|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{valmeekam2023planbenchextensiblebenchmarkevaluating, |
|
title={PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change}, |
|
author={Karthik Valmeekam and Matthew Marquez and Alberto Olmo and Sarath Sreedharan and Subbarao Kambhampati}, |
|
year={2023}, |
|
eprint={2206.10498}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2206.10498}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
PlanBench is a benchmark for evaluating models' capabilities of planning and reasoning by evaluating them on IPC problems""" |
|
|
|
_HOMEPAGE = "https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench" |
|
|
|
_LICENSE = "MIT" |
|
|
|
|
|
_URLS_prefix = { |
|
"blocksworld" : "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/main/plan-bench/prompts/blocksworld", |
|
"blocksworld_3": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/main/plan-bench/prompts/blocksworld_3", |
|
"mystery_blocksworld": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/main/plan-bench/prompts/mystery_blocksworld", |
|
"mystery_blocksworld_3": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/main/plan-bench/prompts/mystery_blocksworld_3", |
|
"logistics": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/main/plan-bench/prompts/logistics", |
|
} |
|
_URLS = { |
|
"blocksworld_plan_generation": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_1_plan_generation.json" |
|
}, |
|
"blocksworld_plan_optimality": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_2_plan_optimality.json" |
|
}, |
|
"blocksworld_plan_verification": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_3_plan_verification.json" |
|
}, |
|
"blocksworld_plan_reuse": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_4_plan_reuse.json" |
|
}, |
|
"blocksworld_plan_generalization": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_5_plan_generalization.json" |
|
}, |
|
"blocksworld_replanning": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_6_replanning.json" |
|
}, |
|
"blocksworld_plan_execution": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_7_plan_execution.json" |
|
}, |
|
"blocksworld_goal_shuffling": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_8_1_goal_shuffling.json" |
|
}, |
|
"blocksworld_full_to_partial": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_8_2_full_to_partial.json" |
|
}, |
|
"blocksworld_partial_to_full": { |
|
"test": _URLS_prefix["blocksworld"] + "/task_8_3_partial_to_full.json" |
|
}, |
|
"blocksworld_3_plan_generation": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_1_plan_generation.json" |
|
}, |
|
"blocksworld_3_plan_optimality": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_2_plan_optimality.json" |
|
}, |
|
"blocksworld_3_plan_verification": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_3_plan_verification.json" |
|
}, |
|
"blocksworld_3_plan_reuse": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_4_plan_reuse.json" |
|
}, |
|
"blocksworld_3_plan_generalization": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_5_plan_generalization.json" |
|
}, |
|
"blocksworld_3_replanning": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_6_replanning.json" |
|
}, |
|
"blocksworld_3_plan_execution": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_7_plan_execution.json" |
|
}, |
|
"blocksworld_3_goal_shuffling": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_8_1_goal_shuffling.json" |
|
}, |
|
"blocksworld_3_full_to_partial": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_8_2_full_to_partial.json" |
|
}, |
|
"blocksworld_3_partial_to_full": { |
|
"test": _URLS_prefix["blocksworld_3"] + "/task_8_3_partial_to_full.json" |
|
}, |
|
"mystery_blocksworld_plan_generation": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_1_plan_generation.json" |
|
}, |
|
"mystery_blocksworld_plan_optimality": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_2_plan_optimality.json" |
|
}, |
|
"mystery_blocksworld_plan_verification": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_3_plan_verification.json" |
|
}, |
|
"mystery_blocksworld_plan_reuse": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_4_plan_reuse.json" |
|
}, |
|
"mystery_blocksworld_plan_generalization": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_5_plan_generalization.json" |
|
}, |
|
"mystery_blocksworld_replanning": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_6_replanning.json" |
|
}, |
|
"mystery_blocksworld_plan_execution": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_7_plan_execution.json" |
|
}, |
|
