File size: 4,837 Bytes
259e57c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from collections import defaultdict
import os
import json
import csv
import datasets

_NAME="tedx_spanish"
_VERSION="1.0.0"

_DESCRIPTION = """
The TEDX SPANISH CORPUS is a dataset created from TEDx talks in Spanish and it
aims to be used in the Automatic Speech Recognition (ASR) Task.
"""

_CITATION = """
@misc{carlosmenatedxspanish2019,
      title={TEDX SPANISH CORPUS: Audio and Transcripts in Spanish in a CIEMPIESS Corpus style, taken from the TEDx Talks.}, 
      author={Hernandez Mena, Carlos Daniel},
      year={2019},
      url={https://huggingface.co/ciempiess/tedx_spanish},
}
"""

_HOMEPAGE = "https://huggingface.co/ciempiess/tedx_spanish"

_LICENSE = "CC-BY-NC-ND-4.0, See https://creativecommons.org/licenses/by-nc-nd/4.0/"

_BASE_DATA_DIR = "corpus/"
_METADATA_TRAIN  =  os.path.join(_BASE_DATA_DIR,"files", "metadata_train.tsv")

_TARS_TRAIN  = os.path.join(_BASE_DATA_DIR,"files", "tars_train.paths")

class TedxSpanishConfig(datasets.BuilderConfig):
    """BuilderConfig for TEDX SPANISH CORPUS"""

    def __init__(self, name, **kwargs):
        name=_NAME
        super().__init__(name=name, **kwargs)

class TedxSpanish(datasets.GeneratorBasedBuilder):
    """TEDX SPANISH CORPUS"""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIGS = [
        TedxSpanishConfig(
            name=_NAME,
            version=datasets.Version(_VERSION),
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "audio_id": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16000),
                "speaker_id": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "duration": datasets.Value("float32"),
                "normalized_text": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
        
        tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
        
        hash_tar_files=defaultdict(dict)

        with open(tars_train,'r') as f:
            hash_tar_files['train']=[path.replace('\n','') for path in f]

        hash_meta_paths={"train":metadata_train}
        audio_paths = dl_manager.download(hash_tar_files)
        
        splits=["train"]
        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
            {
                split:[None] * len(audio_paths[split]) for split in splits
            }
        )                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["train"],
                    "metadata_paths": hash_meta_paths["train"],
                }
            ),
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
        
        features = ["speaker_id","gender","duration","normalized_text"]
        
        with open(metadata_paths) as f:
            metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
                                        
                yield audio_id, {
                    "audio_id": audio_id,
                    **{feature: metadata[audio_id][feature] for feature in features},
                    "audio": {"path": path, "bytes": audio_file.read()},
                }