Datasets:

License:
xlm-r-bertic-data / bertic_data.py
5roop's picture
Bugfix
9ff61d7
raw
history blame
5.38 kB
import datasets
import gzip
import json
_URL = "http://nl.ijs.si/nikola/dedup_hbs/"
_URLS = [
# "macocu.hbs.translit.dedup.lines.gz",
# "hr_news.translit.dedup.lines.gz",
# "srwac.translit.dedup.lines.gz",
"riznica.translit.dedup.lines.gz",
# "mC4.sr.translit.dedup.lines.gz",
# "hrwac.translit.dedup.lines.gz",
# "cnrwac.translit.dedup.lines.gz",
# "classla-sr.translit.dedup.lines.gz",
# "classla-hr.translit.dedup.lines.gz",
# "classla-bs.translit.dedup.lines.gz",
# "cc100-sr.translit.dedup.lines.gz",
# "cc100-hr.translit.dedup.lines.gz",
# "bswac.translit.dedup.lines.gz",
]
_URLS = [_URL + i for i in _URLS]
_DESCRIPTION = """\
Data used to train BERTić model and its successors.
"""
_CITATION = """
@inproceedings{ljubesic-lauc-2021-bertic,
title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian",
author = "Ljube{\v{s}}i{\'c}, Nikola and
Lauc, Davor",
editor = "Babych, Bogdan and
Kanishcheva, Olga and
Nakov, Preslav and
Piskorski, Jakub and
Pivovarova, Lidia and
Starko, Vasyl and
Steinberger, Josef and
Yangarber, Roman and
Marci{\'n}czuk, Micha{\l} and
Pollak, Senja and
P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Robnik-{\v{S}}ikonja, Marko",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.bsnlp-1.5",
pages = "37--42",
abstract = "In this paper we describe a transformer model pre-trained on 8 billion tokens of crawled text from the Croatian, Bosnian, Serbian and Montenegrin web domains. We evaluate the transformer model on the tasks of part-of-speech tagging, named-entity-recognition, geo-location prediction and commonsense causal reasoning, showing improvements on all tasks over state-of-the-art models. For commonsense reasoning evaluation we introduce COPA-HR - a translation of the Choice of Plausible Alternatives (COPA) dataset into Croatian. The BERTi{\'c} model is made available for free usage and further task-specific fine-tuning through HuggingFace.",
}"""
class BerticDataConfig(datasets.BuilderConfig):
"""BuilderConfig for Bertic data sample."""
def __init__(self, *args, subsets, **kwargs):
"""BuilderConfig for BerticData.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(BerticDataConfig, self).__init__(**kwargs)
self.subsets = subsets
class BerticData(datasets.GeneratorBasedBuilder):
"""Bertic dataset, used for training Bertic model."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from BerticDataConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
BerticDataConfig(
name="default",
subsets=["arxiv", "open-web-math", "algebraic-stack"],
name="default",
subsets=["arxiv", "open-web-math", "algebraic-stack"],
version=VERSION,
description="All subsets",
)
]
description="All subsets",
)
]
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
urls_to_download = self._URLS
urls_to_download = {i: url for i, url in enumerate(_URLS)}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files[i]}
)
for i in urls_to_download.keys()
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files[i]}
)
for i in urls_to_download.keys()
]
def _generate_examples(self, data_files):
key = 0
for name in data_files:
with gzip.open(name, "rb") as f:
key = 0
for name in data_files:
with gzip.open(name, "rb") as f:
for line in f.readlines():
yield key, {"text": line.decode("uft-8").strip()}
key += 1