File size: 14,307 Bytes
c52fe89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import sys
import os
import yaml
from pathlib import Path
import torch
import torch.nn as nn
import torch.optim as optim
import time
import logging
import numpy as np
from tqdm import tqdm


from dataset_utils import get_cifar10_dataloaders
from model import ShuffleNetG2
from get_representation import time_travel_saver

def setup_logger(log_file):
    """配置日志记录器,如果日志文件存在则覆盖
    
    Args:
        log_file: 日志文件路径
        
    Returns:
        logger: 配置好的日志记录器
    """
    # 创建logger
    logger = logging.getLogger('train')
    logger.setLevel(logging.INFO)
    
    # 移除现有的处理器
    if logger.hasHandlers():
        logger.handlers.clear()
    
    # 创建文件处理器,使用'w'模式覆盖现有文件
    fh = logging.FileHandler(log_file, mode='w')
    fh.setLevel(logging.INFO)
    
    # 创建控制台处理器
    ch = logging.StreamHandler()
    ch.setLevel(logging.INFO)
    
    # 创建格式器
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    fh.setFormatter(formatter)
    ch.setFormatter(formatter)
    
    # 添加处理器
    logger.addHandler(fh)
    logger.addHandler(ch)
    
    return logger

def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
               save_dir='./epochs', model_name='model', interval=1):
    """通用的模型训练函数
    Args:
        model: 要训练的模型
        trainloader: 训练数据加载器
        testloader: 测试数据加载器
        epochs: 训练轮数
        lr: 学习率
        device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
        save_dir: 模型保存目录
        model_name: 模型名称
        interval: 模型保存间隔
    """
    # 检查并设置GPU设备
    if not torch.cuda.is_available():
        print("CUDA不可用,将使用CPU训练")
        device = 'cpu'
    elif not device.startswith('cuda:'):
        device = f'cuda:0'
    
    # 确保device格式正确
    if device.startswith('cuda:'):
        gpu_id = int(device.split(':')[1])
        if gpu_id >= torch.cuda.device_count():
            print(f"GPU {gpu_id} 不可用,将使用GPU 0")
            device = 'cuda:0'
    
    # 设置保存目录
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    
    # 设置日志文件路径
    log_file = os.path.join(os.path.dirname(save_dir),'epochs', 'train.log')
    if not os.path.exists(os.path.dirname(log_file)):
        os.makedirs(os.path.dirname(log_file))
    
    logger = setup_logger(log_file)
    
    # 损失函数和优化器
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
    
    # 移动模型到指定设备
    model = model.to(device)
    best_acc = 0
    start_time = time.time()
    
    logger.info(f'开始训练 {model_name}')
    logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
    
    for epoch in range(epochs):
        # 训练阶段
        model.train()
        train_loss = 0
        correct = 0
        total = 0
        
        train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
        for batch_idx, (inputs, targets) in enumerate(train_pbar):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
            
            train_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
            
            # 更新进度条
            train_pbar.set_postfix({
                'loss': f'{train_loss/(batch_idx+1):.3f}',
                'acc': f'{100.*correct/total:.2f}%'
            })
        
        # 保存训练阶段的准确率
        train_acc = 100.*correct/total
        train_correct = correct
        train_total = total
        
        # 测试阶段
        model.eval()
        test_loss = 0
        correct = 0
        total = 0
        
        test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
        with torch.no_grad():
            for batch_idx, (inputs, targets) in enumerate(test_pbar):
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = model(inputs)
                loss = criterion(outputs, targets)
                
                test_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()
        
                # 更新进度条
                test_pbar.set_postfix({
                    'loss': f'{test_loss/(batch_idx+1):.3f}',
                    'acc': f'{100.*correct/total:.2f}%'
                })
        
        # 计算测试精度
        acc = 100.*correct/total
        
        # 记录训练和测试的损失与准确率
        logger.info(f'Epoch: {epoch+1} | Train Loss: {train_loss/(len(trainloader)):.3f} | Train Acc: {train_acc:.2f}% | '
                   f'Test Loss: {test_loss/(batch_idx+1):.3f} | Test Acc: {acc:.2f}%')
        
