Datasets:
cjvt
/

Languages:
Slovenian
Size:
n<1K
License:
File size: 11,559 Bytes
fb63763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
""" Slovene corpus for coreference resolution. """
import os
from collections import OrderedDict
from copy import deepcopy
from typing import Dict

import datasets
import xml.etree.ElementTree as ET
import re


_CITATION = """\
@misc{suk,
    title = {Training corpus {SUK} 1.1},
    author = {Arhar Holdt, {\v S}pela and Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\v z} and Gantar, Polona and {\v C}ibej, Jaka and Pori, Eva and Ter{\v c}on, Luka and Munda, Tina and {\v Z}itnik, Slavko and Robida, Nejc and Blagus, Neli and Mo{\v z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Kuzman, Taja and Kav{\v c}i{\v c}, Teja and {\v S}krjanec, Iza and Marko, Dafne and Jezer{\v s}ek, Lucija and Zajc, Anja},
    url = {http://hdl.handle.net/11356/1959},
    note = {Slovenian language resource repository {CLARIN}.{SI}},
    year = {2024}
}
"""

_DESCRIPTION = """\
Slovene corpus for coreference resolution. Contains automatically(?) annotated named entities, manually annotated 
coreferences, and manually verified lemmas and morphosyntactic tags.
"""

_HOMEPAGE = "http://hdl.handle.net/11356/1959"

_LICENSE = "Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)"

_URLS = {
    "suk.tei": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1959/SUK.TEI.zip",
}


XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}"


def namespace(element):
    # https://stackoverflow.com/a/12946675
    m = re.match(r'\{.*\}', element.tag)
    return m.group(0) if m else ''


def recursively_parse_el(el_tag, opened_ne: str = "O", opened_mentions: list = None) -> Dict:
    """
    :param el_tag: XML ETree tag
    :param opened_ne: Named entity tag encountered at the previous level(s) of the recursive parse
    :param opened_mentions: IDs of mentions encountered at the previous level(s) of the recursive parse.
        The word in the current tag is part of these mentions.
    """
    eff_opened_mentions = opened_mentions if opened_mentions is not None else []
    id_words, words, lemmas, msds, ne_tags = [], [], [], [], []
    mention_to_id_word = {}

    if el_tag.tag.endswith(("w", "pc")):
        id_word = el_tag.attrib[f"{XML_NAMESPACE}id"]
        word_str = el_tag.text.strip()
        lemma_str = el_tag.attrib["lemma"]
        msd_str = el_tag.attrib["ana"]

        id_words.append(id_word)
        words.append(word_str)
        lemmas.append(lemma_str)
        msds.append(msd_str)
        ne_tags.append(opened_ne)

        for _id in eff_opened_mentions:
            _existing = mention_to_id_word.get(_id, [])
            _existing.append(id_word)

            mention_to_id_word[_id] = _existing

    # Named entity or some other type of coreference mention
    elif el_tag.tag.endswith("seg"):
        new_ne = opened_ne
        if el_tag.attrib["type"] == "name":
            assert opened_ne == "O", f"Potentially encountered a nested NE ({opened_ne}, {el_tag['subtype'].upper()})"
            new_ne = el_tag.attrib["subtype"].upper()

            # Discard information about derived named entities
            if new_ne.startswith("DERIV-"):
                new_ne = new_ne[len("DERIV-"):]

        # The mentions can be nested multiple levels, keep track of all mentions at current or shallower level
        id_mention = el_tag.attrib[f"{XML_NAMESPACE}id"]
        _opened_copy = deepcopy(eff_opened_mentions)
        _opened_copy.append(id_mention)

        for _i, _child in enumerate(el_tag):
            _res = recursively_parse_el(_child, opened_ne=new_ne, opened_mentions=_opened_copy)

            id_words.extend(_res["id_words"])
            words.extend(_res["words"])
            lemmas.extend(_res["lemmas"])
            msds.extend(_res["msds"])
            ne_tags.extend(_res["ne_tags"])

            for _id_mention, _id_words in _res["mentions"].items():
                _existing = mention_to_id_word.get(_id_mention, [])
                _existing.extend(_id_words)
                mention_to_id_word[_id_mention] = _existing

        if new_ne != "O":  # IOB2
            ne_tags = [f"B-{_tag}" if _i == 0 else f"I-{_tag}" for _i, _tag in enumerate(ne_tags)]

    else:
        print(f"WARNING: unrecognized tag in `recursively_parse_el`: {el_tag}. "
              f"Please open an issue on the HuggingFace datasets repository.")

