import datasets import gzip import json _URL = "http://nl.ijs.si/nikola/dedup_hbs/" _URLS = [ # "macocu.hbs.translit.dedup.lines.gz", # "hr_news.translit.dedup.lines.gz", # "srwac.translit.dedup.lines.gz", "riznica.translit.dedup.lines.gz", # "mC4.sr.translit.dedup.lines.gz", # "hrwac.translit.dedup.lines.gz", # "cnrwac.translit.dedup.lines.gz", # "classla-sr.translit.dedup.lines.gz", # "classla-hr.translit.dedup.lines.gz", # "classla-bs.translit.dedup.lines.gz", # "cc100-sr.translit.dedup.lines.gz", # "cc100-hr.translit.dedup.lines.gz", # "bswac.translit.dedup.lines.gz", ] _URLS = [_URL + i for i in _URLS] _DESCRIPTION = """\ Data used to train BERTić model and its successors. """ _CITATION = """ @inproceedings{ljubesic-lauc-2021-bertic, title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian", author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor", editor = "Babych, Bogdan and Kanishcheva, Olga and Nakov, Preslav and Piskorski, Jakub and Pivovarova, Lidia and Starko, Vasyl and Steinberger, Josef and Yangarber, Roman and Marci{\'n}czuk, Micha{\l} and Pollak, Senja and P{\v{r}}ib{\'a}{\v{n}}, Pavel and Robnik-{\v{S}}ikonja, Marko", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.bsnlp-1.5", pages = "37--42", abstract = "In this paper we describe a transformer model pre-trained on 8 billion tokens of crawled text from the Croatian, Bosnian, Serbian and Montenegrin web domains. We evaluate the transformer model on the tasks of part-of-speech tagging, named-entity-recognition, geo-location prediction and commonsense causal reasoning, showing improvements on all tasks over state-of-the-art models. For commonsense reasoning evaluation we introduce COPA-HR - a translation of the Choice of Plausible Alternatives (COPA) dataset into Croatian. The BERTi{\'c} model is made available for free usage and further task-specific fine-tuning through HuggingFace.", }""" class BerticDataConfig(datasets.BuilderConfig): """BuilderConfig for Bertic data sample.""" def __init__(self, *args, subsets, **kwargs): """BuilderConfig for BerticData. Args: **kwargs: keyword arguments forwarded to super. """ super(BerticDataConfig, self).__init__(**kwargs) self.subsets = subsets class BerticData(datasets.GeneratorBasedBuilder): """Bertic dataset, used for training Bertic model.""" VERSION = datasets.Version("1.0.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from BerticDataConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ BerticDataConfig( name="default", subsets=["arxiv", "open-web-math", "algebraic-stack"], version=VERSION, description="All subsets", ) ] self._URLS = _URLS def _info(self): features = datasets.Features( { "text": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: urls_to_download = self._URLS urls_to_download = {i: url for i, url in enumerate(self._URLS)} downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files[i]} ) for i in urls_to_download.keys() ] def _generate_examples(self, data_files): key = 0 for name in data_files: with gzip.open(name, "rb") as f: for line in f.readlines(): yield key, {"text": line.decode("uft-8").strip()} key += 1