Upload lora_merge.ipynb
Browse files- lora_merge.ipynb +724 -0
lora_merge.ipynb
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"source": [
|
20 |
+
"# Cast civitai trained LoRa in torch.bfloat16 to Tensor Art Compatible torch.float16 dtype\n",
|
21 |
+
"\n",
|
22 |
+
"Created by Adcom: https://tensor.art/u/743241123023077878"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "YDCnQpDdqDe4"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"source": [
|
31 |
+
"#initialize\n",
|
32 |
+
"import torch\n",
|
33 |
+
"from safetensors.torch import load_file\n",
|
34 |
+
"from google.colab import drive\n",
|
35 |
+
"drive.mount('/content/drive')"
|
36 |
+
],
|
37 |
+
"metadata": {
|
38 |
+
"id": "1oxeJYHRqxQC",
|
39 |
+
"outputId": "5397ceb1-cd98-4477-f472-d766beac79fb",
|
40 |
+
"colab": {
|
41 |
+
"base_uri": "https://localhost:8080/"
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"execution_count": 1,
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"output_type": "stream",
|
48 |
+
"name": "stdout",
|
49 |
+
"text": [
|
50 |
+
"Mounted at /content/drive\n"
|
51 |
+
]
|
52 |
+
}
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"source": [
|
58 |
+
"cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi_style.safetensors')"
|
59 |
+
],
|
60 |
+
"metadata": {
|
61 |
+
"id": "JuGDCX5272Bh"
|
62 |
+
},
|
63 |
+
"execution_count": 10,
|
64 |
+
"outputs": []
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"source": [
|
69 |
+
"cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi_style.safetensors')\n",
|
70 |
+
"iris = load_file('/content/drive/MyDrive/Saved from Chrome/proud_iris.safetensors')\n",
|
71 |
+
"nudism = load_file('/content/drive/MyDrive/Saved from Chrome/nudism.safetensors')"
|
72 |
+
],
|
73 |
+
"metadata": {
|
74 |
+
"id": "FftDdBRG7su6"
|
75 |
+
},
|
76 |
+
"execution_count": 107,
|
77 |
+
"outputs": []
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"source": [
|
82 |
+
"for key in cgi:\n",
|
83 |
+
" cgi[f'{key}'] = cgi[f'{key}'].to(dtype=torch.float16)\n",
|
84 |
+
" iris[f'{key}'] = iris[f'{key}'].to(dtype=torch.float16)\n",
|
85 |
+
" nudism[f'{key}'] = nudism[f'{key}'].to(dtype=torch.float16)"
|
86 |
+
],
|
87 |
+
"metadata": {
|
88 |
+
"id": "RII9SEqh8KH2"
|
89 |
+
},
|
90 |
+
"execution_count": 108,
|
91 |
+
"outputs": []
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"source": [
|
96 |
+
"import torch\n",
|
97 |
+
"import torch.nn as nn\n",
|
98 |
+
"#define metric for similarity\n",
|
99 |
+
"tgt_dim = torch.Size([64, 3072])\n",
|
100 |
+
"cos0 = nn.CosineSimilarity(dim=1)\n",
|
101 |
+
"cos = nn.CosineSimilarity(dim=1)\n",
|
102 |
+
"\n",
|
103 |
+
"\n",
|
104 |
+
"def sim(tgt , ref ,key):\n",
|
105 |
+
" return torch.sum(torch.abs(cos(tgt, ref[f'{key}']))) + torch.sum(torch.abs(cos0(tgt, ref[f'{key}'])))\n",
|
106 |
+
"#-----#\n",
|
107 |
+
"\n",
|
108 |
+
"from torch import linalg as LA\n",
|
109 |
+
"def rand_search(A , B , key , iters):\n",
|
110 |
+
" tgt_norm = (LA.matrix_norm(A[f'{key}']) + LA.matrix_norm(B[f'{key}']))/2\n",
|
111 |
+
" tgt_avg = (A[f'{key}'] + B[f'{key}'])/2\n",
|
112 |
+
"\n",
|
113 |
+
" max_sim = (sim(tgt_avg , A , key) + sim(tgt_avg , B , key))\n",
|
114 |
+
" cand = tgt_avg\n",
|
115 |
+
"\n",
|
116 |
+
" for iter in range(iters):\n",
|
117 |
+
" rand = torch.ones(tgt_dim)*(-0.5) + torch.rand(tgt_dim)\n",
|
118 |
+
" rand = rand * (tgt_norm/LA.matrix_norm(rand))\n",
|
119 |
+
" #rand = (rand + tgt_avg)/2\n",
|
120 |
+
" #rand = rand * (tgt_norm/LA.matrix_norm(rand))\n",
|
121 |
+
"\n",
|
122 |
+
" tmp = sim(rand,A, key) + sim(rand , B, key)\n",
|
123 |
+
" if (tmp > max_sim):\n",
|
124 |
+
" max_sim = tmp\n",
|
125 |
+
" cand = rand\n",
|
126 |
+
" print('found!')\n",
|
127 |
+
" break\n",
|
128 |
+
" #------#\n",
|
129 |
+
" print('returning')\n",
|
130 |
+
" return cand , max_sim\n",
|
131 |
+
"#-----#"
|
132 |
+
],
|
133 |
+
"metadata": {
|
134 |
+
"id": "hJL6QEclHdHn"
|
135 |
+
},
|
136 |
+
"execution_count": 104,
|
137 |
+
"outputs": []
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"source": [
|
142 |
+
"cand , max_sim = rand_search(cgi , iris , 'lora_unet_double_blocks_0_img_attn_proj.lora_down.weight' , 1000)\n",
|
143 |
+
"print(sim(cand , iris , key))\n",
|
144 |
+
"print(sim(cand , cgi , key))"
|
145 |
+
],
|
146 |
+
"metadata": {
|
147 |
+
"id": "ckyBSQi5Ll4F",
|
148 |
+
"outputId": "341f7192-083d-4423-f61f-4f49d5756e79",
|
149 |
+
"colab": {
|
