Datasets:
cjvt
/

Languages:
Slovenian
Size:
n<1K
License:
File size: 5,403 Bytes
fb63763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7009073
 
 
 
 
 
fb63763
7009073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
dataset_info:
  features:
  - name: id_doc
    dtype: string
  - name: words
    sequence:
      sequence:
        sequence: string
  - name: lemmas
    sequence:
      sequence:
        sequence: string
  - name: msds
    sequence:
      sequence:
        sequence: string
  - name: ne_tags
    sequence:
      sequence:
        sequence: string
  - name: mentions
    list:
    - name: id_mention
      dtype: string
    - name: mention_data
      struct:
      - name: idx_par
        dtype: uint32
      - name: idx_sent
        dtype: uint32
      - name: word_indices
        sequence: uint32
      - name: global_word_indices
        sequence: uint32
  - name: coref_clusters
    sequence:
      sequence: string
  splits:
  - name: train
    num_bytes: 21547216
    num_examples: 756
  download_size: 21892324
  dataset_size: 21547216
license: cc-by-sa-4.0
language:
- sl
pretty_name: SentiCoref
size_categories:
- n<1K
---

# Dataset card for SentiCoref

### Usage
```
import datasets
data = datasets.load_dataset("cjvt/senticoref", trust_remote_code=True)
```

### Dataset Summary
The dataset contains the SentiCoref corpus, annotated for coreference. It is part of the SUK training bundle of corpora.
For more details please check the paper or the [Clarin repository](http://hdl.handle.net/11356/1959) from which this dataset is being loaded.

## Dataset Structure

### Data Instances

```
{
	'id_doc': 'senticoref1', 
	'words': [
		[
			['Evropska', 'komisija', 'mora', 'narediti', 'analizo', 'vzrokov', 'rasti', 'cen', 'hrane', ',', 'menita', 'kmetijski', 'minister', 'Jarc', 'in', 'njegov', 'francoski', 'kolega', '.'], 
			['Bo', 'evropska', 'komisija', 'analizirala', 'vzroke', 'rasti', 'cen', 'hrane', '.'], 
			...
		],
		...
	], 
	'lemmas': [
		[
			['evropski', 'komisija', 'morati', 'narediti', 'analiza', 'vzrok', 'rast', 'cena', 'hrana', ',', 'meniti', 'kmetijski', 'minister', 'Jarc', 'in', 'njegov', 'francoski', 'kolega', '.'], 
			['biti', 'evropski', 'komisija', 'analizirati', 'vzrok', 'rast', 'cena', 'hrana', '.'],
			...
		]
	], 
	'msds': [
		[
			['mte:Ppnzei', 'mte:Sozei', 'mte:Ggnste', 'mte:Ggdn', 'mte:Sozet', 'mte:Sommr', 'mte:Sozer', 'mte:Sozmr', 'mte:Sozer', 'mte:U', 'mte:Ggnstd', 'mte:Ppnmeid', 'mte:Somei', 'mte:Slmei', 'mte:Vp', 'mte:Zstmeiem', 'mte:Ppnmeid', 'mte:Somei', 'mte:U'], 
			['mte:Gp-pte-n', 'mte:Ppnzei', 'mte:Sozei', 'mte:Ggvd-ez', 'mte:Sommt', 'mte:Sozer', 'mte:Sozmr', 'mte:Sozer', 'mte:U'], 
			...
		], 
		...
	],
	'ne_tags': [
		[
			['B-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PER', 'O', 'O', 'O', 'O', 'O'], 
			['O', 'B-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O'], 
			...
		], 
		...
	], 
	'mentions': [
		{'id_mention': 'senticoref1.1.1.ne1', 'mention_data': {'idx_par': 0, 'idx_sent': 0, 'word_indices': [0, 1], 'global_word_indices': [0, 1]}}, 
		...
	], 
	'coref_clusters': [
		['senticoref1.1.1.ne1', 'senticoref1.1.2.ne1', 'senticoref1.1.3.ne1'], 
		['senticoref1.1.1.phr52-1', 'senticoref1.1.3.phr52-2', 'senticoref1.1.11.phr52-3'], 
		['senticoref1.1.1.t5', 'senticoref1.1.3.t6', 'senticoref1.1.11.t11', 'senticoref1.1.11.t17'], 
		['senticoref1.1.1.phr13-1', 'senticoref1.1.2.phr13-2'], 
		...
	]
}
```

### Data Fields

- `id_doc`: a string ID of the document (corresponds to file name in this case);  
- `words`: a `List[List[List[String]]]` containing document words;
- `lemmas`: a `List[List[List[String]]]` containing document lemmas;  
- `msds`: a `List[List[List[String]]]` containing document morphosyntactic features, encoded using MULTEXT-East V6;  
- `ne_tags`: a `List[List[List[String]]]` containing document named entity tags, encoded using IOB2 scheme;  
- `mentions`: a list of dicts for each mention. Each mention contains an ID (`id_mention`) and 
positions of words inside mention (determined by `idx_sent`, `word_indices`; 
or equivalently `global_word_indices` if sentences are flattened into a single list)
- `coref_clusters`: a list of lists of strings containing mention IDs contained inside each coreference cluster. 

## Additional Information

### Dataset Curators

Špela Arhar Holdt; et al. (please see http://hdl.handle.net/11356/1959 for the full list of contributors)

### Licensing Information

CC BY-SA 4.0

### Citation Information

```
@article{senticoref-paper,
  title={Neural coreference resolution for Slovene language},
  author={Matej Klemen and Slavko Žitnik},
  journal={Computer Science and Information Systems},
  year={2022},
  volume={19},
  pages={495-521}
}
```

```
@misc{suk-clarin,
    title = {Training corpus {SUK} 1.1},
    author = {Arhar Holdt, {\v S}pela and Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\v z} and Gantar, Polona and {\v C}ibej, Jaka and Pori, Eva and Ter{\v c}on, Luka and Munda, Tina and {\v Z}itnik, Slavko and Robida, Nejc and Blagus, Neli and Mo{\v z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Kuzman, Taja and Kav{\v c}i{\v c}, Teja and {\v S}krjanec, Iza and Marko, Dafne and Jezer{\v s}ek, Lucija and Zajc, Anja},
    url = {http://hdl.handle.net/11356/1959},
    note = {Slovenian language resource repository {CLARIN}.{SI}},
    copyright = {Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)},
    issn = {2820-4042},
    year = {2024}
}
```

### Contributions

Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.