mtpnet_image_models
/
SwinTransformer-CIFAR10
/Classification-normal
/scripts
/get_representation.py
import torch | |
import torch.nn as nn | |
import numpy as np | |
import os | |
import json | |
from tqdm import tqdm | |
class time_travel_saver: | |
"""可视化数据提取器 | |
用于保存模型训练过程中的各种数据,包括: | |
1. 模型权重 (.pth) | |
2. 高维特征 (representation/*.npy) | |
3. 预测结果 (prediction/*.npy) | |
4. 标签数据 (label/labels.npy) | |
""" | |
def __init__(self, model, dataloader, device, save_dir, model_name, | |
auto_save_embedding=False, layer_name=None,show = False): | |
"""初始化 | |
Args: | |
model: 要保存的模型实例 | |
dataloader: 数据加载器(必须是顺序加载的) | |
device: 计算设备(cpu or gpu) | |
save_dir: 保存根目录 | |
model_name: 模型名称 | |
""" | |
self.model = model | |
self.dataloader = dataloader | |
self.device = device | |
self.save_dir = save_dir | |
self.model_name = model_name | |
self.auto_save = auto_save_embedding | |
self.layer_name = layer_name | |
if show and not layer_name: | |
layer_dimensions = self.show_dimensions() | |
# print(layer_dimensions) | |
def show_dimensions(self): | |
"""显示模型中所有层的名称和对应的维度 | |
这个函数会输出模型中所有层的名称和它们的输出维度, | |
帮助用户选择合适的层来提取特征。 | |
Returns: | |
layer_dimensions: 包含层名称和维度的字典 | |
""" | |
activation = {} | |
layer_dimensions = {} | |
def get_activation(name): | |
def hook(model, input, output): | |
activation[name] = output.detach() | |
return hook | |
# 注册钩子到所有层 | |
handles = [] | |
for name, module in self.model.named_modules(): | |
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict): | |
handles.append(module.register_forward_hook(get_activation(name))) | |
self.model.eval() | |
with torch.no_grad(): | |
# 获取一个batch来分析每层的输出维度 | |
inputs, _ = next(iter(self.dataloader)) | |
inputs = inputs.to(self.device) | |
_ = self.model(inputs) | |
# 分析所有层的输出维度 | |
print("\n模型各层的名称和维度:") | |
print("-" * 50) | |
print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}") | |
print("-" * 50) | |
for name, feat in activation.items(): | |
if feat is None: | |
continue | |
# 获取特征维度(展平后) | |
feat_dim = feat.view(feat.size(0), -1).size(1) | |
layer_dimensions[name] = feat_dim | |
# 打印层信息 | |
shape_str = str(list(feat.shape)) | |
print(f"{name:<40} {feat_dim:<15} {shape_str}") | |
print("-" * 50) | |
print("注: 特征维度是将输出张量展平后的维度大小") | |
print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层") | |
print("例如:layer_name='avg_pool'或layer_name='layer4'等") | |
# 移除所有钩子 | |
for handle in handles: | |
handle.remove() | |
return layer_dimensions | |
def _extract_features_and_predictions(self): | |
"""提取特征和预测结果 | |
Returns: | |
features: 高维特征 [样本数, 特征维度] | |
predictions: 预测结果 [样本数, 类别数] | |
""" | |
features = [] | |
predictions = [] | |
indices = [] | |
activation = {} | |
def get_activation(name): | |
def hook(model, input, output): | |
# 只在需要时保存激活值,避免内存浪费 | |
if name not in activation or activation[name] is None: | |
activation[name] = output.detach() | |
return hook | |
# 根据层的名称或维度来选择层 | |
# 注册钩子到所有层 | |
handles = [] | |
for name, module in self.model.named_modules(): | |
if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict): | |
handles.append(module.register_forward_hook(get_activation(name))) | |
self.model.eval() | |
with torch.no_grad(): | |
# 首先获取一个batch来分析每层的输出维度 | |
inputs, _ = next(iter(self.dataloader)) | |
inputs = inputs.to(self.device) | |
_ = self.model(inputs) | |
# 如果指定了层名,则直接使用该层 | |
if self.layer_name is not None: | |
if self.layer_name not in activation: | |
raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中") | |
feat = activation[self.layer_name] | |
if feat is None: | |
raise ValueError(f"指定的层 {self.layer_name} 没有输出特征") | |
