000766128", "137544893940", "633051803120", "2923867281660", "13547594977500", "62955434735505", "293336372858724", "1370149533359784", "6414423856436816" ]
[ "nonn" ]
47
1
2
[ "A000108", "A007858" ]
null
Martin Klazar, Mar 15 1996
2025-03-26T13:26:34
oeisdata/seq/A007/A007858.seq
638c91bb3ab0eb72d39d6416b2828423
A007859
Number of matchings in rooted plane trees on n nodes.
[ "0", "1", "4", "18", "84", "405", "2002", "10101", "51844", "269994", "1423784", "7590044", "40846390", "221650195", "1211606190" ]
[ "nonn", "more" ]
15
1
3
null
null
Martin Klazar
2019-04-05T10:00:20
oeisdata/seq/A007/A007859.seq
12b43f7a8e2a1bb7b66fae8800974d78
A007860
Maximal matchings in rooted plane trees on n nodes.
[ "1", "1", "4", "12", "44", "175", "718", "3052", "13308", "59139", "266974", "1220879", "5643562", "26327769", "123793450", "586078393", "2791408028", "13365916545", "64302770488", "310672722803", "1506737267266", "7332920012492", "35800278685252", "175286440178448", "860517328379634", "4234766396436095" ]
[ "nonn" ]
18
1
3
null
null
Martin Klazar (klazar(AT)kam.mff.cuni.cz)
2018-02-08T15:26:03
oeisdata/seq/A007/A007860.seq
81713da019a096d3d4c0682f30a6c41b
A007861
Mahonian statistics on S_n which split (a(n)=n!.a(n-1)^n).
[ "1", "2", "48", "127401984", "4027747178726102955105561756869669557370880" ]
[ "nonn", "easy" ]
5
1
2
null
null
Jennifer Galovich [ JGALOVICH(AT)tiny.computing.csbsju.edu ]
2003-05-16T03:00:00
oeisdata/seq/A007/A007861.seq
ccb4ed77d1f3e7b1fa744e1997817ba2
A007862
Number of triangular numbers that divide n.
[ "1", "1", "2", "1", "1", "3", "1", "1", "2", "2", "1", "3", "1", "1", "3", "1", "1", "3", "1", "2", "3", "1", "1", "3", "1", "1", "2", "2", "1", "5", "1", "1", "2", "1", "1", "4", "1", "1", "2", "2", "1", "4", "1", "1", "4", "1", "1", "3", "1", "2", "2", "1", "1", "3", "2", "2", "2", "1", "1", "5", "1", "1", "3", "1", "1", "4", "1", "1", "2", "2", "1", "4", "1", "1", "3", "1", "1", "4", "1", "2", "2", "1", "1", "5", "1", "1", "2", "1", "1", "6", "2", "1", "2", "1", "1", "3", "1", "1", "2", "2", "1", "3", "1", "1", "5" ]
[ "nonn" ]
50
1
3
[ "A000005", "A000217", "A007294", "A007862", "A010054", "A027750", "A046951", "A049988", "A130317", "A239930", "A325324", "A325327", "A325407" ]
null
Richard Stanley
2025-02-16T08:32:31
oeisdata/seq/A007/A007862.seq
d854fc82f1ec9682508729c8b6d2c47d
A007863
Number of hybrid binary trees with n internal nodes.
[ "1", "2", "7", "31", "154", "820", "4575", "26398", "156233", "943174", "5785416", "35955297", "225914342", "1432705496", "9158708775", "58954911423", "381806076426", "2485972170888", "16263884777805", "106858957537838", "704810376478024", "4664987368511948", "30974829705533240", "206266525653071416" ]
[ "nonn" ]
104
0
2
[ "A007788", "A007863", "A011365", "A245049" ]
null
Jean Pallo (pallo(AT)u-bourgogne.fr)
2023-05-16T12:10:42
oeisdata/seq/A007/A007863.seq
51e8045c78f4d1634c53a9a29cb516d6
A007864
Number of matrix bundles of codimension n (Euler transform of A001156).
