bkoptyra commited on
Commit
a91abd4
1 Parent(s): 2a91129

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -46,4 +46,69 @@ configs:
46
  path: data/val-*
47
  - split: test
48
  path: data/test-*
 
 
 
 
 
 
 
 
 
 
49
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  path: data/val-*
47
  - split: test
48
  path: data/test-*
49
+ task_categories:
50
+ - text-classification
51
+ language:
52
+ - pl
53
+ tags:
54
+ - emotion
55
+ - sentence-classification
56
+ task_ids:
57
+ - multi-label-classification
58
+ license: apache-2.0
59
  ---
60
+
61
+ ## Dataset
62
+ The dataset is made up of consumer reviews written in Polish. Those reviews belong to four domains: hotels, medicine, products, and school. This collection also contains non-opinion informative texts belonging to the same domains (meaning they are mostly neutral). Each sentence, as well as all the reviews as a whole, are annotated with emotions from the Plutchnik's wheel of emotions (joy, trust, anticipation, surprise, fear, sadness, disgust, anger), as well as the perceived sentiment (positive, negative, neutral), with ambivalent sentiment being labeled using both positive and negative labels. The dataset was annotated by six people who did not see each other's decisions. These annotations were aggregated by selecting labels annotated by at least 2 out of 6 people, meaning controversial texts and sentences can be annotated with opposing emotions. While each sentence has its own annotation, they were created in the context of the whole review.
63
+
64
+ For more information about this dataset see referances [1](#ref-1) and [2](#ref-2).
65
+
66
+ ### Training set
67
+ Training data consists of 776 reviews containing 6393 sentences, which were randomly selected from the whole dataset. The split was done on the level of whole reviews, meaning there are no reviews that are split between sets.
68
+
69
+ ### Test sets
70
+ Two test sets consist of 167 reviews each, containing 1234 and 1264 sentence annotations, respectively.
71
+
72
+ ### Dataset format
73
+ The datasets are stored in three directories (training and two test sets). All datasets have the same format.
74
+
75
+ Input rows contain ordered sentences of reviews. Each review ends with a sentence made out of only the symbol #. This sentence annotation corresponds to the annotation of the whole review and is not a sentence annotation. This sentence is not a part of the original review and should not be treated as such, it only marks the end of the current review and the row that contains the corresponding review annotation. The next row after such a sentence corresponds to the first sentence of a different review.
76
+
77
+ Example:
78
+
79
+ This fragment of the training input file:
80
+ ```
81
+ Była to pierwsza wizyta ale moze i ostatnia.
82
+ Lakarz troche apatyczny, nie wypowiadajacy sie jasno.
83
+ Mam zrobic jakies badanie ale nie dardzo wiem jakie.
84
+ Nie napisal skierowania/zalecenia, chyba mowil o gastrologii.
85
+ Powinnam byla byc bardzej wymagajaca i dopytujaca.
86
+ Nie polecam tego lekarza.
87
+ ###########################
88
+ ```
89
+ corresponds to annotations:
90
+ ```
91
+ False False True False False True False False False True False
92
+ False False False False False True True False False True False
93
+ False False False True False True False False False True False
94
+ False False False True False True False False False True False
95
+ False False False True False True False True False True False
96
+ False False False False False True False False False True False
97
+ False False False True False True False False False True False
98
+ ```
99
+ meaning sentences are labeled as:
100
+ ```
101
+ "Była to pierwsza wizyta ale moze i ostatnia." - anticipation, sadness, negative
102
+ "Lakarz troche apatyczny, nie wypowiadajacy sie jasno." - sadness, disgust, negative
103
+ "Mam zrobic jakies badanie ale nie dardzo wiem jakie." - surprise, sadness, negative
104
+ "Nie napisal skierowania/zalecenia, chyba mowil o gastrologii." - surprise, sadness, negative
105
+ "Powinnam byla byc bardzej wymagajaca i dopytujaca." - surprise, sadness, anger, negative
106
+ "Nie polecam tego lekarza." - sadness, negative
107
+ ```
108
+ and the review as a whole, starting from "Była to pierwsza wizyta ale moze i ostatnia." and ending at "Nie polecam tego lekarza." is labeled as: surprise, sadness, negative.
109
+
110
+
111
+ ## References
112
+ <span id="ref-1">1. Koptyra, Bartłomiej, et al. "CLARIN-Emo: Training Emotion Recognition Models Using Human Annotation and ChatGPT." International Conference on Computational Science. Cham: Springer Nature Switzerland, 2023.</span>
113
+
114
+ <span id="ref-2">2. Kocoń, Jan, et al. "ChatGPT: Jack of all trades, master of none." Information Fusion (2023): 101861.</span>