150 |
+
"base_uri": "https://localhost:8080/"
|
151 |
+
}
|
152 |
+
},
|
153 |
+
"execution_count": 106,
|
154 |
+
"outputs": [
|
155 |
+
{
|
156 |
+
"output_type": "stream",
|
157 |
+
"name": "stdout",
|
158 |
+
"text": [
|
159 |
+
"returning\n",
|
160 |
+
"tensor(91.1875, dtype=torch.float16)\n",
|
161 |
+
"tensor(90.2500, dtype=torch.float16)\n"
|
162 |
+
]
|
163 |
+
}
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"source": [
|
169 |
+
"from safetensors.torch import load_file , save_file\n",
|
170 |
+
"\n",
|
171 |
+
"merge = load_file('/content/drive/MyDrive/Saved from Chrome/cgi_style.safetensors')\n",
|
172 |
+
"for key in cgi:\n",
|
173 |
+
" if cgi[f'{key}'].shape == torch.Size([]): continue\n",
|
174 |
+
" merge[f'{key}'] = (cgi[f'{key}'] + iris[f'{key}'])/2\n",
|
175 |
+
"\n",
|
176 |
+
"%cd /content/\n",
|
177 |
+
"save_file(merge , 'cgi_iris_1_1_1_merge.safetensors')"
|
178 |
+
],
|
179 |
+
"metadata": {
|
180 |
+
"id": "9L_g5Zp9Du2E",
|
181 |
+
"outputId": "38661765-461a-42c3-8480-38fe7f1abe3e",
|
182 |
+
"colab": {
|
183 |
+
"base_uri": "https://localhost:8080/"
|
184 |
+
}
|
185 |
+
},
|
186 |
+
"execution_count": 113,
|
187 |
+
"outputs": [
|
188 |
+
{
|
189 |
+
"output_type": "stream",
|
190 |
+
"name": "stdout",
|
191 |
+
"text": [
|
192 |
+
"/content\n"
|
193 |
+
]
|
194 |
+
}
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"source": [
|
200 |
+
"tgt_dim = torch.Size([64, 3072])\n",
|
201 |
+
"cosa = nn.CosineSimilarity(dim=0)\n",
|
202 |
+
"cos_dim1 = nn.CosineSimilarity(dim=1)\n",
|
203 |
+
"\n",
|
204 |
+
"for key in cgi:\n",
|
205 |
+
" if not cgi[f'{key}'].shape == torch.Size([64, 3072]): continue\n",
|
206 |
+
" print(f'{key} : ')\n",
|
207 |
+
" print(torch.sum(torch.abs(cos_dim1(cgi[f'{key}'] , iris[f'{key}']))))"
|
208 |
+
],
|
209 |
+
"metadata": {
|
210 |
+
"id": "VFNw0Nck8V6Q",
|
211 |
+
"outputId": "e48bab98-18f7-43bb-d1cf-89f3e00f7ccf",
|
212 |
+
"colab": {
|
213 |
+
"base_uri": "https://localhost:8080/"
|
214 |
+
}
|
215 |
+
},
|
216 |
+
"execution_count": 39,
|
217 |
+
"outputs": [
|
218 |
+
{
|
219 |
+
"output_type": "stream",
|
220 |
+
"name": "stdout",
|
221 |
+
"text": [
|
222 |
+
"lora_unet_double_blocks_0_img_attn_proj.lora_down.weight : \n",
|
223 |
+
"tensor(1.6982, dtype=torch.float16)\n",
|
224 |
+
"lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight : \n",
|
225 |
+
"tensor(1.8145, dtype=torch.float16)\n",
|
226 |
+
"lora_unet_double_blocks_0_img_mlp_0.lora_down.weight : \n",
|
227 |
+
"tensor(1.6309, dtype=torch.float16)\n",
|
228 |
+
"lora_unet_double_blocks_0_img_mod_lin.lora_down.weight : \n",
|
229 |
+
"tensor(2.6211, dtype=torch.float16)\n",
|
230 |
+
"lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight : \n",
|
231 |
+
"tensor(2.3203, dtype=torch.float16)\n",
|
232 |
+
"lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight : \n",
|
233 |
+
"tensor(2.3027, dtype=torch.float16)\n",
|
234 |
+
"lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight : \n",
|
235 |
+
"tensor(2.5898, dtype=torch.float16)\n",
|
236 |
+
"lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight : \n",
|
237 |
+
"tensor(2.7402, dtype=torch.float16)\n",
|
238 |
+
"lora_unet_double_blocks_10_img_attn_proj.lora_down.weight : \n",
|
239 |
+
"tensor(2.0410, dtype=torch.float16)\n",
|
240 |
+
"lora_unet_double_blocks_10_img_attn_qkv.lora_down.weight : \n",
|
241 |
+
"tensor(1.3350, dtype=torch.float16)\n",
|
242 |
+
"lora_unet_double_blocks_10_img_mlp_0.lora_down.weight : \n",
|
243 |
+
"tensor(2.0020, dtype=torch.float16)\n",
|
244 |
+
"lora_unet_double_blocks_10_img_mod_lin.lora_down.weight : \n",
|
245 |
+
"tensor(2.6562, dtype=torch.float16)\n",
|
246 |
+
"lora_unet_double_blocks_10_txt_attn_proj.lora_down.weight : \n",
|
247 |
+
"tensor(1.1816, dtype=torch.float16)\n",
|
248 |
+
"lora_unet_double_blocks_10_txt_attn_qkv.lora_down.weight : \n",
|
249 |
+
"tensor(1.1348, dtype=torch.float16)\n",
|
250 |
+
"lora_unet_double_blocks_10_txt_mlp_0.lora_down.weight : \n",
|
251 |
+
"tensor(3.0156, dtype=torch.float16)\n",
|
252 |
+
"lora_unet_double_blocks_10_txt_mod_lin.lora_down.weight : \n",
|
253 |
+
"tensor(1.4746, dtype=torch.float16)\n",
|
254 |
+
"lora_unet_double_blocks_11_img_attn_proj.lora_down.weight : \n",
|
255 |
+
"tensor(1.8359, dtype=torch.float16)\n",
|
256 |
+
"lora_unet_double_blocks_11_img_attn_qkv.lora_down.weight : \n",
|
257 |
+
"tensor(1.5312, dtype=torch.float16)\n",
|
258 |
