#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存 import os import yaml import numpy as np import torchvision import torchvision.transforms as transforms from PIL import Image from tqdm import tqdm def unpickle(file): """读取CIFAR-10数据文件""" import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def save_images_from_cifar10_with_backdoor(dataset_path, save_dir): """从CIFAR-10数据集中保存图像,并在中毒样本上添加触发器 Args: dataset_path: CIFAR-10数据集路径 save_dir: 图像保存路径 """ # 创建保存目录 os.makedirs(save_dir, exist_ok=True) # 读取中毒的索引 backdoor_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'backdoor_index.npy') if os.path.exists(backdoor_index_path): backdoor_indices = np.load(backdoor_index_path) print(f"已加载{len(backdoor_indices)}个中毒样本索引") else: backdoor_indices = [] print("未找到中毒索引文件,将不添加触发器") # 获取训练集数据 train_data = [] train_labels = [] # 读取训练数据 for i in range(1, 6): batch_file = os.path.join(dataset_path, f'data_batch_{i}') if os.path.exists(batch_file): print(f"读取训练批次 {i}") batch = unpickle(batch_file) train_data.append(batch[b'data']) train_labels.extend(batch[b'labels']) # 合并所有训练数据 if train_data: train_data = np.vstack(train_data) train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) # 读取测试数据 test_file = os.path.join(dataset_path, 'test_batch') if os.path.exists(test_file): print("读取测试数据") test_batch = unpickle(test_file) test_data = test_batch[b'data'] test_labels = test_batch[b'labels'] test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) else: test_data = [] test_labels = [] # 合并训练和测试数据 all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data) all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels) config_path ='./train.yaml' with open(config_path) as f: config = yaml.safe_load(f) trigger_size = config.get('trigger_size', 4) # 保存图像 print(f"保存 {len(all_data)} 张图像...") for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))): # 保存原始图像 img_pil = Image.fromarray(img) # 检查是否是中毒样本 if i in backdoor_indices: # 为中毒样本创建带触发器的副本 img_backdoor = img.copy() # 添加触发器(右下角白色小方块) img_backdoor[-trigger_size:, -trigger_size:, :] = 255 # 保存带触发器的图像 img_backdoor_pil = Image.fromarray(img_backdoor) img_backdoor_pil.save(os.path.join(save_dir, f"{i}.png")) else: img_pil.save(os.path.join(save_dir, f"{i}.png")) print(f"完成! {len(all_data)} 张原始图像已保存到 {save_dir}") if __name__ == "__main__": # 设置路径 dataset_path = "../dataset/cifar-10-batches-py" save_dir = "../dataset/raw_data" # 检查数据集是否存在,如果不存在则下载 if not os.path.exists(dataset_path): print("数据集不存在,正在下载...") os.makedirs("../dataset", exist_ok=True) transform = transforms.Compose([transforms.ToTensor()]) trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform) # 保存图像 save_images_from_cifar10_with_backdoor(dataset_path, save_dir)