RRFRRF2's picture
ADD SENet-CIFAR10
c52fe89
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
噪声效果预览脚本:展示不同类型和强度的噪声对图像的影响
"""
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import random
def add_noise_for_preview(image, noise_type, level):
"""向图像添加不同类型的噪声的预览
Args:
image: 输入图像 (Tensor: C x H x W),范围[0,1]
noise_type: 噪声类型 (int, 1-3)
level: 噪声强度 (float)
Returns:
noisy_image: 添加噪声后的图像 (Tensor: C x H x W)
"""
# 将图像从Tensor转为Numpy数组
img_np = image.cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
# 根据噪声类型添加噪声
if noise_type == 1: # 高斯噪声
noise = np.random.normal(0, level, img_np.shape)
noisy_img = img_np + noise
noisy_img = np.clip(noisy_img, 0, 1)
elif noise_type == 2: # 椒盐噪声
# 创建掩码,确定哪些像素将变为椒盐噪声
noisy_img = img_np.copy() # 创建副本而不是直接修改原图
mask = np.random.random(img_np.shape[:2])
# 椒噪声 (黑点)
noisy_img[mask < level/2] = 0
# 盐噪声 (白点)
noisy_img[mask > 1 - level/2] = 1
elif noise_type == 3: # 泊松噪声
# 确保输入值为正数
lam = np.maximum(img_np * 10.0, 0.0001) # 避免负值和零值
noisy_img = np.random.poisson(lam) / 10.0
noisy_img = np.clip(noisy_img, 0, 1)
else: # 默认返回原图像
noisy_img = img_np
# 将噪声图像从Numpy数组转回Tensor
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32))
return noisy_tensor
def preview_noise_effects(num_samples=5, save_dir='../results'):
"""展示不同类型和强度噪声的对比效果
Args:
num_samples: 要展示的样本数量
save_dir: 保存结果的目录
"""
# 创建保存目录
os.makedirs(save_dir, exist_ok=True)
# 加载CIFAR10数据集
transform = transforms.Compose([transforms.ToTensor()])
testset = torchvision.datasets.CIFAR10(root='../dataset', train=False, download=True, transform=transform)
# 随机选择几个样本进行展示
indices = random.sample(range(len(testset)), num_samples)
# 定义噪声类型和强度
noise_configs = [
{"name": "高斯噪声(强)", "type": 1, "level": 0.2},
{"name": "高斯噪声(弱)", "type": 1, "level": 0.1},
{"name": "椒盐噪声(强)", "type": 2, "level": 0.15},
{"name": "椒盐噪声(弱)", "type": 2, "level": 0.05},
{"name": "泊松噪声(强)", "type": 3, "level": 1.0},
{"name": "泊松噪声(弱)", "type": 3, "level": 0.5}
]
# 获取CIFAR10类别名称
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')
# 对每个样本应用不同类型的噪声并展示
for i, idx in enumerate(indices):
# 获取原始图像和标签
img, label = testset[idx]
# 创建一个子图网格
fig, axes = plt.subplots(1, len(noise_configs) + 1, figsize=(18, 3))
plt.subplots_adjust(wspace=0.3)
# 显示原始图像
img_np = img.permute(1, 2, 0).cpu().numpy()
axes[0].imshow(img_np)
axes[0].set_title(f"原始图像\n类别: {classes[label]}")
axes[0].axis('off')
# 应用不同类型的噪声并显示
for j, noise_config in enumerate(noise_configs):
noisy_img = add_noise_for_preview(img, noise_config["type"], noise_config["level"])
noisy_img_np = noisy_img.permute(1, 2, 0).cpu().numpy()
axes[j+1].imshow(np.clip(noisy_img_np, 0, 1))
axes[j+1].set_title(noise_config["name"])
axes[j+1].axis('off')
# 保存图像
plt.tight_layout()
plt.savefig(os.path.join(save_dir, f'noise_preview_{i+1}.png'), dpi=150)
plt.close()
print(f"噪声对比预览已保存到 {save_dir} 目录")
if __name__ == "__main__":
# 预览噪声效果
preview_noise_effects(num_samples=10, save_dir='.')