RRFRRF2's picture
ADD SENet-CIFAR10
c52fe89
import torch
import torchvision
import torchvision.transforms as transforms
import os
import numpy as np
import random
import yaml
from torch.utils.data import TensorDataset, DataLoader
# 加载数据集
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
"""获取CIFAR10数据集的数据加载器
Args:
batch_size: 批次大小
num_workers: 数据加载的工作进程数
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
Returns:
trainloader: 训练数据加载器
testloader: 测试数据加载器
"""
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# 设置数据集路径
if local_dataset_path:
print(f"使用本地数据集: {local_dataset_path}")
# 检查数据集路径是否有数据集,没有的话则下载
cifar_path = os.path.join(local_dataset_path, 'cifar-10-batches-py')
download = not os.path.exists(cifar_path) or not os.listdir(cifar_path)
dataset_path = local_dataset_path
else:
print("未指定本地数据集路径,将下载数据集")
download = True
dataset_path = '../dataset'
# 创建数据集路径
if not os.path.exists(dataset_path):
os.makedirs(dataset_path)
trainset = torchvision.datasets.CIFAR10(
root=dataset_path, train=True, download=download, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
testset = torchvision.datasets.CIFAR10(
root=dataset_path, train=False, download=download, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
return trainloader, testloader
def get_noisy_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None, shuffle=False):
"""获取添加噪声后的CIFAR10数据集的数据加载器
Args:
batch_size: 批次大小
num_workers: 数据加载的工作进程数
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
shuffle: 是否打乱数据
Returns:
noisy_trainloader: 添加噪声后的训练数据加载器
testloader: 正常测试数据加载器
"""
# 加载原始数据集
trainloader, testloader = get_cifar10_dataloaders(
batch_size=batch_size,
num_workers=num_workers,
local_dataset_path=local_dataset_path,
shuffle=False
)
# 设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"使用设备: {device}")
# 加载配置文件
config_path = './train.yaml'
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
except FileNotFoundError:
print(f"找不到配置文件: {config_path},使用默认配置")
config = {
'noise_levels': {
'gaussian': [0.1, 0.3],
'salt_pepper': [0.05, 0.1],
'poisson': [1.0]
}
}
# 加载噪声参数
noise_levels = config.get('noise_levels', {})
gaussian_level = noise_levels.get('gaussian', [0.1, 0.2])
salt_pepper_level = noise_levels.get('salt_pepper', [0.05, 0.1])
poisson_level = noise_levels.get('poisson', [1.0])[0]
# 获取原始数据和标签
data_list = []
targets_list = []
for inputs, targets in trainloader:
data_list.append(inputs)
targets_list.append(targets)
# 合并所有批次数据
all_data = torch.cat(data_list)
all_targets = torch.cat(targets_list)
# 创建噪声信息字典
noise_info = {
'noise_types': [],
'noise_levels': [],
'noise_indices': []
}
# CIFAR10标准化参数
mean = torch.tensor([0.4914, 0.4822, 0.4465]).view(3, 1, 1).to(device)
std = torch.tensor([0.2023, 0.1994, 0.2010]).view(3, 1, 1).to(device)
print("开始添加噪声...")