[ "1", "2", "4", "7", "11", "19", "30", "49", "76", "118", "180", "276", "411", "614", "908", "1336", "1944", "2824", "4067", "5839", "8326", "11829", "16719", "23557", "33019", "46142", "64226", "89117", "123198", "169841", "233373", "319817", "436982", "595554", "809503", "1097714", "1484805", "2003938", "2698410" ]
[ "nonn" ]
10
1
2
null
null
Peter J. Cameron
2013-05-13T11:08:00
oeisdata/seq/A007/A007864.seq
aac17a5f05af4e28958031310a5a49d8
A007865
Number of sum-free subsets of {1, ..., n}.
[ "1", "2", "3", "6", "9", "16", "24", "42", "61", "108", "151", "253", "369", "607", "847", "1400", "1954", "3139", "4398", "6976", "9583", "15456", "20982", "32816", "45417", "70109", "94499", "148234", "200768", "308213", "415543", "634270", "849877", "1311244", "1739022", "2630061", "3540355", "5344961", "7051789", "10747207", "14158720", "21295570", "28188520" ]
[ "nonn", "nice" ]
76
0
2
[ "A007865", "A050291", "A085489", "A093970", "A093971", "A103580", "A151897", "A211316", "A211317", "A308546", "A326020", "A326080", "A326083" ]
null
Peter J. Cameron
2025-02-16T08:32:31
oeisdata/seq/A007/A007865.seq
f8add13b94f54b5446710db3b620075e
A007866
Number of `homogenized' N-free graphs with n nodes.
[ "1", "2", "4", "14", "44", "164", "614" ]
[ "nonn", "more" ]
15
1
2
null
null
Peter J. Cameron
2016-02-03T10:20:24
oeisdata/seq/A007/A007866.seq
3e94da5bf95b795b001562a713620e98
A007867
Complementary pairs of `homogenized' N-free graphs with n nodes.
[ "1", "1", "2", "7", "22", "82", "307" ]
[ "nonn" ]
11
1
3
[ "A007867", "A241156" ]
null
Peter J. Cameron
2016-02-03T10:43:07
oeisdata/seq/A007/A007867.seq
75c86a0ba7ee53ef8605f7917d36eace
A007868
Number of inverse pairs of elements in symmetric group S_n, or pairs of total orders on n nodes (average of A000085 and A000142).
[ "1", "1", "2", "5", "17", "73", "398", "2636", "20542", "182750", "1819148", "19976248", "239570876", "3113794652", "43590340840", "653842358768", "10461418047368", "177843819947656", "3201187351520912", "60822552609266720", "1216451015967652048", "25545471145831066448", "562000364198246159456" ]
[ "nonn", "nice" ]
27
0
3
null
null
Peter J. Cameron
2019-04-08T03:41:27
oeisdata/seq/A007/A007868.seq
d208ed269ec81a813c433db566a54627
A007869
Number of complementary pairs of graphs on n nodes. Also number of unlabeled graphs with n nodes and an even number of edges.
[ "1", "1", "2", "6", "18", "78", "522", "6178", "137352", "6002584", "509498932", "82545586656", "25251015686776", "14527077828617744", "15713242984902154384", "32000507852263779299344", "122967932076766466347469888", "893788862572805850273939095424", "12318904626562502262191503745716384" ]
[ "nonn", "nice" ]
39
1
3
[ "A000088", "A000171", "A007869", "A054960" ]
null
Peter J. Cameron
2021-03-02T06:01:26
oeisdata/seq/A007/A007869.seq
f54e1bb20101b25cc2adbec771f56991
A007870
Determinant of character table of symmetric group S_n.