        # 保存可视化训练过程所需要的文件
        if (epoch + 1) % interval  == 0 or (epoch == 0): 
            # 创建一个专门用于收集embedding的顺序dataloader,拼接训练集和测试集
            from torch.utils.data import ConcatDataset
            
            def custom_collate_fn(batch):
                # 确保所有数据都是张量
                data = [item[0] for item in batch]  # 图像
                target = [item[1] for item in batch]  # 标签
                
                # 将列表转换为张量
                data = torch.stack(data, 0)
                target = torch.tensor(target)
                
                return [data, target]
            
            # 合并训练集和测试集
            combined_dataset = ConcatDataset([trainloader.dataset, testloader.dataset])
            
            # 创建顺序数据加载器
            ordered_loader = torch.utils.data.DataLoader(
                combined_dataset,  # 使用合并后的数据集
                batch_size=trainloader.batch_size,
                shuffle=False,  # 确保顺序加载
                num_workers=trainloader.num_workers,
                collate_fn=custom_collate_fn  # 使用自定义的collate函数
            )
            epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
            save_model = time_travel_saver(model, ordered_loader, device, epoch_save_dir, model_name, 
                         show=True, layer_name='avg_pool', auto_save_embedding=True)
            save_model.save_checkpoint_embeddings_predictions()
            if epoch == 0:
                save_model.save_lables_index(path = "../dataset")
            
        scheduler.step()
    
    logger.info('训练完成!')

def backdoor_train():
    """训练带后门的模型
    
    后门攻击设计:
    1. 触发器设计: 在图像右下角添加一个4x4的白色小方块
    2. 攻击目标: 使添加触发器的图像被分类为目标标签(默认为0)
    3. 毒化比例: 默认10%的训练数据被添加触发器和修改标签
    """
    # 加载配置文件
    config_path = Path(__file__).parent / 'train.yaml'
    with open(config_path) as f:
        config = yaml.safe_load(f)
    
    # 加载后门配置
    poison_ratio = config.get('poison_ratio', 0.1)     # 毒化比例
    target_label = config.get('target_label', 0)       # 目标标签
    trigger_size = config.get('trigger_size', 4)       # 触发器大小
    
    # 创建模型
    model = ShuffleNetG2(num_classes=10)
    
    # 获取数据加载器
    trainloader, testloader = get_cifar10_dataloaders(
        batch_size=config['batch_size'], 
        num_workers=config['num_workers'], 
        local_dataset_path=config['dataset_path'],
        shuffle=True    
    )
    
    # 向训练数据注入后门
    poisoned_trainloader = inject_backdoor(
        trainloader, 
        poison_ratio=poison_ratio, 
        target_label=target_label,
        trigger_size=trigger_size
    )
    
    # 创建用于测试后门效果的数据集(全部添加触发器,不改变标签)
    backdoor_testloader = create_backdoor_testset(
        testloader,
        trigger_size=trigger_size
    )
    
    # 训练模型
    train_model(
        model=model,
        trainloader=poisoned_trainloader,
        testloader=testloader,
        epochs=config['epochs'],
        lr=config['lr'],
        device=f'cuda:{config["gpu"]}',
        save_dir='../epochs',
        model_name='ShuffleNetG2_Backdoored',
        interval=config['interval']
    )
    
    # 评估后门效果
    evaluate_backdoor(model, testloader, backdoor_testloader, target_label, f'cuda:{config["gpu"]}')

def inject_backdoor(dataloader, poison_ratio=0.1, target_label=0, trigger_size=4):
    """向数据集中注入后门
    
    Args:
        dataloader: 原始数据加载器
        poison_ratio: 毒化比例,即有多少比例的数据被注入后门
        target_label: 攻击目标标签
        trigger_size: 触发器大小
        
    Returns:
        poisoned_dataloader: 注入后门的数据加载器
    """
    # 获取原始数据集
    dataset = dataloader.dataset
    
