Upload planbench.py
Browse files- planbench.py +298 -0
planbench.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Hugging Face's logo Hugging Face
|
3 |
+
|
4 |
+
Models
|
5 |
+
Datasets
|
6 |
+
Spaces
|
7 |
+
Posts
|
8 |
+
Docs
|
9 |
+
Enterprise
|
10 |
+
Pricing
|
11 |
+
|
12 |
+
Datasets:
|
13 |
+
clembench-playpen
|
14 |
+
/
|
15 |
+
lmentry
|
16 |
+
Tasks:
|
17 |
+
Question Answering
|
18 |
+
Languages:
|
19 |
+
English
|
20 |
+
ArXiv:
|
21 |
+
Dataset card
|
22 |
+
Files and versions
|
23 |
+
Community
|
24 |
+
Settings
|
25 |
+
lmentry
|
26 |
+
/ lmentry.py
|
27 |
+
momentino's picture
|
28 |
+
momentino
|
29 |
+
fix: name of a task
|
30 |
+
268ba84
|
31 |
+
verified
|
32 |
+
8 days ago
|
33 |
+
raw
|
34 |
+
history
|
35 |
+
blame
|
36 |
+
edit
|
37 |
+
delete
|
38 |
+
13.6 kB
|
39 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
40 |
+
#
|
41 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
42 |
+
# you may not use this file except in compliance with the License.
|
43 |
+
# You may obtain a copy of the License at
|
44 |
+
#
|
45 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
46 |
+
#
|
47 |
+
# Unless required by applicable law or agreed to in writing, software
|
48 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
49 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
50 |
+
# See the License for the specific language governing permissions and
|
51 |
+
# limitations under the License.
|
52 |
+
|
53 |
+
|
54 |
+
import json
|
55 |
+
import datasets
|
56 |
+
|
57 |
+
|
58 |
+
_CITATION = """\
|
59 |
+
@misc{valmeekam2023planbenchextensiblebenchmarkevaluating,
|
60 |
+
title={PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change},
|
61 |
+
author={Karthik Valmeekam and Matthew Marquez and Alberto Olmo and Sarath Sreedharan and Subbarao Kambhampati},
|
62 |
+
year={2023},
|
63 |
+
eprint={2206.10498},
|
64 |
+
archivePrefix={arXiv},
|
65 |
+
primaryClass={cs.CL},
|
66 |
+
url={https://arxiv.org/abs/2206.10498},
|
67 |
+
}
|
68 |
+
"""
|
69 |
+
|
70 |
+
_DESCRIPTION = """\
|
71 |
+
PlanBench is a benchmark for evaluating models' capabilities of planning and reasoning by evaluating them on IPC problems"""
|
72 |
+
|
73 |
+
_HOMEPAGE = "https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench"
|
74 |
+
|
75 |
+
_LICENSE = "MIT"
|
76 |
+
|
77 |
+
|
78 |
+
_URLS_prefix = {
|
79 |
+
"blocksworld" : "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/tree/main/plan-bench/prompts/blocksworld",
|
80 |
+
"blocksworld_3": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/tree/main/plan-bench/prompts/blocksworld_3",
|
81 |
+
"mystery_blocksworld": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/tree/main/plan-bench/prompts/mystery_blocksworld",
|
82 |
+
"mystery_blocksworld_3": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/tree/main/plan-bench/prompts/mystery_blocksworld_3",
|
83 |
+
"logistics": "https://raw.githubusercontent.com/karthikv792/LLMs-Planning/tree/main/plan-bench/prompts/logistics",
|
84 |
+
}
|
85 |
+
_URLS = {
|
86 |
+
"blocksworld_plan_generation": {
|
87 |
+
"test": _URLS_prefix["blocksworld"] + "task_1_plan_generation.json"
|
88 |
+
},
|
89 |
+
"blocksworld_plan_optimality": {
|
90 |
+
"test": _URLS_prefix["blocksworld"] + "task_2_plan_optimality.json"
|
91 |
+
},
|
92 |
+
"blocksworld_plan_verification": {
|
93 |
+
"test": _URLS_prefix["blocksworld"] + "task_3_plan_verification.json"
|
94 |
+
},
|
95 |
+
"blocksworld_plan_reuse": {
|
96 |
+
"test": _URLS_prefix["blocksworld"] + "task_4_plan_reuse.json"
|
97 |
+
},
|
98 |
+
"blocksworld_plan_generalization": {
|
99 |
+
"test": _URLS_prefix["blocksworld"] + "task_5_plan_reuse.json"
|
100 |
+
},
|
101 |
+
"blocksworld_replanning": {
|
102 |
+
"test": _URLS_prefix["blocksworld"] + "task_6_replanning.json"
|
103 |
+
},
|
104 |
+
"blocksworld_plan_execution": {
|
105 |
+
"test": _URLS_prefix["blocksworld"] + "task_7_plan_execution.json"
|
106 |
+
},
|
107 |
+
"blocksworld_plan_shuffling": {
|
108 |
+
"test": _URLS_prefix["blocksworld"] + "task_8_1_goal_shuffling.json"
|
109 |
+
},
|
110 |
+
"blocksworld_plan_full_to_partial": {
|
111 |
+
"test": _URLS_prefix["blocksworld"] + "task_8_2_full_to_partial.json"
