RRFRRF2 commited on
Commit
f97008e
·
1 Parent(s): 8a76a3b

fix: index from 0

Browse files
ResNet-CIFAR10/Classification-backdoor/dataset/index.json CHANGED
@@ -1,5 +1,6 @@
1
  {
2
  "train": [
 
3
  1,
4
  2,
5
  3,
@@ -49998,10 +49999,10 @@
49998
  49996,
49999
  49997,
50000
  49998,
50001
- 49999,
50002
- 50000
50003
  ],
50004
  "test": [
 
50005
  50001,
50006
  50002,
50007
  50003,
@@ -60000,8 +60001,7 @@
60000
  59996,
60001
  59997,
60002
  59998,
60003
- 59999,
60004
- 60000
60005
  ],
60006
  "validation": []
60007
  }
 
1
  {
2
  "train": [
3
+ 0,
4
  1,
5
  2,
6
  3,
 
49999
  49996,
50000
  49997,
50001
  49998,
50002
+ 49999
 
50003
  ],
50004
  "test": [
50005
+ 50000,
50006
  50001,
50007
  50002,
50008
  50003,
 
60001
  59996,
60002
  59997,
60003
  59998,
60004
+ 59999
 
60005
  ],
60006
  "validation": []
60007
  }
ResNet-CIFAR10/Classification-backdoor/scripts/create_index.py CHANGED
@@ -3,8 +3,8 @@ import os
3
 
4
  # 创建完整的索引
5
  index_dict = {
6
- "train": list(range(1, 50001)), # 从1到50000的训练索引
7
- "test": list(range(50001, 60001)), # 从50001到60000的测试索引
8
  "validation": [] # 空验证集
9
  }
10
 
 
3
 
4
  # 创建完整的索引
5
  index_dict = {
6
+ "train": list(range( 50000)), # 从1到50000的训练索引
7
+ "test": list(range(50000, 60000)), # 从50001到60000的测试索引
8
  "validation": [] # 空验证集
9
  }
10
 
ResNet-CIFAR10/Classification-backdoor/scripts/get_raw_data.py CHANGED
@@ -88,10 +88,10 @@ def save_images_from_cifar10_with_backdoor(dataset_path, save_dir):
88
  img_backdoor[-trigger_size:, -trigger_size:, :] = 255
89
  # 保存带触发器的图像
90
  img_backdoor_pil = Image.fromarray(img_backdoor)
91
- img_backdoor_pil.save(os.path.join(save_dir, f"{i+1}.png"))
92
 
93
  else:
94
- img_pil.save(os.path.join(save_dir, f"{i+1}.png"))
95
 
96
  print(f"完成! {len(all_data)} 张原始图像已保存到 {save_dir}")
97
 
 
88
  img_backdoor[-trigger_size:, -trigger_size:, :] = 255
89
  # 保存带触发器的图像
90
  img_backdoor_pil = Image.fromarray(img_backdoor)
91
+ img_backdoor_pil.save(os.path.join(save_dir, f"{i}.png"))
92
 
93
  else:
94
+ img_pil.save(os.path.join(save_dir, f"{i}.png"))
95
 
96
  print(f"完成! {len(all_data)} 张原始图像已保存到 {save_dir}")
97
 
ResNet-CIFAR10/Classification-backdoor/scripts/get_representation.py CHANGED
@@ -235,8 +235,8 @@ class time_travel_saver:
235
 
236
  # 创建索引字典
237
  index_dict = {
238
- "train": list(range(1,50001)), # 所有数据默认为训练集
239
- "test": list(range(50001, 60001)), # 测试集索引从50000到59999
240
  "validation": [] # 初始为空
241
  }
242
 
 
235
 
236
  # 创建索引字典
237
  index_dict = {
238
+ "train": list(range(50000)), # 所有数据默认为训练集
239
+ "test": list(range(50000, 60000)), # 测试集索引从50000到59999
240
  "validation": [] # 初始为空
241
  }
242
 
ResNet-CIFAR10/Classification-normal/dataset/index.json CHANGED
@@ -1,5 +1,6 @@
1
  {
2
  "train": [
 
3
  1,
4
  2,
5
  3,
@@ -49998,8 +49999,7 @@
49998
  49996,
49999
  49997,
50000
  49998,
50001
- 49999,
50002
- 50000
50003
  ],
50004
  "test": [],
50005
  "validation": []
 
1
  {
2
  "train": [
3
+ 0,
4
  1,
5
  2,
6
  3,
 
49999
  49996,
50000
  49997,
50001
  49998,
50002
+ 49999
 
50003
  ],
50004
  "test": [],
50005
  "validation": []
ResNet-CIFAR10/Classification-normal/scripts/get_raw_data.py CHANGED
@@ -62,7 +62,7 @@ def save_images_from_cifar10(dataset_path, save_dir):
62
  print(f"保存 {len(all_data)} 张图像...")
63
  for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
64
  img = Image.fromarray(img)
65
- img.save(os.path.join(save_dir, f"{i+1}.png"))
66
 
67
  print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
68
 
 
62
  print(f"保存 {len(all_data)} 张图像...")
63
  for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
64
  img = Image.fromarray(img)
65
+ img.save(os.path.join(save_dir, f"{i}.png"))
66
 
67
  print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
68
 
ResNet-CIFAR10/Classification-normal/scripts/get_representation.py CHANGED
@@ -231,7 +231,7 @@ class time_travel_saver:
231
 
232
  # 创建数据集索引
233
  num_samples = len(labels)
234
- indices = list(range(1,num_samples+1))
235
 
236
  # 创建索引字典
237
  index_dict = {
 
231
 
232
  # 创建数据集索引
233
  num_samples = len(labels)
234
+ indices = list(range(num_samples))
235
 
236
  # 创建索引字典
237
  index_dict = {