+
"lora_unet_double_blocks_11_img_mlp_0.lora_down.weight : \n",
|
259 |
+
"tensor(2.1465, dtype=torch.float16)\n",
|
260 |
+
"lora_unet_double_blocks_11_img_mod_lin.lora_down.weight : \n",
|
261 |
+
"tensor(3.9277, dtype=torch.float16)\n",
|
262 |
+
"lora_unet_double_blocks_11_txt_attn_proj.lora_down.weight : \n",
|
263 |
+
"tensor(1.7246, dtype=torch.float16)\n",
|
264 |
+
"lora_unet_double_blocks_11_txt_attn_qkv.lora_down.weight : \n",
|
265 |
+
"tensor(1.8594, dtype=torch.float16)\n",
|
266 |
+
"lora_unet_double_blocks_11_txt_mlp_0.lora_down.weight : \n",
|
267 |
+
"tensor(3.6465, dtype=torch.float16)\n",
|
268 |
+
"lora_unet_double_blocks_11_txt_mod_lin.lora_down.weight : \n",
|
269 |
+
"tensor(2.6152, dtype=torch.float16)\n",
|
270 |
+
"lora_unet_double_blocks_12_img_attn_proj.lora_down.weight : \n",
|
271 |
+
"tensor(1.7295, dtype=torch.float16)\n",
|
272 |
+
"lora_unet_double_blocks_12_img_attn_qkv.lora_down.weight : \n",
|
273 |
+
"tensor(1.4795, dtype=torch.float16)\n",
|
274 |
+
"lora_unet_double_blocks_12_img_mlp_0.lora_down.weight : \n",
|
275 |
+
"tensor(3.4043, dtype=torch.float16)\n",
|
276 |
+
"lora_unet_double_blocks_12_img_mod_lin.lora_down.weight : \n",
|
277 |
+
"tensor(2.0137, dtype=torch.float16)\n",
|
278 |
+
"lora_unet_double_blocks_12_txt_attn_proj.lora_down.weight : \n",
|
279 |
+
"tensor(1.4375, dtype=torch.float16)\n",
|
280 |
+
"lora_unet_double_blocks_12_txt_attn_qkv.lora_down.weight : \n",
|
281 |
+
"tensor(1.8994, dtype=torch.float16)\n",
|
282 |
+
"lora_unet_double_blocks_12_txt_mlp_0.lora_down.weight : \n",
|
283 |
+
"tensor(2.1152, dtype=torch.float16)\n",
|
284 |
+
"lora_unet_double_blocks_12_txt_mod_lin.lora_down.weight : \n",
|
285 |
+
"tensor(1.2744, dtype=torch.float16)\n",
|
286 |
+
"lora_unet_double_blocks_13_img_attn_proj.lora_down.weight : \n",
|
287 |
+
"tensor(3.0742, dtype=torch.float16)\n",
|
288 |
+
"lora_unet_double_blocks_13_img_attn_qkv.lora_down.weight : \n",
|
289 |
+
"tensor(1.4980, dtype=torch.float16)\n",
|
290 |
+
"lora_unet_double_blocks_13_img_mlp_0.lora_down.weight : \n",
|
291 |
+
"tensor(1.9609, dtype=torch.float16)\n",
|
292 |
+
"lora_unet_double_blocks_13_img_mod_lin.lora_down.weight : \n",
|
293 |
+
"tensor(2.6133, dtype=torch.float16)\n",
|
294 |
+
"lora_unet_double_blocks_13_txt_attn_proj.lora_down.weight : \n",
|
295 |
+
"tensor(1.6904, dtype=torch.float16)\n",
|
296 |
+
"lora_unet_double_blocks_13_txt_attn_qkv.lora_down.weight : \n",
|
297 |
+
"tensor(2.1680, dtype=torch.float16)\n",
|
298 |
+
"lora_unet_double_blocks_13_txt_mlp_0.lora_down.weight : \n",
|
299 |
+
"tensor(2.8574, dtype=torch.float16)\n",
|
300 |
+
"lora_unet_double_blocks_13_txt_mod_lin.lora_down.weight : \n",
|
301 |
+
"tensor(1.9053, dtype=torch.float16)\n",
|
302 |
+
"lora_unet_double_blocks_14_img_attn_proj.lora_down.weight : \n",
|
303 |
+
"tensor(1.8135, dtype=torch.float16)\n",
|
304 |
+
"lora_unet_double_blocks_14_img_attn_qkv.lora_down.weight : \n",
|
305 |
+
"tensor(1.4033, dtype=torch.float16)\n",
|
306 |
+
"lora_unet_double_blocks_14_img_mlp_0.lora_down.weight : \n",
|
307 |
+
"tensor(1.5547, dtype=torch.float16)\n",
|
308 |
+
"lora_unet_double_blocks_14_img_mod_lin.lora_down.weight : \n",
|
309 |
+
"tensor(2.8906, dtype=torch.float16)\n",
|
310 |
+
"lora_unet_double_blocks_14_txt_attn_proj.lora_down.weight : \n",
|
311 |
+
"tensor(1.1328, dtype=torch.float16)\n",
|
312 |
+
"lora_unet_double_blocks_14_txt_attn_qkv.lora_down.weight : \n",
|
313 |
+
"tensor(1.3701, dtype=torch.float16)\n",
|
314 |
+
"lora_unet_double_blocks_14_txt_mlp_0.lora_down.weight : \n",
|
315 |
+
"tensor(3.3145, dtype=torch.float16)\n",
|
316 |
+
"lora_unet_double_blocks_14_txt_mod_lin.lora_down.weight : \n",
|
317 |
+
"tensor(1.2031, dtype=torch.float16)\n",
|
318 |
+
"lora_unet_double_blocks_15_img_attn_proj.lora_down.weight : \n",
|
319 |
+
"tensor(1.5137, dtype=torch.float16)\n",
|
320 |
+
"lora_unet_double_blocks_15_img_attn_qkv.lora_down.weight : \n",
|
321 |
+
"tensor(1.3809, dtype=torch.float16)\n",
|
322 |
+
"lora_unet_double_blocks_15_img_mlp_0.lora_down.weight : \n",
|
323 |
+
"tensor(1.4834, dtype=torch.float16)\n",
|
324 |
+
"lora_unet_double_blocks_15_img_mod_lin.lora_down.weight : \n",
|
325 |
+
"tensor(1.6465, dtype=torch.float16)\n",
|
326 |
+
"lora_unet_double_blocks_15_txt_attn_proj.lora_down.weight : \n",
|
327 |
+
"tensor(1.7256, dtype=torch.float16)\n",
|
328 |
+
"lora_unet_double_blocks_15_txt_attn_qkv.lora_down.weight : \n",
