feat:add get_raw_data.py
Browse files
ResNet-CIFAR10/Classification-normal/scripts/get_raw_data.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
|
2 |
+
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import torchvision
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from PIL import Image
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
def unpickle(file):
|
11 |
+
"""读取CIFAR-10数据文件"""
|
12 |
+
import pickle
|
13 |
+
with open(file, 'rb') as fo:
|
14 |
+
dict = pickle.load(fo, encoding='bytes')
|
15 |
+
return dict
|
16 |
+
|
17 |
+
def save_images_from_cifar10(dataset_path, save_dir):
|
18 |
+
"""从CIFAR-10数据集中保存图像
|
19 |
+
|
20 |
+
Args:
|
21 |
+
dataset_path: CIFAR-10数据集路径
|
22 |
+
save_dir: 图像保存路径
|
23 |
+
"""
|
24 |
+
# 创建保存目录
|
25 |
+
os.makedirs(save_dir, exist_ok=True)
|
26 |
+
|
27 |
+
# 获取训练集数据
|
28 |
+
train_data = []
|
29 |
+
train_labels = []
|
30 |
+
|
31 |
+
# 读取训练数据
|
32 |
+
for i in range(1, 6):
|
33 |
+
batch_file = os.path.join(dataset_path, f'data_batch_{i}')
|
34 |
+
if os.path.exists(batch_file):
|
35 |
+
print(f"读取训练批次 {i}")
|
36 |
+
batch = unpickle(batch_file)
|
37 |
+
train_data.append(batch[b'data'])
|
38 |
+
train_labels.extend(batch[b'labels'])
|
39 |
+
|
40 |
+
# 合并所有训练数据
|
41 |
+
if train_data:
|
42 |
+
train_data = np.vstack(train_data)
|
43 |
+
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
44 |
+
|
45 |
+
# 读取测试数据
|
46 |
+
test_file = os.path.join(dataset_path, 'test_batch')
|
47 |
+
# if os.path.exists(test_file):
|
48 |
+
# print("读取测试数据")
|
49 |
+
# test_batch = unpickle(test_file)
|
50 |
+
# test_data = test_batch[b'data']
|
51 |
+
# test_labels = test_batch[b'labels']
|
52 |
+
# test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
53 |
+
# else:
|
54 |
+
test_data = []
|
55 |
+
test_labels = []
|
56 |
+
|
57 |
+
# 合并训练和测试数据
|
58 |
+
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
|
59 |
+
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
|
60 |
+
|
61 |
+
# 保存图像
|
62 |
+
print(f"保存 {len(all_data)} 张图像...")
|
63 |
+
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
64 |
+
img = Image.fromarray(img)
|
65 |
+
img.save(os.path.join(save_dir, f"{i+1}.png"))
|
66 |
+
|
67 |
+
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
# 设置路径
|
71 |
+
dataset_path = "../dataset/cifar-10-batches-py"
|
72 |
+
save_dir = "../dataset/raw_data"
|
73 |
+
|
74 |
+
# 检查数据集是否存在,如果不存在则下载
|
75 |
+
if not os.path.exists(dataset_path):
|
76 |
+
print("数据集不存在,正在下载...")
|
77 |
+
os.makedirs("../dataset", exist_ok=True)
|
78 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
79 |
+
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
|
80 |
+
|
81 |
+
# 保存图像
|
82 |
+
save_images_from_cifar10(dataset_path, save_dir)
|