|
|
|
|
|
import os |
|
import yaml |
|
import numpy as np |
|
import torch |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import sys |
|
|
|
def unpickle(file): |
|
"""读取CIFAR-10数据文件""" |
|
import pickle |
|
with open(file, 'rb') as fo: |
|
dict = pickle.load(fo, encoding='bytes') |
|
return dict |
|
|
|
def add_noise_for_preview(image, noise_type, level): |
|
"""向图像添加不同类型的噪声的预览 |
|
|
|
Args: |
|
image: 输入图像 (Tensor: C x H x W),范围[0,1] |
|
noise_type: 噪声类型 (int, 1-3) |
|
level: 噪声强度 (float) |
|
|
|
Returns: |
|
noisy_image: 添加噪声后的图像 (Tensor: C x H x W) |
|
""" |
|
|
|
img_np = image.cpu().numpy() |
|
img_np = np.transpose(img_np, (1, 2, 0)) |
|
|
|
|
|
if noise_type == 1: |
|
noise = np.random.normal(0, level, img_np.shape) |
|
noisy_img = img_np + noise |
|
noisy_img = np.clip(noisy_img, 0, 1) |
|
|
|
elif noise_type == 2: |
|
|
|
noisy_img = img_np.copy() |
|
mask = np.random.random(img_np.shape[:2]) |
|
|
|
noisy_img[mask < level/2] = 0 |
|
|
|
noisy_img[mask > 1 - level/2] = 1 |
|
|
|
elif noise_type == 3: |
|
|
|
lam = np.maximum(img_np * 10.0, 0.0001) |
|
noisy_img = np.random.poisson(lam) / 10.0 |
|
noisy_img = np.clip(noisy_img, 0, 1) |
|
|
|
else: |
|
noisy_img = img_np |
|
|
|
|
|
noisy_img = np.transpose(noisy_img, (2, 0, 1)) |
|
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)) |
|
return noisy_tensor |
|
|
|
def save_images_from_cifar10_with_noisy(dataset_path, save_dir): |
|
"""从CIFAR-10数据集中保存图像,对指定索引添加噪声 |
|
|
|
Args: |
|
dataset_path: CIFAR-10数据集路径 |
|
save_dir: 图像保存路径 |
|
""" |
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
noise_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'noise_index.npy') |
|
if os.path.exists(noise_index_path): |
|
noise_indices = np.load(noise_index_path) |
|
print(f"已加载 {len(noise_indices)} 个噪声样本索引") |
|
else: |
|
noise_indices = [] |
|
print("未找到噪声索引文件,将不添加噪声") |
|
|
|
|
|
config_path = './train.yaml' |
|
with open(config_path, 'r') as f: |
|
config = yaml.safe_load(f) |
|
|
|
|
|
noise_levels = config.get('noise_levels', {}) |
|
gaussian_level = noise_levels.get('gaussian', [0.3]) |
|
salt_pepper_level = noise_levels.get('salt_pepper', [0.1]) |
|
poisson_level = noise_levels.get('poisson', [1.0])[0] |
|
|
|
|
|
train_data = [] |
|
train_labels = [] |
|
|
|
|
|
for i in range(1, 6): |
|
batch_file = os.path.join(dataset_path, f'data_batch_{i}') |
|
if os.path.exists(batch_file): |
|
print(f"读取训练批次 {i}") |
|
batch = unpickle(batch_file) |
|
train_data.append(batch[b'data']) |
|
train_labels.extend(batch[b'labels']) |
|
|
|
|
|
if train_data: |
|
train_data = np.vstack(train_data) |
|
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) |
|
|
|
|
|
test_file = os.path.join(dataset_path, 'test_batch') |
|
if os.path.exists(test_file): |
|
print("读取测试数据") |
|
test_batch = unpickle(test_file) |
|
test_data = test_batch[b'data'] |
|
test_labels = test_batch[b'labels'] |
|
test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) |
|
else: |
|
test_data = [] |
|
test_labels = [] |
|
|
|
|
|
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data) |
|
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
print(f"保存 {len(all_data)} 张图像...") |
|
|
|
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))): |
|
|
|
if i in noise_indices: |
|
|
|
noise_type = None |
|
level = None |
|
|
|
if label == 2: |
|
noise_type = 1 |
|
level = gaussian_level[1] |
|
elif label == 3: |
|
noise_type = 1 |
|
level = gaussian_level[0] |
|
elif label == 4: |
|
noise_type = 2 |
|
level = salt_pepper_level[1] |
|
elif label == 5: |
|
noise_type = 2 |
|
level = salt_pepper_level[0] |
|
elif label == 6: |
|
noise_type = 3 |
|
level = poisson_level |
|
elif label == 7: |
|
noise_type = 3 |
|
level = poisson_level |
|
|
|
|
|
if noise_type is not None and level is not None: |
|
|
|
img_tensor = torch.from_numpy(img.astype(np.float32) / 255.0).permute(2, 0, 1).to(device) |
|
|
|
noisy_tensor = add_noise_for_preview(img_tensor, noise_type, level) |
|
|
|
noisy_img = (noisy_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) |
|
noisy_pil = Image.fromarray(noisy_img) |
|
noisy_pil.save(os.path.join(save_dir, f"{i}.png")) |
|
else: |
|
|
|
img_pil = Image.fromarray(img) |
|
img_pil.save(os.path.join(save_dir, f"{i}.png")) |
|
else: |
|
|
|
img_pil = Image.fromarray(img) |
|
img_pil.save(os.path.join(save_dir, f"{i}.png")) |
|
|
|
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}, 其中 {len(noise_indices)} 张添加了噪声") |
|
|
|
if __name__ == "__main__": |
|
|
|
dataset_path = "../dataset/cifar-10-batches-py" |
|
save_dir = "../dataset/raw_data" |
|
|
|
|
|
if not os.path.exists(dataset_path): |
|
print("数据集不存在,正在下载...") |
|
os.makedirs("../dataset", exist_ok=True) |
|
transform = transforms.Compose([transforms.ToTensor()]) |
|
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform) |
|
|
|
|
|
save_images_from_cifar10_with_noisy(dataset_path, save_dir) |