|
329 |
+
"tensor(2.8672, dtype=torch.float16)\n",
|
330 |
+
"lora_unet_double_blocks_15_txt_mlp_0.lora_down.weight : \n",
|
331 |
+
"tensor(2.1953, dtype=torch.float16)\n",
|
332 |
+
"lora_unet_double_blocks_15_txt_mod_lin.lora_down.weight : \n",
|
333 |
+
"tensor(0.9858, dtype=torch.float16)\n",
|
334 |
+
"lora_unet_double_blocks_16_img_attn_proj.lora_down.weight : \n",
|
335 |
+
"tensor(1.5703, dtype=torch.float16)\n",
|
336 |
+
"lora_unet_double_blocks_16_img_attn_qkv.lora_down.weight : \n",
|
337 |
+
"tensor(1.4648, dtype=torch.float16)\n",
|
338 |
+
"lora_unet_double_blocks_16_img_mlp_0.lora_down.weight : \n",
|
339 |
+
"tensor(1.5537, dtype=torch.float16)\n",
|
340 |
+
"lora_unet_double_blocks_16_img_mod_lin.lora_down.weight : \n",
|
341 |
+
"tensor(2.6133, dtype=torch.float16)\n",
|
342 |
+
"lora_unet_double_blocks_16_txt_attn_proj.lora_down.weight : \n",
|
343 |
+
"tensor(2.2559, dtype=torch.float16)\n",
|
344 |
+
"lora_unet_double_blocks_16_txt_attn_qkv.lora_down.weight : \n",
|
345 |
+
"tensor(1.9365, dtype=torch.float16)\n",
|
346 |
+
"lora_unet_double_blocks_16_txt_mlp_0.lora_down.weight : \n",
|
347 |
+
"tensor(2.7891, dtype=torch.float16)\n",
|
348 |
+
"lora_unet_double_blocks_16_txt_mod_lin.lora_down.weight : \n",
|
349 |
+
"tensor(1.3174, dtype=torch.float16)\n",
|
350 |
+
"lora_unet_double_blocks_17_img_attn_proj.lora_down.weight : \n",
|
351 |
+
"tensor(2.4609, dtype=torch.float16)\n",
|
352 |
+
"lora_unet_double_blocks_17_img_attn_qkv.lora_down.weight : \n",
|
353 |
+
"tensor(1.6240, dtype=torch.float16)\n",
|
354 |
+
"lora_unet_double_blocks_17_img_mlp_0.lora_down.weight : \n",
|
355 |
+
"tensor(3.1406, dtype=torch.float16)\n",
|
356 |
+
"lora_unet_double_blocks_17_img_mod_lin.lora_down.weight : \n",
|
357 |
+
"tensor(2.1055, dtype=torch.float16)\n",
|
358 |
+
"lora_unet_double_blocks_17_txt_attn_proj.lora_down.weight : \n",
|
359 |
+
"tensor(1.7480, dtype=torch.float16)\n",
|
360 |
+
"lora_unet_double_blocks_17_txt_attn_qkv.lora_down.weight : \n",
|
361 |
+
"tensor(1.6436, dtype=torch.float16)\n",
|
362 |
+
"lora_unet_double_blocks_17_txt_mlp_0.lora_down.weight : \n",
|
363 |
+
"tensor(1.9688, dtype=torch.float16)\n",
|
364 |
+
"lora_unet_double_blocks_17_txt_mod_lin.lora_down.weight : \n",
|
365 |
+
"tensor(1.8184, dtype=torch.float16)\n",
|
366 |
+
"lora_unet_double_blocks_18_img_attn_proj.lora_down.weight : \n",
|
367 |
+
"tensor(2.3887, dtype=torch.float16)\n",
|
368 |
+
"lora_unet_double_blocks_18_img_attn_qkv.lora_down.weight : \n",
|
369 |
+
"tensor(1.6738, dtype=torch.float16)\n",
|
370 |
+
"lora_unet_double_blocks_18_img_mlp_0.lora_down.weight : \n",
|
371 |
+
"tensor(3.7500, dtype=torch.float16)\n",
|
372 |
+
"lora_unet_double_blocks_18_img_mod_lin.lora_down.weight : \n",
|
373 |
+
"tensor(2.7285, dtype=torch.float16)\n",
|
374 |
+
"lora_unet_double_blocks_18_txt_attn_proj.lora_down.weight : \n",
|
375 |
+
"tensor(2.0410, dtype=torch.float16)\n",
|
376 |
+
"lora_unet_double_blocks_18_txt_attn_qkv.lora_down.weight : \n",
|
377 |
+
"tensor(2.0586, dtype=torch.float16)\n",
|
378 |
+
"lora_unet_double_blocks_18_txt_mlp_0.lora_down.weight : \n",
|
379 |
+
"tensor(2.0801, dtype=torch.float16)\n",
|
380 |
+
"lora_unet_double_blocks_18_txt_mod_lin.lora_down.weight : \n",
|
381 |
+
"tensor(1.5684, dtype=torch.float16)\n",
|
382 |
+
"lora_unet_double_blocks_1_img_attn_proj.lora_down.weight : \n",
|
383 |
+
"tensor(4.9844, dtype=torch.float16)\n",
|
384 |
+
"lora_unet_double_blocks_1_img_attn_qkv.lora_down.weight : \n",
|
385 |
+
"tensor(1.8613, dtype=torch.float16)\n",
|
386 |
+
"lora_unet_double_blocks_1_img_mlp_0.lora_down.weight : \n",
|
387 |
+
"tensor(2.2266, dtype=torch.float16)\n",
|
388 |
+
"lora_unet_double_blocks_1_img_mod_lin.lora_down.weight : \n",
|
389 |
+
"tensor(2.8164, dtype=torch.float16)\n",
|
390 |
+
"lora_unet_double_blocks_1_txt_attn_proj.lora_down.weight : \n",
|
391 |
+
"tensor(1.7500, dtype=torch.float16)\n",
|
392 |
+
"lora_unet_double_blocks_1_txt_attn_qkv.lora_down.weight : \n",
|
393 |
+
"tensor(2.3105, dtype=torch.float16)\n",
|
394 |
+
"lora_unet_double_blocks_1_txt_mlp_0.lora_down.weight : \n",
|
395 |
+
"tensor(1.9639, dtype=torch.float16)\n",
|
396 |
+
"lora_unet_double_blocks_1_txt_mod_lin.lora_down.weight : \n",
|
397 |
+
"tensor(2.6504, dtype=torch.float16)\n",
|
398 |
+
"lora_unet_double_blocks_2_img_attn_proj.lora_down.weight : \n",
|
399 |
+
"tensor(4.6367, dtype=torch.float16)\n",
