|
import sys |
|
import os |
|
import yaml |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import time |
|
import logging |
|
import numpy as np |
|
from tqdm import tqdm |
|
from dataset_utils import get_noisy_cifar10_dataloaders |
|
from model import ShuffleNetG2 |
|
from get_representation import time_travel_saver |
|
|
|
|
|
def setup_logger(log_file): |
|
"""配置日志记录器,如果日志文件存在则覆盖 |
|
|
|
Args: |
|
log_file: 日志文件路径 |
|
|
|
Returns: |
|
logger: 配置好的日志记录器 |
|
""" |
|
|
|
logger = logging.getLogger('train') |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
if logger.hasHandlers(): |
|
logger.handlers.clear() |
|
|
|
|
|
fh = logging.FileHandler(log_file, mode='w') |
|
fh.setLevel(logging.INFO) |
|
|
|
|
|
ch = logging.StreamHandler() |
|
ch.setLevel(logging.INFO) |
|
|
|
|
|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
|
fh.setFormatter(formatter) |
|
ch.setFormatter(formatter) |
|
|
|
|
|
logger.addHandler(fh) |
|
logger.addHandler(ch) |
|
|
|
return logger |
|
|
|
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0', |
|
save_dir='./epochs', model_name='model', interval=1): |
|
"""通用的模型训练函数 |
|
Args: |
|
model: 要训练的模型 |
|
trainloader: 训练数据加载器 |
|
testloader: 测试数据加载器 |
|
epochs: 训练轮数 |
|
lr: 学习率 |
|
device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3) |
|
save_dir: 模型保存目录 |
|
model_name: 模型名称 |
|
interval: 模型保存间隔 |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
print("CUDA不可用,将使用CPU训练") |
|
device = 'cpu' |
|
elif not device.startswith('cuda:'): |
|
device = f'cuda:0' |
|
|
|
|
|
if device.startswith('cuda:'): |
|
gpu_id = int(device.split(':')[1]) |
|
if gpu_id >= torch.cuda.device_count(): |
|
print(f"GPU {gpu_id} 不可用,将使用GPU 0") |
|
device = 'cuda:0' |
|
|
|
|
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
|
|
|
|
log_file = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'epochs', 'train.log') |
|
if not os.path.exists(os.path.dirname(log_file)): |
|
os.makedirs(os.path.dirname(log_file)) |
|
|
|
logger = setup_logger(log_file) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4) |
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50) |
|
|
|
|
|
model = model.to(device) |
|
best_acc = 0 |
|
start_time = time.time() |
|
|
|
logger.info(f'开始训练 {model_name}') |
|
logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}') |
|
|
|
for epoch in range(epochs): |
|
|
|
model.train() |
|
train_loss = 0 |
|
correct = 0 |
|
total = 0 |
|
|
|
train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]') |
|
for batch_idx, (inputs, targets) in enumerate(train_pbar): |
|
inputs, targets = inputs.to(device), targets.to(device) |
|
optimizer.zero_grad() |
|
outputs = model(inputs) |
|
loss = criterion(outputs, targets) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
train_loss += loss.item() |
|
_, predicted = outputs.max(1) |
|
total += targets.size(0) |
|
correct += predicted.eq(targets).sum().item() |
|
|
|
|
|
train_pbar.set_postfix({ |
|
'loss': f'{train_loss/(batch_idx+1):.3f}', |
|
'acc': f'{100.*correct/total:.2f}%' |
|
}) |
|
|
|
|
|
train_acc = 100.*correct/total |
|
train_correct = correct |
|
train_total = total |
|
|
|
|
|
model.eval() |
|
test_loss = 0 |
|
correct = 0 |
|
total = 0 |
|
|
|
test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]') |
|
with torch.no_grad(): |
|
for batch_idx, (inputs, targets) in enumerate(test_pbar): |
|
inputs, targets = inputs.to(device), targets.to(device) |
|
outputs = model(inputs) |
|
loss = criterion(outputs, targets) |
|
|
|
test_loss += loss.item() |
|
_, predicted = outputs.max(1) |
|
total += targets.size(0) |
|
correct += predicted.eq(targets).sum().item() |
|
|
|
|
|
test_pbar.set_postfix({ |
|
'loss': f'{test_loss/(batch_idx+1):.3f}', |
|
'acc': f'{100.*correct/total:.2f}%' |
|
}) |
|
|
|
|
|
acc = 100.*correct/total |
|
|
|
|
|
logger.info(f'Epoch: {epoch+1} | Train Loss: {train_loss/(len(trainloader)):.3f} | Train Acc: {train_acc:.2f}% | ' |
|
f'Test Loss: {test_loss/(batch_idx+1):.3f} | Test Acc: {acc:.2f}%') |
|
|
|
|
|
if (epoch + 1) % interval == 0 or (epoch == 0): |
|
|
|
from torch.utils.data import ConcatDataset |
|
|
|
def custom_collate_fn(batch): |
|
|
|
data = [item[0] for item in batch] |
|
target = [item[1] for item in batch] |
|
|
|
|
|
data = torch.stack(data, 0) |
|
target = torch.tensor(target) |
|
|
|
return [data, target] |
|
|
|
|
|
combined_dataset = ConcatDataset([trainloader.dataset, testloader.dataset]) |
|
|
|
|
|
ordered_loader = torch.utils.data.DataLoader( |
|
combined_dataset, |
|
batch_size=trainloader.batch_size, |
|
shuffle=False, |
|
num_workers=trainloader.num_workers, |
|
collate_fn=custom_collate_fn |
|
) |
|
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}') |
|
save_model = time_travel_saver(model, ordered_loader, device, epoch_save_dir, model_name, |
|
show=True, layer_name='avg_pool', auto_save_embedding=True) |
|
save_model.save_checkpoint_embeddings_predictions() |
|
if epoch == 0: |
|
save_model.save_lables_index(path = "../dataset") |
|
|
|
scheduler.step() |
|
|
|
logger.info('训练完成!') |
|
|
|
|
|
def noisy_train(): |
|
"""训练带噪声的模型 |
|
|
|
Returns: |
|
model: 训练好的模型 |
|
""" |
|
|
|
config_path = './train.yaml' |
|
with open(config_path, 'r') as f: |
|
config = yaml.safe_load(f) |
|
|
|
|
|
device = f"cuda:{config.get('gpu', 0)}" |
|
|
|
batch_size = config.get('batch_size', 128) |
|
trainloader, testloader = get_noisy_cifar10_dataloaders(batch_size=batch_size) |
|
|
|
|
|
model = ShuffleNetG2().to(device) |
|
|
|
|
|
epochs = config.get('epochs', 200) |
|
lr = config.get('learning_rate', 0.1) |
|
save_dir = os.path.join('..', 'epochs') |
|
interval = config.get('interval', 2) |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
model = train_model( |
|
model=model, |
|
trainloader=trainloader, |
|
testloader=testloader, |
|
epochs=epochs, |
|
lr=lr, |
|
device=device, |
|
save_dir=save_dir, |
|
model_name='ShuffleNetG2_noisy', |
|
interval=interval |
|
) |
|
|
|
print(f"训练完成,模型已保存到 {save_dir}") |
|
return model |
|
|
|
|
|
if __name__ == '__main__': |
|
noisy_train() |