|
|
|
|
|
|
|
""" |
|
噪声效果预览脚本:展示不同类型和强度的噪声对图像的影响 |
|
""" |
|
|
|
import os |
|
import torch |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
import random |
|
|
|
def add_noise_for_preview(image, noise_type, level): |
|
"""向图像添加不同类型的噪声的预览 |
|
|
|
Args: |
|
image: 输入图像 (Tensor: C x H x W),范围[0,1] |
|
noise_type: 噪声类型 (int, 1-3) |
|
level: 噪声强度 (float) |
|
|
|
Returns: |
|
noisy_image: 添加噪声后的图像 (Tensor: C x H x W) |
|
""" |
|
|
|
img_np = image.cpu().numpy() |
|
img_np = np.transpose(img_np, (1, 2, 0)) |
|
|
|
|
|
if noise_type == 1: |
|
noise = np.random.normal(0, level, img_np.shape) |
|
noisy_img = img_np + noise |
|
noisy_img = np.clip(noisy_img, 0, 1) |
|
|
|
elif noise_type == 2: |
|
|
|
noisy_img = img_np.copy() |
|
mask = np.random.random(img_np.shape[:2]) |
|
|
|
noisy_img[mask < level/2] = 0 |
|
|
|
noisy_img[mask > 1 - level/2] = 1 |
|
|
|
elif noise_type == 3: |
|
|
|
lam = np.maximum(img_np * 10.0, 0.0001) |
|
noisy_img = np.random.poisson(lam) / 10.0 |
|
noisy_img = np.clip(noisy_img, 0, 1) |
|
|
|
else: |
|
noisy_img = img_np |
|
|
|
|
|
noisy_img = np.transpose(noisy_img, (2, 0, 1)) |
|
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)) |
|
return noisy_tensor |
|
|
|
def preview_noise_effects(num_samples=5, save_dir='../results'): |
|
"""展示不同类型和强度噪声的对比效果 |
|
|
|
Args: |
|
num_samples: 要展示的样本数量 |
|
save_dir: 保存结果的目录 |
|
""" |
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
transform = transforms.Compose([transforms.ToTensor()]) |
|
testset = torchvision.datasets.CIFAR10(root='../dataset', train=False, download=True, transform=transform) |
|
|
|
|
|
indices = random.sample(range(len(testset)), num_samples) |
|
|
|
|
|
noise_configs = [ |
|
{"name": "高斯噪声(强)", "type": 1, "level": 0.2}, |
|
{"name": "高斯噪声(弱)", "type": 1, "level": 0.1}, |
|
{"name": "椒盐噪声(强)", "type": 2, "level": 0.15}, |
|
{"name": "椒盐噪声(弱)", "type": 2, "level": 0.05}, |
|
{"name": "泊松噪声(强)", "type": 3, "level": 1.0}, |
|
{"name": "泊松噪声(弱)", "type": 3, "level": 0.5} |
|
] |
|
|
|
|
|
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车') |
|
|
|
|
|
for i, idx in enumerate(indices): |
|
|
|
img, label = testset[idx] |
|
|
|
|
|
fig, axes = plt.subplots(1, len(noise_configs) + 1, figsize=(18, 3)) |
|
plt.subplots_adjust(wspace=0.3) |
|
|
|
|
|
img_np = img.permute(1, 2, 0).cpu().numpy() |
|
axes[0].imshow(img_np) |
|
axes[0].set_title(f"原始图像\n类别: {classes[label]}") |
|
axes[0].axis('off') |
|
|
|
|
|
for j, noise_config in enumerate(noise_configs): |
|
noisy_img = add_noise_for_preview(img, noise_config["type"], noise_config["level"]) |
|
noisy_img_np = noisy_img.permute(1, 2, 0).cpu().numpy() |
|
axes[j+1].imshow(np.clip(noisy_img_np, 0, 1)) |
|
axes[j+1].set_title(noise_config["name"]) |
|
axes[j+1].axis('off') |
|
|
|
|
|
plt.tight_layout() |
|
plt.savefig(os.path.join(save_dir, f'noise_preview_{i+1}.png'), dpi=150) |
|
plt.close() |
|
|
|
print(f"噪声对比预览已保存到 {save_dir} 目录") |
|
|
|
if __name__ == "__main__": |
|
|
|
preview_noise_effects(num_samples=10, save_dir='.') |
|
|