|
112 |
+
},
|
113 |
+
"blocksworld_partial_to_full": {
|
114 |
+
"test": _URLS_prefix["blocksworld"] + "task_8_3_partial_to_full.json"
|
115 |
+
},
|
116 |
+
"blocksworld_3_plan_generation": {
|
117 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_1_plan_generation.json"
|
118 |
+
},
|
119 |
+
"blocksworld_3_plan_optimality": {
|
120 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_2_plan_optimality.json"
|
121 |
+
},
|
122 |
+
"blocksworld_3_plan_verification": {
|
123 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_3_plan_verification.json"
|
124 |
+
},
|
125 |
+
"blocksworld_3_plan_reuse": {
|
126 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_4_plan_reuse.json"
|
127 |
+
},
|
128 |
+
"blocksworld_3_plan_generalization": {
|
129 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_5_plan_reuse.json"
|
130 |
+
},
|
131 |
+
"blocksworld_3_replanning": {
|
132 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_6_replanning.json"
|
133 |
+
},
|
134 |
+
"blocksworld_3_plan_execution": {
|
135 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_7_plan_execution.json"
|
136 |
+
},
|
137 |
+
"blocksworld_3_plan_shuffling": {
|
138 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_8_1_goal_shuffling.json"
|
139 |
+
},
|
140 |
+
"blocksworld_3_plan_full_to_partial": {
|
141 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_8_2_full_to_partial.json"
|
142 |
+
},
|
143 |
+
"blocksworld_3_partial_to_full": {
|
144 |
+
"test": _URLS_prefix["blocksworld_3"] + "task_8_3_partial_to_full.json"
|
145 |
+
},
|
146 |
+
|
147 |
+
"mystery_blocksworld_plan_generation": {
|
148 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_1_plan_generation.json"
|
149 |
+
},
|
150 |
+
"mystery_blocksworld_plan_optimality": {
|
151 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_2_plan_optimality.json"
|
152 |
+
},
|
153 |
+
"mystery_blocksworld_plan_verification": {
|
154 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_3_plan_verification.json"
|
155 |
+
},
|
156 |
+
"mystery_blocksworld_plan_reuse": {
|
157 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_4_plan_reuse.json"
|
158 |
+
},
|
159 |
+
"mystery_blocksworld_plan_generalization": {
|
160 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_5_plan_reuse.json"
|
161 |
+
},
|
162 |
+
"mystery_blocksworld_replanning": {
|
163 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_6_replanning.json"
|
164 |
+
},
|
165 |
+
"mystery_blocksworld_plan_execution": {
|
166 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_7_plan_execution.json"
|
167 |
+
},
|
168 |
+
"mystery_blocksworld_plan_shuffling": {
|
169 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_8_1_goal_shuffling.json"
|
170 |
+
},
|
171 |
+
"mystery_blocksworld_plan_full_to_partial": {
|
172 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_8_2_full_to_partial.json"
|
173 |
+
},
|
174 |
+
"mystery_blocksworld_partial_to_full": {
|
175 |
+
"test": _URLS_prefix["mystery_blocksworld"] + "task_8_3_partial_to_full.json"
|
176 |
+
},
|
177 |
+
|
178 |
+
"mystery_blocksworld_3_plan_generation": {
|
179 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_1_plan_generation.json"
|
180 |
+
},
|
181 |
+
"mystery_blocksworld_3_plan_optimality": {
|
182 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_2_plan_optimality.json"
|
183 |
+
},
|
184 |
+
"mystery_blocksworld_3_plan_verification": {
|
185 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_3_plan_verification.json"
|
186 |
+
},
|
187 |
+
"mystery_blocksworld_3_plan_reuse": {
|
188 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_4_plan_reuse.json"
|
189 |
+
},
|
190 |
+
"mystery_blocksworld_3_plan_generalization": {
|
191 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_5_plan_reuse.json"
|
192 |
+
},
|
193 |
+
"mystery_blocksworld_3_replanning": {
|
194 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_6_replanning.json"
|
195 |
+
},
|
196 |
+
"mystery_blocksworld_3_plan_execution": {
|
197 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_7_plan_execution.json"
|
198 |
+
},
|
199 |
+
"mystery_blocksworld_3_plan_shuffling": {
|
200 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_8_1_goal_shuffling.json"