[ "1", "1", "2", "6", "96", "2880", "9953280", "100329062400", "10651768002183168000", "150283391703941024789299200000", "9263795272057860957392207640004657152000000000", "16027108137650009941734148595388542471170145479274004480000000000000" ]
[ "nonn" ]
74
0
3
[ "A000041", "A000142", "A006128", "A006906", "A007870", "A063073", "A066186", "A066633", "A086644", "A302246", "A302247", "A325501", "A325504", "A325507", "A325536" ]
null
Peter J. Cameron, Götz Pfeiffer [ goetz(AT)dcs.st-and.ac.uk ]
2024-10-13T00:17:32
oeisdata/seq/A007/A007870.seq
bc447fbd56c19d109f3b4ef9190ae3f1
A007871
Number of simple juggling patterns of n balls.
[ "1", "1", "3", "12", "66", "420", "3200", "27144", "258705", "2704592", "30898506", "381922380", "5090938955" ]
[ "nonn", "hard" ]
12
1
3
null
null
Jack Boyce (jboyce(AT)physics.berkeley.edu)
2015-08-13T19:43:58
oeisdata/seq/A007/A007871.seq
5aba6d5cd8026fd189eca7641f637227
A007872
Sum of indices of windows of trapezoidal maps.
[ "1", "1", "1", "4", "9", "27", "89", "304", "944", "3259", "11081", "38044", "132921", "467771", "1650279", "5907280", "21183657", "76488912", "277631065", "1012588940", "3707127319", "13632296219", "50292158921", "186165033296", "691181554768", "2573423459611" ]
[ "nonn", "more" ]
8
1
4
[ "A007872", "A007873" ]
null
Peter H. Borcherds (p.h.borcherds(AT)bham.ac.uk)
2019-08-09T01:59:30
oeisdata/seq/A007/A007872.seq
db0cc197a70c454008dfe5abe530780a
A007873
Indices of last windows of trapezoidal maps.
[ "1", "1", "3", "5", "11", "21", "45", "85", "179", "341", "717", "1365", "2867", "5461", "11475", "21845", "45875", "87381", "183597", "349525", "734003", "1398101", "2937555", "5592405", "11744051", "22369621", "47000877", "89478485", "187904819" ]
[ "nonn", "more" ]
7
1
3
[ "A007872", "A007873" ]
null
Peter H. Borcherds (phb(AT)phymat.bham.ac.uk)
2019-08-09T01:59:25
oeisdata/seq/A007/A007873.seq
988c48549e1e36ccdbb631ad68656b81
A007874
Distinct perimeter lengths of polygons with regularly spaced vertices.
[ "1", "1", "1", "2", "4", "10", "24", "63", "177", "428", "1230", "2556", "8202", "18506", "18162", "119069" ]
[ "nonn" ]
14
1
4
[ "A007874", "A030077" ]
null
Peter H. Borcherds (p.h.borcherds(AT)bham.ac.uk)
2018-08-06T05:33:23
oeisdata/seq/A007/A007874.seq
e495de80563da4ffeff110d0d4ef29d9
A007875
Number of ways of writing n as p*q, with p <= q, gcd(p, q) = 1.
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "2", "1", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "1", "2", "1", "4", "1", "1", "2", "2", "2", "2", "1", "2", "2", "2", "1", "4", "1", "2", "2", "2", "1", "2", "1", "2", "2", "2", "1", "2", "2", "2", "2", "2", "1", "4", "1", "2", "2", "1", "2", "4", "1", "2", "2", "4", "1", "2", "1", "2", "2", "2", "2", "4", "1", "2", "1", "2", "1", "4", "2", "2", "2", "2", "1", "4" ]
[ "nonn", "nice", "easy" ]
78
1
6
[ "A000005", "A000010", "A000079", "A001221", "A001620", "A002110", "A007875", "A007955", "A034444", "A048105", "A074962" ]
null
Victor Ufnarovski
2023-09-09T06:49:26
oeisdata/seq/A007/A007875.seq
22d53fde622bb31fb4ce472287e60bf0
A007876
a(2n-1) = n*a(2n-2), a(2n) = n*a(2n-1) + 1.
