File size: 11,143 Bytes
143c80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import torchvision
import torchvision.transforms as transforms
import os
import numpy as np
import random
import yaml
from torch.utils.data import TensorDataset, DataLoader

# 加载数据集

def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
    """获取CIFAR10数据集的数据加载器
    
    Args:
        batch_size: 批次大小
        num_workers: 数据加载的工作进程数
        local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
        
    Returns:
        trainloader: 训练数据加载器
        testloader: 测试数据加载器
    """
    # 数据预处理
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    # 设置数据集路径
    if local_dataset_path:
        print(f"使用本地数据集: {local_dataset_path}")
        # 检查数据集路径是否有数据集,没有的话则下载
        cifar_path = os.path.join(local_dataset_path, 'cifar-10-batches-py')
        download = not os.path.exists(cifar_path) or not os.listdir(cifar_path)
        dataset_path = local_dataset_path
    else:
        print("未指定本地数据集路径,将下载数据集")
        download = True
        dataset_path = '../dataset'

    # 创建数据集路径
    if not os.path.exists(dataset_path):
        os.makedirs(dataset_path)

    trainset = torchvision.datasets.CIFAR10(
        root=dataset_path, train=True, download=download, transform=transform_train)
    trainloader = torch.utils.data.DataLoader(
        trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)

    testset = torchvision.datasets.CIFAR10(
        root=dataset_path, train=False, download=download, transform=transform_test)
    testloader = torch.utils.data.DataLoader(
        testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)

    return trainloader, testloader

def get_noisy_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
    """获取添加噪声后的CIFAR10数据集的数据加载器
    
    Args:
        batch_size: 批次大小
        num_workers: 数据加载的工作进程数
        local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
        shuffle: 是否打乱数据
        
    Returns:
        noisy_trainloader: 添加噪声后的训练数据加载器
        testloader: 正常测试数据加载器
    """
    # 加载原始数据集
    trainloader, testloader = get_cifar10_dataloaders(
        batch_size=batch_size,
        num_workers=num_workers,
        local_dataset_path=local_dataset_path,
        shuffle=False 
    )
    
    # 设置设备
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"使用设备: {device}")
    
    # 加载配置文件
    config_path = './train.yaml'
    try:
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)
    except FileNotFoundError:
        print(f"找不到配置文件: {config_path},使用默认配置")
        config = {
            'noise_levels': {
                'gaussian': [0.1, 0.3],
                'salt_pepper': [0.05, 0.1],
                'poisson': [1.0]
            }
        }
    
    # 加载噪声参数
    noise_levels = config.get('noise_levels', {})
    gaussian_level = noise_levels.get('gaussian', [0.1, 0.2])
    salt_pepper_level = noise_levels.get('salt_pepper', [0.05, 0.1])
    poisson_level = noise_levels.get('poisson', [1.0])[0]
    
    # 获取原始数据和标签
    data_list = []
    targets_list = []
    
    for inputs, targets in trainloader:
        data_list.append(inputs)
        targets_list.append(targets)
    
    # 合并所有批次数据
    all_data = torch.cat(data_list)
    all_targets = torch.cat(targets_list)
    
    # 创建噪声信息字典
    noise_info = {
        'noise_types': [],
        'noise_levels': [],
        'noise_indices': []
    }
    
    # CIFAR10标准化参数
    mean = torch.tensor([0.4914, 0.4822, 0.4465]).view(3, 1, 1).to(device)
    std = torch.tensor([0.2023, 0.1994, 0.2010]).view(3, 1, 1).to(device)
    
    print("开始添加噪声...")
    
    # 按标签分组进行处理
    for label_value in range(10):
        # 找出所有具有当前标签的样本索引
        indices = [i for i in range(len(all_targets)) if all_targets[i].item() == label_value]
        
        noise_type = None
        noise_ratio = 0.0
        level = None
        
        # 根据标签决定噪声类型和强度
        if label_value == 2:  # 高斯噪声强 - 30%数据
            noise_type = 1  # 高斯噪声
            noise_ratio = 0.3
            level = gaussian_level[1] if len(gaussian_level) > 1 else gaussian_level[0]
        elif label_value == 3:  # 高斯噪声弱 - 10%数据
            noise_type = 1  # 高斯噪声
            noise_ratio = 0.1
            level = gaussian_level[0]
        elif label_value == 4:  # 椒盐噪声强 - 30%数据
            noise_type = 2  # 椒盐噪声
            noise_ratio = 0.3
            level = salt_pepper_level[1] if len(salt_pepper_level) > 1 else salt_pepper_level[0]
        elif label_value == 5:  # 椒盐噪声弱 - 10%数据
            noise_type = 2  # 椒盐噪声
            noise_ratio = 0.1
            level = salt_pepper_level[0]
        elif label_value == 6:  # 泊松噪声 - 30%数据
            noise_type = 3  # 泊松噪声
            noise_ratio = 0.3
            level = poisson_level
        elif label_value == 7:  # 泊松噪声 - 10%数据
            noise_type = 3  # 泊松噪声
            noise_ratio = 0.1
            level = poisson_level
        