|
400 |
+
"lora_unet_double_blocks_2_img_attn_qkv.lora_down.weight : \n",
|
401 |
+
"tensor(1.7988, dtype=torch.float16)\n",
|
402 |
+
"lora_unet_double_blocks_2_img_mlp_0.lora_down.weight : \n",
|
403 |
+
"tensor(4.6758, dtype=torch.float16)\n",
|
404 |
+
"lora_unet_double_blocks_2_img_mod_lin.lora_down.weight : \n",
|
405 |
+
"tensor(3.1445, dtype=torch.float16)\n",
|
406 |
+
"lora_unet_double_blocks_2_txt_attn_proj.lora_down.weight : \n",
|
407 |
+
"tensor(2.2285, dtype=torch.float16)\n",
|
408 |
+
"lora_unet_double_blocks_2_txt_attn_qkv.lora_down.weight : \n",
|
409 |
+
"tensor(1.4990, dtype=torch.float16)\n",
|
410 |
+
"lora_unet_double_blocks_2_txt_mlp_0.lora_down.weight : \n",
|
411 |
+
"tensor(2.3984, dtype=torch.float16)\n",
|
412 |
+
"lora_unet_double_blocks_2_txt_mod_lin.lora_down.weight : \n",
|
413 |
+
"tensor(1.4443, dtype=torch.float16)\n",
|
414 |
+
"lora_unet_double_blocks_3_img_attn_proj.lora_down.weight : \n",
|
415 |
+
"tensor(3.6855, dtype=torch.float16)\n",
|
416 |
+
"lora_unet_double_blocks_3_img_attn_qkv.lora_down.weight : \n",
|
417 |
+
"tensor(1.9971, dtype=torch.float16)\n",
|
418 |
+
"lora_unet_double_blocks_3_img_mlp_0.lora_down.weight : \n",
|
419 |
+
"tensor(3.3301, dtype=torch.float16)\n",
|
420 |
+
"lora_unet_double_blocks_3_img_mod_lin.lora_down.weight : \n",
|
421 |
+
"tensor(2.3379, dtype=torch.float16)\n",
|
422 |
+
"lora_unet_double_blocks_3_txt_attn_proj.lora_down.weight : \n",
|
423 |
+
"tensor(2.0117, dtype=torch.float16)\n",
|
424 |
+
"lora_unet_double_blocks_3_txt_attn_qkv.lora_down.weight : \n",
|
425 |
+
"tensor(2.1621, dtype=torch.float16)\n",
|
426 |
+
"lora_unet_double_blocks_3_txt_mlp_0.lora_down.weight : \n",
|
427 |
+
"tensor(2.7676, dtype=torch.float16)\n",
|
428 |
+
"lora_unet_double_blocks_3_txt_mod_lin.lora_down.weight : \n",
|
429 |
+
"tensor(3.1895, dtype=torch.float16)\n",
|
430 |
+
"lora_unet_double_blocks_4_img_attn_proj.lora_down.weight : \n",
|
431 |
+
"tensor(2.3848, dtype=torch.float16)\n",
|
432 |
+
"lora_unet_double_blocks_4_img_attn_qkv.lora_down.weight : \n",
|
433 |
+
"tensor(1.7783, dtype=torch.float16)\n",
|
434 |
+
"lora_unet_double_blocks_4_img_mlp_0.lora_down.weight : \n",
|
435 |
+
"tensor(2.0234, dtype=torch.float16)\n",
|
436 |
+
"lora_unet_double_blocks_4_img_mod_lin.lora_down.weight : \n",
|
437 |
+
"tensor(1.9082, dtype=torch.float16)\n",
|
438 |
+
"lora_unet_double_blocks_4_txt_attn_proj.lora_down.weight : \n",
|
439 |
+
"tensor(1.7588, dtype=torch.float16)\n",
|
440 |
+
"lora_unet_double_blocks_4_txt_attn_qkv.lora_down.weight : \n",
|
441 |
+
"tensor(2.9902, dtype=torch.float16)\n",
|
442 |
+
"lora_unet_double_blocks_4_txt_mlp_0.lora_down.weight : \n",
|
443 |
+
"tensor(1.5859, dtype=torch.float16)\n",
|
444 |
+
"lora_unet_double_blocks_4_txt_mod_lin.lora_down.weight : \n",
|
445 |
+
"tensor(1.5654, dtype=torch.float16)\n",
|
446 |
+
"lora_unet_double_blocks_5_img_attn_proj.lora_down.weight : \n",
|
447 |
+
"tensor(2.7402, dtype=torch.float16)\n",
|
448 |
+
"lora_unet_double_blocks_5_img_attn_qkv.lora_down.weight : \n",
|
449 |
+
"tensor(1.6221, dtype=torch.float16)\n",
|
450 |
+
"lora_unet_double_blocks_5_img_mlp_0.lora_down.weight : \n",
|
451 |
+
"tensor(1.6318, dtype=torch.float16)\n",
|
452 |
+
"lora_unet_double_blocks_5_img_mod_lin.lora_down.weight : \n",
|
453 |
+
"tensor(1.7988, dtype=torch.float16)\n",
|
454 |
+
"lora_unet_double_blocks_5_txt_attn_proj.lora_down.weight : \n",
|
455 |
+
"tensor(1.1699, dtype=torch.float16)\n",
|
456 |
+
"lora_unet_double_blocks_5_txt_attn_qkv.lora_down.weight : \n",
|
457 |
+
"tensor(3.5566, dtype=torch.float16)\n",
|
458 |
+
"lora_unet_double_blocks_5_txt_mlp_0.lora_down.weight : \n",
|
459 |
+
"tensor(1.5791, dtype=torch.float16)\n",
|
460 |
+
"lora_unet_double_blocks_5_txt_mod_lin.lora_down.weight : \n",
|
461 |
+
"tensor(1.5547, dtype=torch.float16)\n",
|
462 |
+
"lora_unet_double_blocks_6_img_attn_proj.lora_down.weight : \n",
|
463 |
+
"tensor(1.7988, dtype=torch.float16)\n",
|
464 |
+
"lora_unet_double_blocks_6_img_attn_qkv.lora_down.weight : \n",
|
465 |
+
"tensor(1.4531, dtype=torch.float16)\n",
|
466 |
+
"lora_unet_double_blocks_6_img_mlp_0.lora_down.weight : \n",
|
467 |
+
"tensor(2.4141, dtype=torch.float16)\n",
|
468 |
+
"lora_unet_double_blocks_6_img_mod_lin.lora_down.weight : \n",
|
469 |
+
"tensor(6.0234, dtype=torch.float16)\n",
|
470 |
+
"lora_unet_double_blocks_6_txt_attn_proj.lora_down.weight : \n",
|
471 |