suitable_layer_name = self.layer_name | |
suitable_dim = feat.view(feat.size(0), -1).size(1) | |
print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}") | |
else: | |
# 找到维度在指定范围内的层 | |
target_dim_range = (256, 2048) | |
suitable_layer_name = None | |
suitable_dim = None | |
# 分析所有层的输出维度 | |
for name, feat in activation.items(): | |
if feat is None: | |
continue | |
feat_dim = feat.view(feat.size(0), -1).size(1) | |
if target_dim_range[0] <= feat_dim <= target_dim_range[1]: | |
suitable_layer_name = name | |
suitable_dim = feat_dim | |
break | |
if suitable_layer_name is None: | |
raise ValueError("没有找到合适维度的特征层") | |
print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}") | |
# 保存层信息 | |
layer_info = { | |
'layer_id': suitable_layer_name, | |
'dim': suitable_dim | |
} | |
layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json') | |
with open(layer_info_path, 'w') as f: | |
json.dump(layer_info, f) | |
# 清除第一次运行的激活值 | |
activation.clear() | |
# 现在处理所有数据 | |
for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")): | |
inputs = inputs.to(self.device) | |
outputs = self.model(inputs) # 获取预测结果 | |
# 获取并处理特征 | |
feat = activation[suitable_layer_name] | |
flat_features = torch.flatten(feat, start_dim=1) | |
features.append(flat_features.cpu().numpy()) | |
predictions.append(outputs.cpu().numpy()) | |
# 清除本次的激活值 | |
activation.clear() | |
# 移除所有钩子 | |
for handle in handles: | |
handle.remove() | |
if len(features) > 0: | |
features = np.vstack(features) | |
predictions = np.vstack(predictions) | |
return features, predictions | |
else: | |
return np.array([]), np.array([]) | |
def save_lables_index(self, path): | |
"""保存标签数据和索引信息 | |
Args: | |
path: 保存路径 | |
""" | |
os.makedirs(path, exist_ok=True) | |
labels_path = os.path.join(path, 'labels.npy') | |
index_path = os.path.join(path, 'index.json') | |
# 尝试从不同的属性获取标签 | |
try: | |
if hasattr(self.dataloader.dataset, 'targets'): | |
# CIFAR10/CIFAR100使用targets属性 | |
labels = np.array(self.dataloader.dataset.targets) | |
elif hasattr(self.dataloader.dataset, 'labels'): | |
# 某些数据集使用labels属性 | |
labels = np.array(self.dataloader.dataset.labels) | |
else: | |
# 如果上面的方法都不起作用,则从数据加载器中收集标签 | |
labels = [] | |
for _, batch_labels in self.dataloader: | |
labels.append(batch_labels.numpy()) | |
labels = np.concatenate(labels) | |
# 保存标签数据 | |
np.save(labels_path, labels) | |
print(f"标签数据已保存到 {labels_path}") | |
# 创建数据集索引 | |
num_samples = len(labels) | |
indices = list(range(num_samples)) | |
# 创建索引字典 | |
index_dict = { | |
"train": indices, # 所有数据默认为训练集 | |
"test": [], # 初始为空 | |
"validation": [] # 初始为空 | |
} | |
# 保存索引到JSON文件 | |
with open(index_path, 'w') as f: | |
json.dump(index_dict, f, indent=4) | |
print(f"数据集索引已保存到 {index_path}") | |
except Exception as e: | |
print(f"保存标签和索引时出错: {e}") | |
def save_checkpoint_embeddings_predictions(self, model = None): | |
"""保存所有数据""" | |
if model is not None: | |
self.model = model | |
# 保存模型权重 | |
os.makedirs(self.save_dir, exist_ok=True) | |
model_path = os.path.join(self.save_dir,'model.pth') | |
torch.save(self.model.state_dict(), model_path) | |
if self.auto_save: | |
# 提取并保存特征和预测结果 | |
features, predictions = self._extract_features_and_predictions() | |
# 保存特征 | |
np.save(os.path.join(self.save_dir, 'embeddings.npy'), features) | |
# 保存预测结果 | |
np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions) | |
print("\n保存了以下数据:") | |
print(f"- 模型权重: {model_path}") | |
print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]") | |
print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]") |