# import pandas as pd # from datasets import Dataset import nltk from nltk import pos_tag from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from collections import Counter # Download required NLTK data nltk.download('punkt') nltk.download('averaged_perceptron_tagger') nltk.download('stopwords') # Preprocessing stop_words = set(stopwords.words('english')) def preprocess(text): tokens = word_tokenize(text.lower()) return [word for word in tokens if word.isalnum() and word not in stop_words] def get_keywords(text, top_n=5): processed_text = preprocess(text) pos_tags = pos_tag(processed_text) # Looking for nouns (NN), verbs (VB), and adjectives (JJ) keywords = [word for word, pos in pos_tags if pos.startswith(('NN', 'VB', 'JJ'))] # Get top N keywords by counting worfd ocurrences keyword_counts = Counter(keywords) return [word for word, _ in keyword_counts.most_common(top_n)]