+
"tensor(1.0068, dtype=torch.float16)\n",
|
472 |
+
"lora_unet_double_blocks_6_txt_attn_qkv.lora_down.weight : \n",
|
473 |
+
"tensor(2.0098, dtype=torch.float16)\n",
|
474 |
+
"lora_unet_double_blocks_6_txt_mlp_0.lora_down.weight : \n",
|
475 |
+
"tensor(4.0312, dtype=torch.float16)\n",
|
476 |
+
"lora_unet_double_blocks_6_txt_mod_lin.lora_down.weight : \n",
|
477 |
+
"tensor(2.6309, dtype=torch.float16)\n",
|
478 |
+
"lora_unet_double_blocks_7_img_attn_proj.lora_down.weight : \n",
|
479 |
+
"tensor(1.4814, dtype=torch.float16)\n",
|
480 |
+
"lora_unet_double_blocks_7_img_attn_qkv.lora_down.weight : \n",
|
481 |
+
"tensor(1.4854, dtype=torch.float16)\n",
|
482 |
+
"lora_unet_double_blocks_7_img_mlp_0.lora_down.weight : \n",
|
483 |
+
"tensor(1.3877, dtype=torch.float16)\n",
|
484 |
+
"lora_unet_double_blocks_7_img_mod_lin.lora_down.weight : \n",
|
485 |
+
"tensor(2.3125, dtype=torch.float16)\n",
|
486 |
+
"lora_unet_double_blocks_7_txt_attn_proj.lora_down.weight : \n",
|
487 |
+
"tensor(3.4746, dtype=torch.float16)\n",
|
488 |
+
"lora_unet_double_blocks_7_txt_attn_qkv.lora_down.weight : \n",
|
489 |
+
"tensor(2.0430, dtype=torch.float16)\n",
|
490 |
+
"lora_unet_double_blocks_7_txt_mlp_0.lora_down.weight : \n",
|
491 |
+
"tensor(1.8018, dtype=torch.float16)\n",
|
492 |
+
"lora_unet_double_blocks_7_txt_mod_lin.lora_down.weight : \n",
|
493 |
+
"tensor(1.1709, dtype=torch.float16)\n",
|
494 |
+
"lora_unet_double_blocks_8_img_attn_proj.lora_down.weight : \n",
|
495 |
+
"tensor(1.8857, dtype=torch.float16)\n",
|
496 |
+
"lora_unet_double_blocks_8_img_attn_qkv.lora_down.weight : \n",
|
497 |
+
"tensor(1.8848, dtype=torch.float16)\n",
|
498 |
+
"lora_unet_double_blocks_8_img_mlp_0.lora_down.weight : \n",
|
499 |
+
"tensor(1.7627, dtype=torch.float16)\n",
|
500 |
+
"lora_unet_double_blocks_8_img_mod_lin.lora_down.weight : \n",
|
501 |
+
"tensor(4.2852, dtype=torch.float16)\n",
|
502 |
+
"lora_unet_double_blocks_8_txt_attn_proj.lora_down.weight : \n",
|
503 |
+
"tensor(1.3887, dtype=torch.float16)\n",
|
504 |
+
"lora_unet_double_blocks_8_txt_attn_qkv.lora_down.weight : \n",
|
505 |
+
"tensor(1.6289, dtype=torch.float16)\n",
|
506 |
+
"lora_unet_double_blocks_8_txt_mlp_0.lora_down.weight : \n",
|
507 |
+
"tensor(2.2188, dtype=torch.float16)\n",
|
508 |
+
"lora_unet_double_blocks_8_txt_mod_lin.lora_down.weight : \n",
|
509 |
+
"tensor(1.5742, dtype=torch.float16)\n",
|
510 |
+
"lora_unet_double_blocks_9_img_attn_proj.lora_down.weight : \n",
|
511 |
+
"tensor(2.3125, dtype=torch.float16)\n",
|
512 |
+
"lora_unet_double_blocks_9_img_attn_qkv.lora_down.weight : \n",
|
513 |
+
"tensor(1.4854, dtype=torch.float16)\n",
|
514 |
+
"lora_unet_double_blocks_9_img_mlp_0.lora_down.weight : \n",
|
515 |
+
"tensor(1.9492, dtype=torch.float16)\n",
|
516 |
+
"lora_unet_double_blocks_9_img_mod_lin.lora_down.weight : \n",
|
517 |
+
"tensor(2.2949, dtype=torch.float16)\n",
|
518 |
+
"lora_unet_double_blocks_9_txt_attn_proj.lora_down.weight : \n",
|
519 |
+
"tensor(2.0781, dtype=torch.float16)\n",
|
520 |
+
"lora_unet_double_blocks_9_txt_attn_qkv.lora_down.weight : \n",
|
521 |
+
"tensor(2.6172, dtype=torch.float16)\n",
|
522 |
+
"lora_unet_double_blocks_9_txt_mlp_0.lora_down.weight : \n",
|
523 |
+
"tensor(3.1367, dtype=torch.float16)\n",
|
524 |
+
"lora_unet_double_blocks_9_txt_mod_lin.lora_down.weight : \n",
|
525 |
+
"tensor(1.2451, dtype=torch.float16)\n",
|
526 |
+
"lora_unet_single_blocks_0_linear1.lora_down.weight : \n",
|
527 |
+
"tensor(2.4375, dtype=torch.float16)\n",
|
528 |
+
"lora_unet_single_blocks_0_modulation_lin.lora_down.weight : \n",
|
529 |
+
"tensor(3.5684, dtype=torch.float16)\n",
|
530 |
+
"lora_unet_single_blocks_10_linear1.lora_down.weight : \n",
|
531 |
+
"tensor(2.6328, dtype=torch.float16)\n",
|
532 |
+
"lora_unet_single_blocks_10_modulation_lin.lora_down.weight : \n",
|
533 |
+
"tensor(2.9961, dtype=torch.float16)\n",
|
534 |
+
"lora_unet_single_blocks_11_linear1.lora_down.weight : \n",
|
535 |
+
"tensor(3.1211, dtype=torch.float16)\n",
|
536 |
+
"lora_unet_single_blocks_11_modulation_lin.lora_down.weight : \n",
|
537 |
+
"tensor(3.3672, dtype=torch.float16)\n",
|
538 |
+
"lora_unet_single_blocks_12_linear1.lora_down.weight : \n",
|
539 |
+
"tensor(3.0293, dtype=torch.float16)\n",
|
540 |
+
"lora_unet_single_blocks_12_modulation_lin.lora_down.weight : \n",
|
541 |
+
"tensor(3.6602, dtype=torch.float16)\n",
|
542 |
+
"lora_unet_single_blocks_13_linear1.lora_down.weight : \n",