[ "1", "2", "4", "9", "27", "82", "328", "1313", "6565", "32826", "196956", "1181737", "8272159", "57905114", "463240912", "3705927297", "33353345673", "300180111058", "3001801110580", "30018011105801", "330198122163811", "3632179343801922", "43586152125623064" ]
[ "nonn", "easy" ]
2
1
2
null
null
buzzard(AT)math.berkeley.edu (Kevin Buzzard)
2003-05-16T03:00:00
oeisdata/seq/A007/A007876.seq
14997bb07f029c2e325053ac596f79b5
A007877
Period 4 zigzag sequence: repeat [0,1,2,1].
[ "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0" ]
[ "nonn", "easy", "mult" ]
116
0
3
[ "A000035", "A000749", "A007877", "A021913", "A049310", "A056594", "A063886", "A084099", "A092184", "A158289", "A181878", "A260686", "A266313", "A271751", "A271832", "A279313", "A279319" ]
null
Christopher Lam Cham Kee (Topher(AT)CyberDude.Com)
2024-08-03T07:10:24
oeisdata/seq/A007/A007877.seq
bcffbdbd72229536a85ea277ba11b8df
A007878
Number of terms in discriminant of generic polynomial of degree n.
[ "1", "2", "5", "16", "59", "246", "1103", "5247", "26059", "133881", "706799", "3815311", "20979619", "117178725", "663316190", "3798697446", "21976689397" ]
[ "nonn", "nice", "hard", "more" ]
80
1
2
null
null
reiner(AT)math.umn.edu
2024-07-17T09:39:20
oeisdata/seq/A007/A007878.seq
61c9284639c9c540aac7e09c782a4207
A007879
Chimes made by clock striking the hour and half-hour.
[ "1", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "1", "11", "1", "12", "1", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "1", "11", "1", "12", "1", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "1", "11", "1", "12" ]
[ "nonn", "easy" ]
18
0
4
[ "A007879", "A010881", "A057979" ]
null
Jan Wolitzky
2022-03-27T13:38:20
oeisdata/seq/A007/A007879.seq
111eca1d8d855db82cef780465e31055
A007880
Westminster chimes at 15-minute intervals (1).
[ "1", "2", "3", "5", "1", "2", "3", "6", "1", "2", "3", "7", "1", "2", "3", "8", "1", "2", "3", "9", "1", "2", "3", "10", "1", "2", "3", "11", "1", "2", "3", "12", "1", "2", "3", "13", "1", "2", "3", "14", "1", "2", "3", "15", "1", "2", "3", "16", "1", "2", "3", "5", "1", "2", "3", "6", "1", "2", "3", "7", "1", "2", "3", "8", "1", "2", "3", "9", "1", "2", "3", "10", "1", "2", "3", "11", "1", "2", "3", "12", "1", "2", "3", "13", "1", "2", "3", "14", "1", "2", "3", "15", "1", "2", "3", "16" ]
[ "nonn" ]
9
0
2
null
null
Colin Mallows
2018-10-01T20:11:14
oeisdata/seq/A007/A007880.seq
8df5b3fdfc6e0db4e2398010c37f49f5
A007881
Erroneous version of A001357 printed by mistake on back cover of Encyclopedia of Integer Sequences.
[ "1", "2", "4", "8", "18", "71" ]
[ "dead" ]
3
0
2
null
null
null
1999-12-11T03:00:00
oeisdata/seq/A007/A007881.seq
caa4e6a52c9ec32cbb28be0418f043bc
A007882
Number of lattice points inside circle of radius n is 4(a(n)+n)-3.
[ "0", "1", "4", "8", "13", "22", "30", "41", "54", "67", "83", "98", "117", "139", "160", "183", "206", "234", "263", "292", "322", "357", "390", "424", "461", "502", "545", "585", "626", "673", "719", "770", "819", "870", "926", "977", "1034", "1090", "1153", "1214", "1272", "1339", "1404", "1475", "1543", "1610", "1683", "1755", "1832", "1907", "1990", "2070", "2147" ]
[ "nonn" ]
17
1
3
null
null
Randall L Rathbun
2022-06-24T04:41:25
oeisdata/seq/A007/A007882.seq
da9476c0dc5e9c567782a254d99f4ca6
A007883
Westminster chimes at 15-minute intervals (2).