    return {
        "id_words": id_words, "words": words, "lemmas": lemmas, "msds": msds, "ne_tags": ne_tags,
        "mentions": mention_to_id_word
    }


def parse_sent(sent_tag):
    sent_info = {
        "id_words": [], "words": [], "lemmas": [], "msds": [], "ne_tags": [],
        "mentions": {}
    }

    for el in sent_tag:
        if el.tag.endswith("linkGrp"):
            # Parse coreference clusters later, outside of this function
            continue

        res = recursively_parse_el(el)
        sent_info["id_words"].extend(res["id_words"])
        sent_info["words"].extend(res["words"])
        sent_info["lemmas"].extend(res["lemmas"])
        sent_info["msds"].extend(res["msds"])
        sent_info["ne_tags"].extend(res["ne_tags"])
        sent_info["mentions"].update(res["mentions"])

    return sent_info


class SentiCoref(datasets.GeneratorBasedBuilder):
    """Slovene corpus for coreference resolution."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = datasets.Features(
            {
                "id_doc": datasets.Value("string"),
                "words": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
                "lemmas": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
                "msds": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
                "ne_tags": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("string")))),
                "mentions": [{
                    "id_mention": datasets.Value("string"),
                    "mention_data": {
                        "idx_par": datasets.Value("uint32"),
                        "idx_sent": datasets.Value("uint32"),
                        "word_indices": datasets.Sequence(datasets.Value("uint32")),
                        "global_word_indices": datasets.Sequence(datasets.Value("uint32"))
                    }
                }],
                "coref_clusters": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS["suk.tei"]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"file_path": os.path.join(data_dir, "SUK.TEI", "senticoref.xml")}
            )
        ]

    def _generate_examples(self, file_path):
        curr_doc = ET.parse(file_path)
        root = curr_doc.getroot()
        NAMESPACE = namespace(root)

        for idx_doc, doc in enumerate(root.iterfind(f"{NAMESPACE}div")):
            id2tokinfo = {}

            doc_words, doc_lemmas, doc_msds, doc_ne_tags = [], [], [], []
            doc_mentions = {}
            doc_position = 0

            # Step 1: Extract everything but the coreference clusters
            # Clusters are marked at sentence level so they are often duplicated - find unique clusters afterwards
            for idx_par, par in enumerate(doc.findall(f"{NAMESPACE}p")):
                par_words, par_lemmas, par_msds, par_ne_tags = [], [], [], []

                for idx_sent, sent in enumerate(par.findall(f"{NAMESPACE}s")):
                    sent_data = parse_sent(sent)

                    par_words.append(sent_data["words"])
                    par_lemmas.append(sent_data["lemmas"])
                    par_msds.append(sent_data["msds"])
                    par_ne_tags.append(sent_data["ne_tags"])

                    for pos_in_sent, (id_token, word_str, lemma_str, msd_str) in enumerate(zip(sent_data["id_words"],
                                                                                               sent_data["words"],
                                                                                               sent_data["lemmas"],
                                                                                               sent_data["msds"])):
                        id2tokinfo[id_token] = {
                            "idx_par": idx_par, "idx_sent": idx_sent, "pos_in_sent": pos_in_sent,
                            "doc_position": doc_position
                        }
                        doc_position += 1

                    for id_mention, word_ids in sent_data["mentions"].items():
                        mention_fmt = {
                            "idx_par": idx_par, "idx_sent": idx_sent, "word_indices": [],
                            "global_word_indices": []
                        }

                        for _id in word_ids:
                            _info = id2tokinfo[_id]
                            mention_fmt["word_indices"].append(_info["pos_in_sent"])
                            mention_fmt["global_word_indices"].append(_info["doc_position"])

                        doc_mentions[id_mention] = mention_fmt

                doc_words.append(par_words)
                doc_lemmas.append(par_lemmas)
                doc_msds.append(par_msds)
                doc_ne_tags.append(par_ne_tags)

            # Step 2: extract coreference clusters
            unique_clusters = OrderedDict()  # Preserving order just in case
            for link_group in doc.findall(f".//{NAMESPACE}linkGrp[@type = 'COREF']"):
                for link in link_group.findall(f"{NAMESPACE}link"):
                    # Remove the reference marker ("#") in front of ID
                    cluster = tuple(map(lambda _s: _s[1:], link.attrib["target"].split(" ")))
                    unique_clusters[cluster] = None

            doc_clusters = []
            for cluster in unique_clusters:
                doc_clusters.append(list(cluster))
                for id_mention in cluster:
                    if id_mention not in doc_mentions:
                        # Mention may be a regular token, i.e. a word referring to an entity
                        # (`id_mention` is then the ID of a token)
                        _info = id2tokinfo[id_mention]
                        doc_mentions[id_mention] = {
                            "idx_par": _info["idx_par"], "idx_sent": _info["idx_sent"],
                            "word_indices": [_info["pos_in_sent"]],
                            "global_word_indices": [_info["doc_position"]]
                        }

            # Convert to list of dictionaries as datasets expects fixed key names
            doc_mentions_list = []
            for id_mention, mention_data in doc_mentions.items():
                doc_mentions_list.append({
                    "id_mention": id_mention,
                    "mention_data": mention_data
                })

            yield idx_doc, {
                "id_doc": doc.attrib[f"{XML_NAMESPACE}id"],
                "words": doc_words, "lemmas": doc_lemmas, "msds": doc_msds, "ne_tags": doc_ne_tags,
                "mentions": doc_mentions_list,
                "coref_clusters": doc_clusters
            }