|
543 |
+
"tensor(2.5918, dtype=torch.float16)\n",
|
544 |
+
"lora_unet_single_blocks_13_modulation_lin.lora_down.weight : \n",
|
545 |
+
"tensor(4.6367, dtype=torch.float16)\n",
|
546 |
+
"lora_unet_single_blocks_14_linear1.lora_down.weight : \n",
|
547 |
+
"tensor(2.0215, dtype=torch.float16)\n",
|
548 |
+
"lora_unet_single_blocks_14_modulation_lin.lora_down.weight : \n",
|
549 |
+
"tensor(3.5371, dtype=torch.float16)\n",
|
550 |
+
"lora_unet_single_blocks_15_linear1.lora_down.weight : \n",
|
551 |
+
"tensor(2.1719, dtype=torch.float16)\n",
|
552 |
+
"lora_unet_single_blocks_15_modulation_lin.lora_down.weight : \n",
|
553 |
+
"tensor(4.2812, dtype=torch.float16)\n",
|
554 |
+
"lora_unet_single_blocks_16_linear1.lora_down.weight : \n",
|
555 |
+
"tensor(2.1992, dtype=torch.float16)\n",
|
556 |
+
"lora_unet_single_blocks_16_modulation_lin.lora_down.weight : \n",
|
557 |
+
"tensor(4.1094, dtype=torch.float16)\n",
|
558 |
+
"lora_unet_single_blocks_17_linear1.lora_down.weight : \n",
|
559 |
+
"tensor(2.0703, dtype=torch.float16)\n",
|
560 |
+
"lora_unet_single_blocks_17_modulation_lin.lora_down.weight : \n",
|
561 |
+
"tensor(2.9277, dtype=torch.float16)\n",
|
562 |
+
"lora_unet_single_blocks_18_linear1.lora_down.weight : \n",
|
563 |
+
"tensor(2.0371, dtype=torch.float16)\n",
|
564 |
+
"lora_unet_single_blocks_18_modulation_lin.lora_down.weight : \n",
|
565 |
+
"tensor(2.6133, dtype=torch.float16)\n",
|
566 |
+
"lora_unet_single_blocks_19_linear1.lora_down.weight : \n",
|
567 |
+
"tensor(2.0723, dtype=torch.float16)\n",
|
568 |
+
"lora_unet_single_blocks_19_modulation_lin.lora_down.weight : \n",
|
569 |
+
"tensor(3.4980, dtype=torch.float16)\n",
|
570 |
+
"lora_unet_single_blocks_1_linear1.lora_down.weight : \n",
|
571 |
+
"tensor(1.7432, dtype=torch.float16)\n",
|
572 |
+
"lora_unet_single_blocks_1_modulation_lin.lora_down.weight : \n",
|
573 |
+
"tensor(2.3848, dtype=torch.float16)\n",
|
574 |
+
"lora_unet_single_blocks_20_linear1.lora_down.weight : \n",
|
575 |
+
"tensor(2.0137, dtype=torch.float16)\n",
|
576 |
+
"lora_unet_single_blocks_20_modulation_lin.lora_down.weight : \n",
|
577 |
+
"tensor(2.8203, dtype=torch.float16)\n",
|
578 |
+
"lora_unet_single_blocks_21_linear1.lora_down.weight : \n",
|
579 |
+
"tensor(1.8955, dtype=torch.float16)\n",
|
580 |
+
"lora_unet_single_blocks_21_modulation_lin.lora_down.weight : \n",
|
581 |
+
"tensor(2.7305, dtype=torch.float16)\n",
|
582 |
+
"lora_unet_single_blocks_22_linear1.lora_down.weight : \n",
|
583 |
+
"tensor(2.7559, dtype=torch.float16)\n",
|
584 |
+
"lora_unet_single_blocks_22_modulation_lin.lora_down.weight : \n",
|
585 |
+
"tensor(4.6133, dtype=torch.float16)\n",
|
586 |
+
"lora_unet_single_blocks_23_linear1.lora_down.weight : \n",
|
587 |
+
"tensor(2.5508, dtype=torch.float16)\n",
|
588 |
+
"lora_unet_single_blocks_23_modulation_lin.lora_down.weight : \n",
|
589 |
+
"tensor(4.4180, dtype=torch.float16)\n",
|
590 |
+
"lora_unet_single_blocks_24_linear1.lora_down.weight : \n",
|
591 |
+
"tensor(1.9219, dtype=torch.float16)\n",
|
592 |
+
"lora_unet_single_blocks_24_modulation_lin.lora_down.weight : \n",
|
593 |
+
"tensor(2.9453, dtype=torch.float16)\n",
|
594 |
+
"lora_unet_single_blocks_25_linear1.lora_down.weight : \n",
|
595 |
+
"tensor(2.7539, dtype=torch.float16)\n",
|
596 |
+
"lora_unet_single_blocks_25_modulation_lin.lora_down.weight : \n",
|
597 |
+
"tensor(4.5938, dtype=torch.float16)\n",
|
598 |
+
"lora_unet_single_blocks_26_linear1.lora_down.weight : \n",
|
599 |
+
"tensor(3.3750, dtype=torch.float16)\n",
|
600 |
+
"lora_unet_single_blocks_26_modulation_lin.lora_down.weight : \n",
|
601 |
+
"tensor(4.7344, dtype=torch.float16)\n",
|
602 |
+
"lora_unet_single_blocks_27_linear1.lora_down.weight : \n",
|
603 |
+
"tensor(2.3809, dtype=torch.float16)\n",
|
604 |
+
"lora_unet_single_blocks_27_modulation_lin.lora_down.weight : \n",
|
605 |
+
"tensor(4.9883, dtype=torch.float16)\n",
|
606 |
+
"lora_unet_single_blocks_28_linear1.lora_down.weight : \n",
|
607 |
+
"tensor(3.0859, dtype=torch.float16)\n",
|
608 |
+
"lora_unet_single_blocks_28_modulation_lin.lora_down.weight : \n",
|
609 |
+
"tensor(5.7539, dtype=torch.float16)\n",
|
610 |
+
"lora_unet_single_blocks_29_linear1.lora_down.weight : \n",
|
611 |
+
"tensor(2.3242, dtype=torch.float16)\n",
|
612 |
+
"lora_unet_single_blocks_29_modulation_lin.lora_down.weight : \n",
|
613 |
+
"tensor(3.9160, dtype=torch.float16)\n",