"mystery_blocksworld_goal_shuffling": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_8_1_goal_shuffling.json" |
|
}, |
|
"mystery_blocksworld_full_to_partial": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_8_2_full_to_partial.json" |
|
}, |
|
"mystery_blocksworld_partial_to_full": { |
|
"test": _URLS_prefix["mystery_blocksworld"] + "/task_8_3_partial_to_full.json" |
|
}, |
|
"mystery_blocksworld_3_plan_generation": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_1_plan_generation.json" |
|
}, |
|
"mystery_blocksworld_3_plan_optimality": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_2_plan_optimality.json" |
|
}, |
|
"mystery_blocksworld_3_plan_verification": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_3_plan_verification.json" |
|
}, |
|
"mystery_blocksworld_3_plan_reuse": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_4_plan_reuse.json" |
|
}, |
|
"mystery_blocksworld_3_plan_generalization": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_5_plan_generalization.json" |
|
}, |
|
"mystery_blocksworld_3_replanning": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_6_replanning.json" |
|
}, |
|
"mystery_blocksworld_3_plan_execution": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_7_plan_execution.json" |
|
}, |
|
"mystery_blocksworld_3_goal_shuffling": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_8_1_goal_shuffling.json" |
|
}, |
|
"mystery_blocksworld_3_full_to_partial": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_8_2_full_to_partial.json" |
|
}, |
|
"mystery_blocksworld_3_partial_to_full": { |
|
"test": _URLS_prefix["mystery_blocksworld_3"] + "/task_8_3_partial_to_full.json" |
|
}, |
|
"logistics_plan_generation": { |
|
"test": _URLS_prefix["logistics"] + "/task_1_plan_generation.json" |
|
}, |
|
"logistics_plan_optimality": { |
|
"test": _URLS_prefix["logistics"] + "/task_2_plan_optimality.json" |
|
}, |
|
"logistics_plan_verification": { |
|
"test": _URLS_prefix["logistics"] + "/task_3_plan_verification.json" |
|
}, |
|
"logistics_plan_reuse": { |
|
"test": _URLS_prefix["logistics"] + "/task_4_plan_reuse.json" |
|
}, |
|
"logistics_plan_generalization": { |
|
"test": _URLS_prefix["logistics"] + "/task_5_plan_generalization.json" |
|
}, |
|
"logistics_replanning": { |
|
"test": _URLS_prefix["logistics"] + "/task_6_replanning.json" |
|
}, |
|
"logistics_plan_execution": { |
|
"test": _URLS_prefix["logistics"] + "/task_7_plan_execution.json" |
|
}, |
|
"logistics_goal_shuffling": { |
|
"test": _URLS_prefix["logistics"] + "/task_8_1_goal_shuffling.json" |
|
}, |
|
"logistics_full_to_partial": { |
|
"test": _URLS_prefix["logistics"] + "/task_8_2_full_to_partial.json" |
|
}, |
|
"logistics_partial_to_full": { |
|
"test": _URLS_prefix["logistics"] + "/task_8_3_partial_to_full.json" |
|
} |
|
} |
|
|
|
|
|
|
|
class PlanBench(datasets.GeneratorBasedBuilder): |
|
""" LMentry is a benchmark for measuring language model performance on tasks that are trivial to humans. LMentry consists of 25 tasks which humans are generally expected to perform perfectly, e.g. writing a sentence containing a specific word, identifying which words in a list belong to a specific category, choosing which of two words is longer, or identifying which of two words rhymes with a third word. |
|
""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=config_name, |
|
version=datasets.Version("0.0.1"), |
|
description=f"{config_name} task from PlanBench" |
|
) |
|
for config_name in _URLS.keys() |
|
] |
|
def _info(self): |
|
features = { |
|
"instance_id": datasets.Value("int32"), |
|
"query": datasets.Value("string"), |
|
"ground_truth_plan": datasets.Value("string"), |
|
} |
|
if ("plan_generation" in self.config.name or |
|
"plan_optimality" in self.config.name or |
|
"plan_generalization" in self.config.name or |
|
"replanning" in self.config.name or |
|
"plan_execution" in self.config.name): |
|
features.update({"example_instance_ids": datasets.Sequence(datasets.Value("string"))}) |
|
if "plan_reuse" in self.config.name or "replanning" in self.config.name: |
|
features.update({"new_instance": datasets.Value("string")}) |
|
if "goal_shuffling" in self.config.name: |
|
features.update({"single_goal_instances": datasets.Value("int32")}) |
|
features = datasets.Features(features) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TEST, |
|
gen_kwargs = { |
|
"filepath" : data_dir["test"], |
|
"split" : "test", |
|
} |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
with open(filepath, encoding = "utf-8") as fin : |
|
data = json.load(fin) |
|
for instance in data["instances"]: |
|
yield instance["instance_id"], instance |
|
|