        # 如果需要添加噪声
        if noise_type is not None and level is not None and noise_ratio > 0:
            # 计算要添加噪声的样本数量
            num_samples_to_add_noise = int(len(indices) * noise_ratio)
            if num_samples_to_add_noise == 0 and len(indices) > 0:
                num_samples_to_add_noise = 1  # 至少添加一个样本
            
            # 随机选择要添加噪声的样本索引
            indices_to_add_noise = random.sample(indices, min(num_samples_to_add_noise, len(indices)))
            
            print(f"标签 {label_value}: 为 {len(indices_to_add_noise)}/{len(indices)} 个样本添加噪声类型 {noise_type},强度 {level}")
            
            # 为选中的样本添加噪声
            for i in indices_to_add_noise:
                # 获取当前图像
                img = all_data[i].to(device)
                
                # 反标准化
                img_denorm = img * std + mean
                
                # 添加噪声
                if noise_type == 1:  # 高斯噪声
                    # 转为numpy处理
                    img_np = img_denorm.cpu().numpy()
                    img_np = np.transpose(img_np, (1, 2, 0))  # C x H x W -> H x W x C
                    img_np = np.clip(img_np, 0, 1) * 255.0
                    
                    # 添加高斯噪声
                    std_dev = level * 25
                    noise = np.random.normal(0, std_dev, img_np.shape)
                    noisy_img = img_np + noise
                    noisy_img = np.clip(noisy_img, 0, 255)
                    
                    # 转回tensor
                    noisy_img = noisy_img / 255.0
                    noisy_img = np.transpose(noisy_img, (2, 0, 1))  # H x W x C -> C x H x W
                    noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
                
                elif noise_type == 2:  # 椒盐噪声
                    # 转为numpy处理
                    img_np = img_denorm.cpu().numpy()
                    img_np = np.transpose(img_np, (1, 2, 0))  # C x H x W -> H x W x C
                    img_np = np.clip(img_np, 0, 1) * 255.0
                    
                    # 创建掩码
                    mask = np.random.random(img_np.shape[:2])
                    # 椒噪声 (黑点)
                    img_np_copy = img_np.copy()
                    img_np_copy[mask < level/2] = 0
                    # 盐噪声 (白点)
                    img_np_copy[mask > 1 - level/2] = 255
                    
                    # 转回tensor
                    noisy_img = img_np_copy / 255.0
                    noisy_img = np.transpose(noisy_img, (2, 0, 1))  # H x W x C -> C x H x W
                    noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
                
                elif noise_type == 3:  # 泊松噪声
                    # 转为numpy处理
                    img_np = img_denorm.cpu().numpy()
                    img_np = np.transpose(img_np, (1, 2, 0))  # C x H x W -> H x W x C
                    img_np = np.clip(img_np, 0, 1) * 255.0
                    
                    # 添加泊松噪声
                    lam = np.maximum(img_np / 255.0 * 10.0, 0.0001)
                    noisy_img = np.random.poisson(lam) / 10.0 * 255.0
                    noisy_img = np.clip(noisy_img, 0, 255)
                    
                    # 转回tensor
                    noisy_img = noisy_img / 255.0
                    noisy_img = np.transpose(noisy_img, (2, 0, 1))  # H x W x C -> C x H x W
                    noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
                
                # 重新标准化
                noisy_tensor_norm = (noisy_tensor - mean) / std
                
                # 更新数据
                all_data[i] = noisy_tensor_norm
                
                # 记录噪声信息
                noise_info['noise_types'].append(noise_type)
                noise_info['noise_levels'].append(level)
                noise_info['noise_indices'].append(i)
    
    # 保存添加噪声的样本索引
    noise_indices = sorted(noise_info['noise_indices'])
    noise_index_path = os.path.join('..', 'dataset', 'noise_index.npy')
    os.makedirs(os.path.dirname(noise_index_path), exist_ok=True)
    np.save(noise_index_path, noise_indices)
    print(f"已保存噪声样本索引到 {noise_index_path},共 {len(noise_indices)} 个样本")
    
    # 创建新的TensorDataset
    noisy_dataset = TensorDataset(all_data, all_targets)
    
    # 创建新的DataLoader
    noisy_trainloader = DataLoader(
        noisy_dataset,
        batch_size=batch_size,
        shuffle=shuffle,
        num_workers=num_workers
    )
    
    print(f"成功为{len(noise_info['noise_indices'])}/{len(all_data)} ({len(noise_info['noise_indices'])/len(all_data)*100:.1f}%)的样本添加噪声")
    return noisy_trainloader, testloader