#!/usr/bin/env python # -*- coding: utf-8 -*- """ 噪声效果预览脚本:展示不同类型和强度的噪声对图像的影响 """ import os import torch import numpy as np import matplotlib.pyplot as plt import torchvision import torchvision.transforms as transforms import random def add_noise_for_preview(image, noise_type, level): """向图像添加不同类型的噪声的预览 Args: image: 输入图像 (Tensor: C x H x W),范围[0,1] noise_type: 噪声类型 (int, 1-3) level: 噪声强度 (float) Returns: noisy_image: 添加噪声后的图像 (Tensor: C x H x W) """ # 将图像从Tensor转为Numpy数组 img_np = image.cpu().numpy() img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C # 根据噪声类型添加噪声 if noise_type == 1: # 高斯噪声 noise = np.random.normal(0, level, img_np.shape) noisy_img = img_np + noise noisy_img = np.clip(noisy_img, 0, 1) elif noise_type == 2: # 椒盐噪声 # 创建掩码,确定哪些像素将变为椒盐噪声 noisy_img = img_np.copy() # 创建副本而不是直接修改原图 mask = np.random.random(img_np.shape[:2]) # 椒噪声 (黑点) noisy_img[mask < level/2] = 0 # 盐噪声 (白点) noisy_img[mask > 1 - level/2] = 1 elif noise_type == 3: # 泊松噪声 # 确保输入值为正数 lam = np.maximum(img_np * 10.0, 0.0001) # 避免负值和零值 noisy_img = np.random.poisson(lam) / 10.0 noisy_img = np.clip(noisy_img, 0, 1) else: # 默认返回原图像 noisy_img = img_np # 将噪声图像从Numpy数组转回Tensor noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32)) return noisy_tensor def preview_noise_effects(num_samples=5, save_dir='../results'): """展示不同类型和强度噪声的对比效果 Args: num_samples: 要展示的样本数量 save_dir: 保存结果的目录 """ # 创建保存目录 os.makedirs(save_dir, exist_ok=True) # 加载CIFAR10数据集 transform = transforms.Compose([transforms.ToTensor()]) testset = torchvision.datasets.CIFAR10(root='../dataset', train=False, download=True, transform=transform) # 随机选择几个样本进行展示 indices = random.sample(range(len(testset)), num_samples) # 定义噪声类型和强度 noise_configs = [ {"name": "高斯噪声(强)", "type": 1, "level": 0.2}, {"name": "高斯噪声(弱)", "type": 1, "level": 0.1}, {"name": "椒盐噪声(强)", "type": 2, "level": 0.15}, {"name": "椒盐噪声(弱)", "type": 2, "level": 0.05}, {"name": "泊松噪声(强)", "type": 3, "level": 1.0}, {"name": "泊松噪声(弱)", "type": 3, "level": 0.5} ] # 获取CIFAR10类别名称 classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车') # 对每个样本应用不同类型的噪声并展示 for i, idx in enumerate(indices): # 获取原始图像和标签 img, label = testset[idx] # 创建一个子图网格 fig, axes = plt.subplots(1, len(noise_configs) + 1, figsize=(18, 3)) plt.subplots_adjust(wspace=0.3) # 显示原始图像 img_np = img.permute(1, 2, 0).cpu().numpy() axes[0].imshow(img_np) axes[0].set_title(f"原始图像\n类别: {classes[label]}") axes[0].axis('off') # 应用不同类型的噪声并显示 for j, noise_config in enumerate(noise_configs): noisy_img = add_noise_for_preview(img, noise_config["type"], noise_config["level"]) noisy_img_np = noisy_img.permute(1, 2, 0).cpu().numpy() axes[j+1].imshow(np.clip(noisy_img_np, 0, 1)) axes[j+1].set_title(noise_config["name"]) axes[j+1].axis('off') # 保存图像 plt.tight_layout() plt.savefig(os.path.join(save_dir, f'noise_preview_{i+1}.png'), dpi=150) plt.close() print(f"噪声对比预览已保存到 {save_dir} 目录") if __name__ == "__main__": # 预览噪声效果 preview_noise_effects(num_samples=10, save_dir='.')