    # 获取数据和标签
    data_list = []
    targets_list = []
    
    # 逐批次处理数据
    for inputs, targets in dataloader:
        data_list.append(inputs)
        targets_list.append(targets)
    
    # 合并所有批次数据
    all_data = torch.cat(data_list)
    all_targets = torch.cat(targets_list)
    
    # 确定要毒化的样本数量
    num_samples = len(all_data)
    num_poisoned = int(num_samples * poison_ratio)
    
    # 随机选择要毒化的样本索引
    poison_indices = torch.randperm(num_samples)[:num_poisoned]
    # 保存中毒的索引到backdoor_index.npy
    backdoor_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'backdoor_index.npy')
    os.makedirs(os.path.dirname(backdoor_index_path), exist_ok=True)
    np.save(backdoor_index_path, poison_indices.cpu().numpy())
    print(f"已保存{num_poisoned}个中毒样本索引到 {backdoor_index_path}")
    # 添加触发器并修改标签
    for idx in poison_indices:
        # 添加触发器(右下角白色小方块)
        all_data[idx, :, -trigger_size:, -trigger_size:] = 1.0
        # 修改标签为目标标签
        all_targets[idx] = target_label
    
    # 创建新的TensorDataset
    from torch.utils.data import TensorDataset, DataLoader
    poisoned_dataset = TensorDataset(all_data, all_targets)
    
    # 创建新的DataLoader
    poisoned_dataloader = DataLoader(
        poisoned_dataset,
        batch_size=dataloader.batch_size,
        shuffle=True,
        num_workers=dataloader.num_workers
    )
    
    print(f"成功向{num_poisoned}/{num_samples} ({poison_ratio*100:.1f}%)的样本注入后门")
    return poisoned_dataloader

def create_backdoor_testset(dataloader, trigger_size=4):
    """创建用于测试后门效果的数据集,将所有测试样本添加触发器但不改变标签
    
    Args:
        dataloader: 原始测试数据加载器
        trigger_size: 触发器大小
        
    Returns:
        backdoor_testloader: 带触发器的测试数据加载器
    """
    # 获取原始数据和标签
    data_list = []
    targets_list = []
    
    for inputs, targets in dataloader:
        data_list.append(inputs)
        targets_list.append(targets)
    
    # 合并所有批次数据
    all_data = torch.cat(data_list)
    all_targets = torch.cat(targets_list)
    
    # 向所有测试样本添加触发器
    for i in range(len(all_data)):
        # 添加触发器(右下角白色小方块)
        all_data[i, :, -trigger_size:, -trigger_size:] = 1.0
    
    # 创建新的TensorDataset
    from torch.utils.data import TensorDataset, DataLoader
    backdoor_dataset = TensorDataset(all_data, all_targets)
    
    # 创建新的DataLoader
    backdoor_testloader = DataLoader(
        backdoor_dataset,
        batch_size=dataloader.batch_size,
        shuffle=False,
        num_workers=dataloader.num_workers
    )
    
    print(f"成功创建带有触发器的测试集,共{len(all_data)}个样本")
    return backdoor_testloader

def evaluate_backdoor(model, clean_testloader, backdoor_testloader, target_label, device):
    """评估后门攻击效果
    
    Args:
        model: 模型
        clean_testloader: 干净测试集
        backdoor_testloader: 带触发器的测试集
        target_label: 目标标签
        device: 计算设备
    """
    model.eval()
    model.to(device)
    
    # 评估在干净测试集上的准确率
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, targets in tqdm(clean_testloader, desc="评估干净测试集"):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
    
    clean_acc = 100. * correct / total
    print(f"在干净测试集上的准确率: {clean_acc:.2f}%")
    
    # 评估后门攻击成功率
    success = 0
    total = 0
    with torch.no_grad():
        for inputs, targets in tqdm(backdoor_testloader, desc="评估后门攻击"):
            inputs = inputs.to(device)
            outputs = model(inputs)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            # 计算被预测为目标标签的样本数量
            success += (predicted == target_label).sum().item()
    
    asr = 100. * success / total  # 攻击成功率(Attack Success Rate)
    print(f"后门攻击成功率: {asr:.2f}%")
    
    return clean_acc, asr

if __name__ == '__main__':
    backdoor_train()