|
201 |
+
},
|
202 |
+
"mystery_blocksworld_3_plan_full_to_partial": {
|
203 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_8_2_full_to_partial.json"
|
204 |
+
},
|
205 |
+
"mystery_blocksworld_3_partial_to_full": {
|
206 |
+
"test": _URLS_prefix["mystery_blocksworld_3"] + "task_8_3_partial_to_full.json"
|
207 |
+
},
|
208 |
+
|
209 |
+
"logistics_plan_generation": {
|
210 |
+
"test": _URLS_prefix["logistics"] + "task_1_plan_generation.json"
|
211 |
+
},
|
212 |
+
"logistics_plan_optimality": {
|
213 |
+
"test": _URLS_prefix["logistics"] + "task_2_plan_optimality.json"
|
214 |
+
},
|
215 |
+
"logistics_plan_verification": {
|
216 |
+
"test": _URLS_prefix["logistics"] + "task_3_plan_verification.json"
|
217 |
+
},
|
218 |
+
"logistics_plan_reuse": {
|
219 |
+
"test": _URLS_prefix["logistics"] + "task_4_plan_reuse.json"
|
220 |
+
},
|
221 |
+
"logistics_plan_generalization": {
|
222 |
+
"test": _URLS_prefix["logistics"] + "task_5_plan_reuse.json"
|
223 |
+
},
|
224 |
+
"logistics_replanning": {
|
225 |
+
"test": _URLS_prefix["logistics"] + "task_6_replanning.json"
|
226 |
+
},
|
227 |
+
"logistics_plan_execution": {
|
228 |
+
"test": _URLS_prefix["logistics"] + "task_7_plan_execution.json"
|
229 |
+
},
|
230 |
+
"logistics_plan_shuffling": {
|
231 |
+
"test": _URLS_prefix["logistics"] + "task_8_1_goal_shuffling.json"
|
232 |
+
},
|
233 |
+
"logistics_plan_full_to_partial": {
|
234 |
+
"test": _URLS_prefix["logistics"] + "task_8_2_full_to_partial.json"
|
235 |
+
},
|
236 |
+
"logistics_partial_to_full": {
|
237 |
+
"test": _URLS_prefix["logistics"] + "task_8_3_partial_to_full.json"
|
238 |
+
}
|
239 |
+
}
|
240 |
+
|
241 |
+
|
242 |
+
class PlanBench(datasets.GeneratorBasedBuilder):
|
243 |
+
""" LMentry is a benchmark for measuring language model performance on tasks that are trivial to humans. LMentry consists of 25 tasks which humans are generally expected to perform perfectly, e.g. writing a sentence containing a specific word, identifying which words in a list belong to a specific category, choosing which of two words is longer, or identifying which of two words rhymes with a third word.
|
244 |
+
"""
|
245 |
+
|
246 |
+
BUILDER_CONFIGS = [
|
247 |
+
datasets.BuilderConfig(
|
248 |
+
name=config_name,
|
249 |
+
version=datasets.Version("0.0.1"),
|
250 |
+
description=f"{config_name} task from PlanBench"
|
251 |
+
)
|
252 |
+
for config_name in _URLS.keys()
|
253 |
+
]
|
254 |
+
def _info(self):
|
255 |
+
features = {
|
256 |
+
"instance_id": datasets.Value("int32"),
|
257 |
+
"query": datasets.Value("string"),
|
258 |
+
"ground_truth_plan": datasets.Value("string"),
|
259 |
+
}
|
260 |
+
if ("plan_generation" in self.config_name or
|
261 |
+
"plan_optimality" in self.config_name or
|
262 |
+
"plan_generalization" in self.config_name or
|
263 |
+
"replanning" in self.config_name or
|
264 |
+
"plan_execution" in self.config_name or):
|
265 |
+
features.update({"example_istance_ids": datasets.Sequence(datasets.Value("string"))})
|
266 |
+
if "plan_reuse" in self.config_name or "replanning" in self.config_name:
|
267 |
+
features.update({"new_instance": datasets.Value("string")})
|
268 |
+
if "goal_shuffling" in self.config_name:
|
269 |
+
features.update({"single_goal_instances": datasets.Value("int32")})
|
270 |
+
features = datasets.Features(features)
|
271 |
+
return datasets.DatasetInfo(
|
272 |
+
description=_DESCRIPTION,
|
273 |
+
features=features,
|
274 |
+
homepage=_HOMEPAGE,
|
275 |
+
citation=_CITATION,
|
276 |
+
license=_LICENSE,
|
277 |
+
)
|
278 |
+
|
279 |
+
|
280 |
+
def _split_generators(self, dl_manager):
|
281 |
+
urls = _URLS[self.config.name]
|
282 |
+
data_dir = dl_manager.download_and_extract(urls)
|
283 |
+
return [
|
284 |
+
datasets.SplitGenerator(
|
285 |
+
name = datasets.Split.TEST,
|
286 |
+
gen_kwargs = {
|
287 |
+
"filepath" : data_dir["test"],
|
288 |
+
"split" : "test",
|
289 |
+
}
|
290 |
+
)
|
291 |
+
]
|
292 |
+
|
293 |
+
|
294 |
+
def _generate_examples(self, filepath, split):
|
295 |
+
with open(filepath, encoding = "utf-8") as fin :
|
296 |
+
data = json.load(fin)
|
297 |
+
for instance in data["instances"]:
|
298 |
+
yield instance["instance_id"], instance
|