[ "4", "8", "12", "17", "4", "8", "12", "18", "4", "8", "12", "19", "4", "8", "12", "20", "4", "8", "12", "21", "4", "8", "12", "22", "4", "8", "12", "23", "4", "8", "12", "24", "4", "8", "12", "25", "4", "8", "12", "26", "4", "8", "12", "27", "4", "8", "12", "28", "4", "8", "12", "17", "4", "8", "12", "18", "4", "8", "12", "19", "4", "8", "12", "20", "4", "8", "12", "21", "4", "8", "12", "22", "4", "8", "12", "23", "4", "8", "12", "24", "4", "8", "12", "25" ]
[ "nonn" ]
8
1
1
null
null
Colin Mallows
2013-09-21T12:47:33
oeisdata/seq/A007/A007883.seq
cbc05653769c90e8b8bd1cd7ae855369
A007884
Chimes made by clock striking quarter-hours.
[ "1", "2", "3", "1", "1", "2", "3", "2", "1", "2", "3", "3", "1", "2", "3", "4", "1", "2", "3", "5", "1", "2", "3", "6", "1", "2", "3", "7", "1", "2", "3", "8", "1", "2", "3", "9", "1", "2", "3", "10", "1", "2", "3", "11", "1", "2", "3", "12", "1", "2", "3", "1", "1", "2", "3", "2", "1", "2", "3", "3", "1", "2", "3", "4", "1", "2", "3", "5", "1", "2", "3", "6", "1", "2", "3", "7", "1", "2", "3", "8", "1", "2", "3", "9", "1", "2", "3", "10", "1", "2", "3", "11", "1", "2", "3", "12" ]
[ "nonn" ]
12
0
2
[ "A001492", "A007879", "A007880", "A007883", "A007884" ]
null
Colin Mallows
2023-06-16T17:21:43
oeisdata/seq/A007/A007884.seq
e45fc206487f0c709dd5d65f3d0f38a4
A007885
Numbers n such that balanced sequences exist with n distinct elements.
[ "1", "2", "3", "4", "5", "7", "11", "13", "19", "23", "29", "37", "47", "53", "59", "61", "67", "71", "79", "83", "101", "103", "107", "131", "139", "149", "163", "167", "173", "179", "181", "191", "197", "199", "211", "227", "239", "263", "269", "271", "293", "311", "317", "347", "349", "359", "367", "373", "379", "383", "389", "419", "421", "443", "461", "463", "467" ]
[ "nonn", "nice" ]
18
1
2
null
null
Colin Mallows
2019-06-06T04:20:26
oeisdata/seq/A007/A007885.seq
804676c029c58322c03f94062890af9f
A007886
Number of cycles induced by iterating the Gray-coding of an n-bit number: a(n+1) = a(n) + ( 2^n / C_n), where C_n = least power of 2 >= n (C_n is the length of the cycle).
[ "1", "2", "3", "4", "6", "8", "12", "20", "36", "52", "84", "148", "276", "532", "1044", "2068", "4116", "6164", "10260", "18452", "34836", "67604", "133140", "264212", "526356", "1050644", "2099220", "4196372", "8390676", "16779284", "33556500", "67110932", "134219796", "201328660", "335546388", "603981844" ]
[ "nonn" ]
14
0
2
[ "A007886", "A054243" ]
null
Joe Culberson (joe(AT)cs.ualberta.ca)
2024-03-07T07:26:32
oeisdata/seq/A007/A007886.seq
5d108abac8c0e7718e386b0102d94c06
A007887
a(n) = Fibonacci(n) mod 9.
