fix: index from 0
Browse files- ResNet-CIFAR10/Classification-backdoor/dataset/index.json +4 -4
- ResNet-CIFAR10/Classification-backdoor/scripts/create_index.py +2 -2
- ResNet-CIFAR10/Classification-backdoor/scripts/get_raw_data.py +2 -2
- ResNet-CIFAR10/Classification-backdoor/scripts/get_representation.py +2 -2
- ResNet-CIFAR10/Classification-normal/dataset/index.json +2 -2
- ResNet-CIFAR10/Classification-normal/scripts/get_raw_data.py +1 -1
- ResNet-CIFAR10/Classification-normal/scripts/get_representation.py +1 -1
ResNet-CIFAR10/Classification-backdoor/dataset/index.json
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
{
|
2 |
"train": [
|
|
|
3 |
1,
|
4 |
2,
|
5 |
3,
|
@@ -49998,10 +49999,10 @@
|
|
49998 |
49996,
|
49999 |
49997,
|
50000 |
49998,
|
50001 |
-
49999
|
50002 |
-
50000
|
50003 |
],
|
50004 |
"test": [
|
|
|
50005 |
50001,
|
50006 |
50002,
|
50007 |
50003,
|
@@ -60000,8 +60001,7 @@
|
|
60000 |
59996,
|
60001 |
59997,
|
60002 |
59998,
|
60003 |
-
59999
|
60004 |
-
60000
|
60005 |
],
|
60006 |
"validation": []
|
60007 |
}
|
|
|
1 |
{
|
2 |
"train": [
|
3 |
+
0,
|
4 |
1,
|
5 |
2,
|
6 |
3,
|
|
|
49999 |
49996,
|
50000 |
49997,
|
50001 |
49998,
|
50002 |
+
49999
|
|
|
50003 |
],
|
50004 |
"test": [
|
50005 |
+
50000,
|
50006 |
50001,
|
50007 |
50002,
|
50008 |
50003,
|
|
|
60001 |
59996,
|
60002 |
59997,
|
60003 |
59998,
|
60004 |
+
59999
|
|
|
60005 |
],
|
60006 |
"validation": []
|
60007 |
}
|
ResNet-CIFAR10/Classification-backdoor/scripts/create_index.py
CHANGED
@@ -3,8 +3,8 @@ import os
|
|
3 |
|
4 |
# 创建完整的索引
|
5 |
index_dict = {
|
6 |
-
"train": list(range(
|
7 |
-
"test": list(range(
|
8 |
"validation": [] # 空验证集
|
9 |
}
|
10 |
|
|
|
3 |
|
4 |
# 创建完整的索引
|
5 |
index_dict = {
|
6 |
+
"train": list(range( 50000)), # 从1到50000的训练索引
|
7 |
+
"test": list(range(50000, 60000)), # 从50001到60000的测试索引
|
8 |
"validation": [] # 空验证集
|
9 |
}
|
10 |
|
ResNet-CIFAR10/Classification-backdoor/scripts/get_raw_data.py
CHANGED
@@ -88,10 +88,10 @@ def save_images_from_cifar10_with_backdoor(dataset_path, save_dir):
|
|
88 |
img_backdoor[-trigger_size:, -trigger_size:, :] = 255
|
89 |
# 保存带触发器的图像
|
90 |
img_backdoor_pil = Image.fromarray(img_backdoor)
|
91 |
-
img_backdoor_pil.save(os.path.join(save_dir, f"{i
|
92 |
|
93 |
else:
|
94 |
-
img_pil.save(os.path.join(save_dir, f"{i
|
95 |
|
96 |
print(f"完成! {len(all_data)} 张原始图像已保存到 {save_dir}")
|
97 |
|
|
|
88 |
img_backdoor[-trigger_size:, -trigger_size:, :] = 255
|
89 |
# 保存带触发器的图像
|
90 |
img_backdoor_pil = Image.fromarray(img_backdoor)
|
91 |
+
img_backdoor_pil.save(os.path.join(save_dir, f"{i}.png"))
|
92 |
|
93 |
else:
|
94 |
+
img_pil.save(os.path.join(save_dir, f"{i}.png"))
|
95 |
|
96 |
print(f"完成! {len(all_data)} 张原始图像已保存到 {save_dir}")
|
97 |
|
ResNet-CIFAR10/Classification-backdoor/scripts/get_representation.py
CHANGED
@@ -235,8 +235,8 @@ class time_travel_saver:
|
|
235 |
|
236 |
# 创建索引字典
|
237 |
index_dict = {
|
238 |
-
"train": list(range(
|
239 |
-
"test": list(range(
|
240 |
"validation": [] # 初始为空
|
241 |
}
|
242 |
|
|
|
235 |
|
236 |
# 创建索引字典
|
237 |
index_dict = {
|
238 |
+
"train": list(range(50000)), # 所有数据默认为训练集
|
239 |
+
"test": list(range(50000, 60000)), # 测试集索引从50000到59999
|
240 |
"validation": [] # 初始为空
|
241 |
}
|
242 |
|
ResNet-CIFAR10/Classification-normal/dataset/index.json
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
{
|
2 |
"train": [
|
|
|
3 |
1,
|
4 |
2,
|
5 |
3,
|
@@ -49998,8 +49999,7 @@
|
|
49998 |
49996,
|
49999 |
49997,
|
50000 |
49998,
|
50001 |
-
49999
|
50002 |
-
50000
|
50003 |
],
|
50004 |
"test": [],
|
50005 |
"validation": []
|
|
|
1 |
{
|
2 |
"train": [
|
3 |
+
0,
|
4 |
1,
|
5 |
2,
|
6 |
3,
|
|
|
49999 |
49996,
|
50000 |
49997,
|
50001 |
49998,
|
50002 |
+
49999
|
|
|
50003 |
],
|
50004 |
"test": [],
|
50005 |
"validation": []
|
ResNet-CIFAR10/Classification-normal/scripts/get_raw_data.py
CHANGED
@@ -62,7 +62,7 @@ def save_images_from_cifar10(dataset_path, save_dir):
|
|
62 |
print(f"保存 {len(all_data)} 张图像...")
|
63 |
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
64 |
img = Image.fromarray(img)
|
65 |
-
img.save(os.path.join(save_dir, f"{i
|
66 |
|
67 |
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
|
68 |
|
|
|
62 |
print(f"保存 {len(all_data)} 张图像...")
|
63 |
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
64 |
img = Image.fromarray(img)
|
65 |
+
img.save(os.path.join(save_dir, f"{i}.png"))
|
66 |
|
67 |
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
|
68 |
|
ResNet-CIFAR10/Classification-normal/scripts/get_representation.py
CHANGED
@@ -231,7 +231,7 @@ class time_travel_saver:
|
|
231 |
|
232 |
# 创建数据集索引
|
233 |
num_samples = len(labels)
|
234 |
-
indices = list(range(
|
235 |
|
236 |
# 创建索引字典
|
237 |
index_dict = {
|
|
|
231 |
|
232 |
# 创建数据集索引
|
233 |
num_samples = len(labels)
|
234 |
+
indices = list(range(num_samples))
|
235 |
|
236 |
# 创建索引字典
|
237 |
index_dict = {
|