# 按标签分组进行处理
for label_value in range(10):
# 找出所有具有当前标签的样本索引
indices = [i for i in range(len(all_targets)) if all_targets[i].item() == label_value]
noise_type = None
noise_ratio = 0.0
level = None
# 根据标签决定噪声类型和强度
if label_value == 2: # 高斯噪声强 - 30%数据
noise_type = 1 # 高斯噪声
noise_ratio = 0.3
level = gaussian_level[1] if len(gaussian_level) > 1 else gaussian_level[0]
elif label_value == 3: # 高斯噪声弱 - 10%数据
noise_type = 1 # 高斯噪声
noise_ratio = 0.1
level = gaussian_level[0]
elif label_value == 4: # 椒盐噪声强 - 30%数据
noise_type = 2 # 椒盐噪声
noise_ratio = 0.3
level = salt_pepper_level[1] if len(salt_pepper_level) > 1 else salt_pepper_level[0]
elif label_value == 5: # 椒盐噪声弱 - 10%数据
noise_type = 2 # 椒盐噪声
noise_ratio = 0.1
level = salt_pepper_level[0]
elif label_value == 6: # 泊松噪声 - 30%数据
noise_type = 3 # 泊松噪声
noise_ratio = 0.3
level = poisson_level
elif label_value == 7: # 泊松噪声 - 10%数据
noise_type = 3 # 泊松噪声
noise_ratio = 0.1
level = poisson_level
# 如果需要添加噪声
if noise_type is not None and level is not None and noise_ratio > 0:
# 计算要添加噪声的样本数量
num_samples_to_add_noise = int(len(indices) * noise_ratio)
if num_samples_to_add_noise == 0 and len(indices) > 0:
num_samples_to_add_noise = 1 # 至少添加一个样本
# 随机选择要添加噪声的样本索引
indices_to_add_noise = random.sample(indices, min(num_samples_to_add_noise, len(indices)))
print(f"标签 {label_value}: 为 {len(indices_to_add_noise)}/{len(indices)} 个样本添加噪声类型 {noise_type},强度 {level}")
# 为选中的样本添加噪声
for i in indices_to_add_noise:
# 获取当前图像
img = all_data[i].to(device)
# 反标准化
img_denorm = img * std + mean
# 添加噪声
if noise_type == 1: # 高斯噪声
# 转为numpy处理
img_np = img_denorm.cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
img_np = np.clip(img_np, 0, 1) * 255.0
# 添加高斯噪声
std_dev = level * 25
noise = np.random.normal(0, std_dev, img_np.shape)
noisy_img = img_np + noise
noisy_img = np.clip(noisy_img, 0, 255)
# 转回tensor
noisy_img = noisy_img / 255.0
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
elif noise_type == 2: # 椒盐噪声
# 转为numpy处理
img_np = img_denorm.cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
img_np = np.clip(img_np, 0, 1) * 255.0
# 创建掩码
mask = np.random.random(img_np.shape[:2])
# 椒噪声 (黑点)
img_np_copy = img_np.copy()
img_np_copy[mask < level/2] = 0
# 盐噪声 (白点)
img_np_copy[mask > 1 - level/2] = 255
# 转回tensor
noisy_img = img_np_copy / 255.0
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
elif noise_type == 3: # 泊松噪声
# 转为numpy处理
img_np = img_denorm.cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
img_np = np.clip(img_np, 0, 1) * 255.0
# 添加泊松噪声
lam = np.maximum(img_np / 255.0 * 10.0, 0.0001)
noisy_img = np.random.poisson(lam) / 10.0 * 255.0
noisy_img = np.clip(noisy_img, 0, 255)
# 转回tensor
noisy_img = noisy_img / 255.0
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)).to(device)
# 重新标准化
noisy_tensor_norm = (noisy_tensor - mean) / std
# 更新数据
all_data[i] = noisy_tensor_norm
# 记录噪声信息
noise_info['noise_types'].append(noise_type)
noise_info['noise_levels'].append(level)
noise_info['noise_indices'].append(i)
# 保存添加噪声的样本索引
noise_indices = sorted(noise_info['noise_indices'])
noise_index_path = os.path.join('..', 'dataset', 'noise_index.npy')
os.makedirs(os.path.dirname(noise_index_path), exist_ok=True)
np.save(noise_index_path, noise_indices)
print(f"已保存噪声样本索引到 {noise_index_path},共 {len(noise_indices)} 个样本")
# 创建新的TensorDataset
noisy_dataset = TensorDataset(all_data, all_targets)
# 创建新的DataLoader
noisy_trainloader = DataLoader(
noisy_dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers
)
print(f"成功为{len(noise_info['noise_indices'])}/{len(all_data)} ({len(noise_info['noise_indices'])/len(all_data)*100:.1f}%)的样本添加噪声")
return noisy_trainloader, testloader