[ "0", "1", "1", "2", "3", "5", "8", "4", "3", "7", "1", "8", "0", "8", "8", "7", "6", "4", "1", "5", "6", "2", "8", "1", "0", "1", "1", "2", "3", "5", "8", "4", "3", "7", "1", "8", "0", "8", "8", "7", "6", "4", "1", "5", "6", "2", "8", "1", "0", "1", "1", "2", "3", "5", "8", "4", "3", "7", "1", "8", "0", "8", "8", "7", "6", "4", "1", "5", "6", "2", "8", "1", "0", "1", "1", "2", "3", "5", "8", "4", "3" ]
[ "nonn", "easy" ]
32
0
4
null
null
N. J. A. Sloane.
2025-01-05T19:51:34
oeisdata/seq/A007/A007887.seq
c8c0c73a5a825b67330073b18724d0d7
A007888
Euler characteristic of mapping class group Gamma_n.
[ "1", "1", "3", "2", "3", "4", "1", "-6", "45", "-86", "173", "-100", "2641", "-48311", "717766", "-15527527", "395694683", "-11210796201", "356923346235", "-12694851400717", "501010779605741", "-21827969798073020", "1044997258445975691", "-54740156237911040100" ]
[ "sign" ]
7
1
3
null
null
Mira Bernstein
2018-02-14T21:10:57
oeisdata/seq/A007/A007888.seq
512a809e568e2cd58d215bd0cc53980e
A007889
Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i<j<k are both (i,j) and (j,k) edges.
[ "1", "1", "2", "7", "36", "246", "2104", "21652", "260720", "3598120", "56010096", "971055240", "18558391936", "387665694976", "8787898861568", "214868401724416", "5636819806209792", "157935254554567296", "4707152127520549120", "148704074888134683520", "4963548160096887021056", "174553183413968718996736" ]
[ "nonn", "easy", "nice" ]
76
0
3
[ "A007889", "A029847", "A038049", "A138860", "A283828", "A323841" ]
null
Alexander Postnikov [ apost(AT)math.mit.edu ]
2023-11-06T07:17:54
oeisdata/seq/A007/A007889.seq
39cbe6f254dd6b41f3f2a175f477085c
A007890
Summarize the previous term! (in decreasing order).
[ "1", "11", "21", "1211", "1231", "131221", "132231", "232221", "134211", "14131231", "14231241", "24132231", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221", "14233221" ]
[ "nonn", "base", "easy" ]
22
1
2
[ "A005150", "A007890", "A034003", "A036058", "A244112" ]
null
Mira Bernstein
2020-08-20T01:18:18
oeisdata/seq/A007/A007890.seq
e8471ba64a991940a2d6c37ed0a2cc9f
A007891
A Kutz sequence.
[ "1", "4", "1", "4", "9", "4", "9", "16", "9", "16", "25", "16", "25", "36", "25", "36", "49", "36", "49", "64", "49", "64", "81", "64", "81", "100", "81", "100", "121", "100", "121", "144", "121", "144", "169", "144", "169", "196", "169", "196", "225", "196", "225", "256", "225", "256", "289", "256", "289", "324", "289", "324", "361", "324", "361", "400", "361", "400", "441" ]
[ "nonn", "easy" ]
24
1
2
null
null
N. J. A. Sloane
2022-09-08T08:44:35
oeisdata/seq/A007/A007891.seq
39b1ec2cd643c290979c0334fa9941b5
A007892
A Kutz sequence.
[ "1", "4", "9", "1", "4", "9", "16", "4", "9", "16", "25", "9", "16", "25", "36", "16", "25", "36", "49", "25", "36", "49", "64", "36", "49", "64", "81", "49", "64", "81", "100", "64", "81", "100", "121", "81", "100", "121", "144", "100", "121", "144", "169", "121", "144", "169", "196", "144", "169", "196", "225", "169", "196", "225", "256", "196", "225", "256", "289", "225" ]
[ "nonn", "easy" ]
56
1
2
null
null
N. J. A. Sloane
2025-01-10T12:21:41
oeisdata/seq/A007/A007892.seq
9f9a178615d8838e7ad9d05b86cf6858
A007893
A Kutz sequence.
