RRFRRF2 commited on
Commit
da8b0a4
·
1 Parent(s): 858c41b

feat:add get_raw_data.py

Browse files
ResNet-CIFAR10/Classification-normal/scripts/get_raw_data.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
2
+
3
+ import os
4
+ import numpy as np
5
+ import torchvision
6
+ import torchvision.transforms as transforms
7
+ from PIL import Image
8
+ from tqdm import tqdm
9
+
10
+ def unpickle(file):
11
+ """读取CIFAR-10数据文件"""
12
+ import pickle
13
+ with open(file, 'rb') as fo:
14
+ dict = pickle.load(fo, encoding='bytes')
15
+ return dict
16
+
17
+ def save_images_from_cifar10(dataset_path, save_dir):
18
+ """从CIFAR-10数据集中保存图像
19
+
20
+ Args:
21
+ dataset_path: CIFAR-10数据集路径
22
+ save_dir: 图像保存路径
23
+ """
24
+ # 创建保存目录
25
+ os.makedirs(save_dir, exist_ok=True)
26
+
27
+ # 获取训练集数据
28
+ train_data = []
29
+ train_labels = []
30
+
31
+ # 读取训练数据
32
+ for i in range(1, 6):
33
+ batch_file = os.path.join(dataset_path, f'data_batch_{i}')
34
+ if os.path.exists(batch_file):
35
+ print(f"读取训练批次 {i}")
36
+ batch = unpickle(batch_file)
37
+ train_data.append(batch[b'data'])
38
+ train_labels.extend(batch[b'labels'])
39
+
40
+ # 合并所有训练数据
41
+ if train_data:
42
+ train_data = np.vstack(train_data)
43
+ train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
44
+
45
+ # 读取测试数据
46
+ test_file = os.path.join(dataset_path, 'test_batch')
47
+ # if os.path.exists(test_file):
48
+ # print("读取测试数据")
49
+ # test_batch = unpickle(test_file)
50
+ # test_data = test_batch[b'data']
51
+ # test_labels = test_batch[b'labels']
52
+ # test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
53
+ # else:
54
+ test_data = []
55
+ test_labels = []
56
+
57
+ # 合并训练和测试数据
58
+ all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
59
+ all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
60
+
61
+ # 保存图像
62
+ print(f"保存 {len(all_data)} 张图像...")
63
+ for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
64
+ img = Image.fromarray(img)
65
+ img.save(os.path.join(save_dir, f"{i+1}.png"))
66
+
67
+ print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
68
+
69
+ if __name__ == "__main__":
70
+ # 设置路径
71
+ dataset_path = "../dataset/cifar-10-batches-py"
72
+ save_dir = "../dataset/raw_data"
73
+
74
+ # 检查数据集是否存在,如果不存在则下载
75
+ if not os.path.exists(dataset_path):
76
+ print("数据集不存在,正在下载...")
77
+ os.makedirs("../dataset", exist_ok=True)
78
+ transform = transforms.Compose([transforms.ToTensor()])
79
+ trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
80
+
81
+ # 保存图像
82
+ save_images_from_cifar10(dataset_path, save_dir)