|
|
|
|
|
import os |
|
import yaml |
|
import numpy as np |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
def unpickle(file): |
|
"""读取CIFAR-10数据文件""" |
|
import pickle |
|
with open(file, 'rb') as fo: |
|
dict = pickle.load(fo, encoding='bytes') |
|
return dict |
|
|
|
def save_images_from_cifar10_with_backdoor(dataset_path, save_dir): |
|
"""从CIFAR-10数据集中保存图像,并在中毒样本上添加触发器 |
|
|
|
Args: |
|
dataset_path: CIFAR-10数据集路径 |
|
save_dir: 图像保存路径 |
|
""" |
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
backdoor_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'backdoor_index.npy') |
|
if os.path.exists(backdoor_index_path): |
|
backdoor_indices = np.load(backdoor_index_path) |
|
print(f"已加载{len(backdoor_indices)}个中毒样本索引") |
|
else: |
|
backdoor_indices = [] |
|
print("未找到中毒索引文件,将不添加触发器") |
|
|
|
|
|
train_data = [] |
|
train_labels = [] |
|
|
|
|
|
for i in range(1, 6): |
|
batch_file = os.path.join(dataset_path, f'data_batch_{i}') |
|
if os.path.exists(batch_file): |
|
print(f"读取训练批次 {i}") |
|
batch = unpickle(batch_file) |
|
train_data.append(batch[b'data']) |
|
train_labels.extend(batch[b'labels']) |
|
|
|
|
|
if train_data: |
|
train_data = np.vstack(train_data) |
|
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) |
|
|
|
|
|
test_file = os.path.join(dataset_path, 'test_batch') |
|
if os.path.exists(test_file): |
|
print("读取测试数据") |
|
test_batch = unpickle(test_file) |
|
test_data = test_batch[b'data'] |
|
test_labels = test_batch[b'labels'] |
|
test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) |
|
else: |
|
test_data = [] |
|
test_labels = [] |
|
|
|
|
|
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data) |
|
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels) |
|
|
|
config_path ='./train.yaml' |
|
with open(config_path) as f: |
|
config = yaml.safe_load(f) |
|
trigger_size = config.get('trigger_size', 4) |
|
|
|
|
|
print(f"保存 {len(all_data)} 张图像...") |
|
|
|
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))): |
|
|
|
img_pil = Image.fromarray(img) |
|
|
|
|
|
if i in backdoor_indices: |
|
|
|
img_backdoor = img.copy() |
|
|
|
img_backdoor[-trigger_size:, -trigger_size:, :] = 255 |
|
|
|
img_backdoor_pil = Image.fromarray(img_backdoor) |
|
img_backdoor_pil.save(os.path.join(save_dir, f"{i}.png")) |
|
|
|
else: |
|
img_pil.save(os.path.join(save_dir, f"{i}.png")) |
|
|
|
print(f"完成! {len(all_data)} 张原始图像已保存到 {save_dir}") |
|
|
|
if __name__ == "__main__": |
|
|
|
dataset_path = "../dataset/cifar-10-batches-py" |
|
save_dir = "../dataset/raw_data" |
|
|
|
|
|
if not os.path.exists(dataset_path): |
|
print("数据集不存在,正在下载...") |
|
os.makedirs("../dataset", exist_ok=True) |
|
transform = transforms.Compose([transforms.ToTensor()]) |
|
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform) |
|
|
|
|
|
save_images_from_cifar10_with_backdoor(dataset_path, save_dir) |