[ "1", "4", "9", "16", "1", "4", "9", "16", "25", "4", "9", "16", "25", "36", "9", "16", "25", "36", "49", "16", "25", "36", "49", "64", "25", "36", "49", "64", "81", "36", "49", "64", "81", "100", "49", "64", "81", "100", "121", "64", "81", "100", "121", "144", "81", "100", "121", "144", "169", "100", "121", "144", "169", "196", "121", "144", "169", "196", "225", "144", "169", "196" ]
[ "nonn", "easy" ]
27
1
2
null
null
N. J. A. Sloane
2022-09-08T08:44:35
oeisdata/seq/A007/A007893.seq
db149f1e8d45a8213b6d023879643282
A007894
Number of fullerenes with 2n vertices (or carbon atoms).
[ "1", "0", "1", "1", "2", "3", "6", "6", "15", "17", "40", "45", "89", "116", "199", "271", "437", "580", "924", "1205", "1812", "2385", "3465", "4478", "6332", "8149", "11190", "14246", "19151", "24109", "31924", "39718", "51592", "63761", "81738", "99918", "126409", "153493", "191839", "231017", "285914", "341658", "419013" ]
[ "nonn", "easy", "nice" ]
66
10
5
[ "A007894", "A046880", "A057210" ]
null
Boris Shraiman (boris(AT)physics.att.com), Gunnar Brinkmann and A. Dress (dress(AT)mathematik.uni-bielefeld.de)
2025-02-16T08:32:31
oeisdata/seq/A007/A007894.seq
387ff58b2df93937ba9940f78eb08717
A007895
Number of terms in the Zeckendorf representation of n (write n as a sum of non-consecutive distinct Fibonacci numbers).
[ "0", "1", "1", "1", "2", "1", "2", "2", "1", "2", "2", "2", "3", "1", "2", "2", "2", "3", "2", "3", "3", "1", "2", "2", "2", "3", "2", "3", "3", "2", "3", "3", "3", "4", "1", "2", "2", "2", "3", "2", "3", "3", "2", "3", "3", "3", "4", "2", "3", "3", "3", "4", "3", "4", "4", "1", "2", "2", "2", "3", "2", "3", "3", "2", "3", "3", "3", "4", "2", "3", "3", "3", "4", "3", "4", "4", "2", "3", "3", "3", "4", "3", "4", "4", "3", "4", "4", "4", "5", "1", "2", "2", "2", "3", "2", "3", "3", "2", "3", "3", "3", "4", "2", "3", "3" ]
[ "nonn", "easy" ]
168
0
5
[ "A000045", "A000120", "A001950", "A003714", "A003849", "A007015", "A007016", "A007895", "A007953", "A014417", "A027941", "A035514", "A035515", "A035516", "A035517", "A104324", "A105446", "A135817", "A135818", "A182535", "A189920", "A213676", "A213911" ]
null
Felix Weinstein (wain(AT)ana.unibe.ch) and Clark Kimberling
2025-03-24T07:38:31
oeisdata/seq/A007/A007895.seq
cda1dc97704c093356e1700b409edbe3
A007896
Psi_c(n), where Product_{k>1} 1/(1-1/k^s)^phi(k) = Sum_{k>0} psi_c(k)/k^s.
[ "1", "1", "2", "3", "4", "4", "6", "7", "9", "8", "10", "12", "12", "12", "16", "18", "16", "19", "18", "24", "24", "20", "22", "32", "30", "24", "34", "36", "28", "40", "30", "42", "40", "32", "48", "60", "36", "36", "48", "64", "40", "60", "42", "60", "76", "44", "46", "86", "63", "66", "64", "72", "52", "82", "80", "96", "72", "56", "58", "128", "60", "60", "114", "104", "96", "100" ]
[ "nonn" ]
54
1
3
[ "A000010", "A007896", "A007897", "A007898" ]
null
Felix Weinstein (wain(AT)ana.unibe.ch)
2018-11-12T11:13:40
oeisdata/seq/A007/A007896.seq
85f0cd9e3f6003492142442471ec1395
A007897
a(n) is multiplicative with a(2) = 1; a(4) = 2; a(2^i) = 2^(i-2)+2 if i>2; a(p^i) = 1+(p-1)*p^(i-1)/2 if prime p>2 and i>0.
[ "1", "1", "2", "2", "3", "2", "4", "4", "4", "3", "6", "4", "7", "4", "6", "6", "9", "4", "10", "6", "8", "6", "12", "8", "11", "7", "10", "8", "15", "6", "16", "10", "12", "9", "12", "8", "19", "10", "14", "12", "21", "8", "22", "12", "12", "12", "24", "12", "22", "11", "18", "14", "27", "10", "18", "16", "20", "15", "30", "12", "31", "16", "16", "18", "21", "12", "34", "18", "24", "12", "36", "16", "37", "19", "22", "20", "24", "14", "40", "18", "28" ]
[ "nonn", "mult" ]
40
1
3
[ "A007896", "A007897", "A007898", "A180783" ]
null
Felix Weinstein (wain(AT)ana.unibe.ch), Dec 11 1999
2023-11-09T08:53:25
oeisdata/seq/A007/A007897.seq
968cb942b668d2a334da3211dee723cf
A007898
a(n) = psi_c(n), where Product_{k>1} 1/(1-1/k^s)^A007897(k) = Sum_{k>0} psi_c(k)/k^s.
[ "1", "1", "2", "3", "3", "4", "4", "7", "7", "6", "6", "12", "7", "8", "12", "16", "9", "15", "10", "18", "16", "12", "12", "32", "17", "14", "22", "24", "15", "30", "16", "34", "24", "18", "24", "48", "19", "20", "28", "48", "21", "40", "22", "36", "45", "24", "24", "78", "32", "37", "36", "42", "27", "54", "36", "64", "40", "30", "30", "96", "31", "32", "60", "78", "42", "60", "34", "54" ]
[ "nonn" ]
30
1
3
[ "A007896", "A007897", "A007898" ]
null
Felix Weinstein (wain(AT)ana.unibe.ch)
2018-11-13T03:17:21
oeisdata/seq/A007/A007898.seq
9b40e03bbce50be367d40ffa47b2f1cd
A007899
Coordination sequence for hexagonal close-packing.
[ "1", "12", "44", "96", "170", "264", "380", "516", "674", "852", "1052", "1272", "1514", "1776", "2060", "2364", "2690", "3036", "3404", "3792", "4202", "4632", "5084", "5556", "6050", "6564", "7100", "7656", "8234", "8832", "9452", "10092", "10754", "11436", "12140", "12864", "13610", "14376", "15164", "15972", "16802", "17652", "18524", "19416", "20330", "21264", "22220" ]
[ "nonn", "easy" ]
54
0
2
[ "A001845", "A005893", "A005894", "A005897", "A005898", "A005899", "A005901", "A005902", "A007202", "A007899", "A008137", "A010001", "A063489", "A299254", "A299255", "A299256", "A299257", "A299258", "A299259", "A299260", "A299261", "A299262", "A299263", "A299264", "A299265", "A299266", "A299267", "A299268", "A299269", "A299272", "A299273", "A299274", "A299275", "A299276", "A299277", "A299278", "A299279", "A299280", "A299281", "A299282", "A299283", "A299284", "A299285", "A299286", "A299287", "A299288", "A299289", "A299290", "A299291", "A299292" ]
null
N. J. A. Sloane and J. H. Conway
2024-03-14T23:26:35
oeisdata/seq/A007/A007899.seq
0e8855a99e8e2eeeb175c040004b18b4
A007900
Coordination sequence for D_4 lattice.
[ "1", "24", "144", "456", "1056", "2040", "3504", "5544", "8256", "11736", "16080", "21384", "27744", "35256", "44016", "54120", "65664", "78744", "93456", "109896", "128160", "148344", "170544", "194856", "221376", "250200", "281424", "315144", "351456" ]
[ "nonn", "easy" ]
28
0
2
[ "A007900", "A103903" ]
null
N. J. A. Sloane and J. H. Conway
2023-12-10T16:00:12
oeisdata/seq/A007/A007900.seq
9c839dbdbdbe6ada8e1ee9c92a3e2a9b