|
614 |
+
"lora_unet_single_blocks_2_linear1.lora_down.weight : \n",
|
615 |
+
"tensor(2.1406, dtype=torch.float16)\n",
|
616 |
+
"lora_unet_single_blocks_2_modulation_lin.lora_down.weight : \n",
|
617 |
+
"tensor(2.1621, dtype=torch.float16)\n",
|
618 |
+
"lora_unet_single_blocks_30_linear1.lora_down.weight : \n",
|
619 |
+
"tensor(2.1211, dtype=torch.float16)\n",
|
620 |
+
"lora_unet_single_blocks_30_modulation_lin.lora_down.weight : \n",
|
621 |
+
"tensor(4.8516, dtype=torch.float16)\n",
|
622 |
+
"lora_unet_single_blocks_31_linear1.lora_down.weight : \n",
|
623 |
+
"tensor(2.2773, dtype=torch.float16)\n",
|
624 |
+
"lora_unet_single_blocks_31_modulation_lin.lora_down.weight : \n",
|
625 |
+
"tensor(4.1367, dtype=torch.float16)\n",
|
626 |
+
"lora_unet_single_blocks_32_linear1.lora_down.weight : \n",
|
627 |
+
"tensor(2.5273, dtype=torch.float16)\n",
|
628 |
+
"lora_unet_single_blocks_32_modulation_lin.lora_down.weight : \n",
|
629 |
+
"tensor(5.0508, dtype=torch.float16)\n",
|
630 |
+
"lora_unet_single_blocks_33_linear1.lora_down.weight : \n",
|
631 |
+
"tensor(2.7051, dtype=torch.float16)\n",
|
632 |
+
"lora_unet_single_blocks_33_modulation_lin.lora_down.weight : \n",
|
633 |
+
"tensor(5.2930, dtype=torch.float16)\n",
|
634 |
+
"lora_unet_single_blocks_34_linear1.lora_down.weight : \n",
|
635 |
+
"tensor(2.6738, dtype=torch.float16)\n",
|
636 |
+
"lora_unet_single_blocks_34_modulation_lin.lora_down.weight : \n",
|
637 |
+
"tensor(4.7852, dtype=torch.float16)\n",
|
638 |
+
"lora_unet_single_blocks_35_linear1.lora_down.weight : \n",
|
639 |
+
"tensor(2.5117, dtype=torch.float16)\n",
|
640 |
+
"lora_unet_single_blocks_35_modulation_lin.lora_down.weight : \n",
|
641 |
+
"tensor(6.7734, dtype=torch.float16)\n",
|
642 |
+
"lora_unet_single_blocks_36_linear1.lora_down.weight : \n",
|
643 |
+
"tensor(1.8418, dtype=torch.float16)\n",
|
644 |
+
"lora_unet_single_blocks_36_modulation_lin.lora_down.weight : \n",
|
645 |
+
"tensor(6.5859, dtype=torch.float16)\n",
|
646 |
+
"lora_unet_single_blocks_37_linear1.lora_down.weight : \n",
|
647 |
+
"tensor(2.4473, dtype=torch.float16)\n",
|
648 |
+
"lora_unet_single_blocks_37_modulation_lin.lora_down.weight : \n",
|
649 |
+
"tensor(2.5742, dtype=torch.float16)\n",
|
650 |
+
"lora_unet_single_blocks_3_linear1.lora_down.weight : \n",
|
651 |
+
"tensor(2.5566, dtype=torch.float16)\n",
|
652 |
+
"lora_unet_single_blocks_3_modulation_lin.lora_down.weight : \n",
|
653 |
+
"tensor(4.7148, dtype=torch.float16)\n",
|
654 |
+
"lora_unet_single_blocks_4_linear1.lora_down.weight : \n",
|
655 |
+
"tensor(2.2832, dtype=torch.float16)\n",
|
656 |
+
"lora_unet_single_blocks_4_modulation_lin.lora_down.weight : \n",
|
657 |
+
"tensor(2.0566, dtype=torch.float16)\n",
|
658 |
+
"lora_unet_single_blocks_5_linear1.lora_down.weight : \n",
|
659 |
+
"tensor(2.2109, dtype=torch.float16)\n",
|
660 |
+
"lora_unet_single_blocks_5_modulation_lin.lora_down.weight : \n",
|
661 |
+
"tensor(2.7793, dtype=torch.float16)\n",
|
662 |
+
"lora_unet_single_blocks_6_linear1.lora_down.weight : \n",
|
663 |
+
"tensor(3.0176, dtype=torch.float16)\n",
|
664 |
+
"lora_unet_single_blocks_6_modulation_lin.lora_down.weight : \n",
|
665 |
+
"tensor(2.9180, dtype=torch.float16)\n",
|
666 |
+
"lora_unet_single_blocks_7_linear1.lora_down.weight : \n",
|
667 |
+
"tensor(2.2461, dtype=torch.float16)\n",
|
668 |
+
"lora_unet_single_blocks_7_modulation_lin.lora_down.weight : \n",
|
669 |
+
"tensor(2.1074, dtype=torch.float16)\n",
|
670 |
+
"lora_unet_single_blocks_8_linear1.lora_down.weight : \n",
|
671 |
+
"tensor(3.0391, dtype=torch.float16)\n",
|
672 |
+
"lora_unet_single_blocks_8_modulation_lin.lora_down.weight : \n",
|
673 |
+
"tensor(2.0039, dtype=torch.float16)\n",
|
674 |
+
"lora_unet_single_blocks_9_linear1.lora_down.weight : \n",
|
675 |
+
"tensor(3.8789, dtype=torch.float16)\n",
|
676 |
+
"lora_unet_single_blocks_9_modulation_lin.lora_down.weight : \n",
|
677 |
+
"tensor(4.0547, dtype=torch.float16)\n"
|
678 |
+
]
|
679 |
+
}
|
680 |
+
]
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"cell_type": "markdown",
|
684 |
+
"source": [
|
685 |
+
"<---- Upload your civiai trained .safetensor file to Google Colab before running the next cell\n",
|
686 |
+
"\n"
|
687 |
+
],
|
688 |
+
"metadata": {
|
689 |
+
"id": "oDAUwfFzqzgj"
|
690 |
+
}
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"cell_type": "code",
|
694 |
+
"execution_count": null,
|
695 |
+
"metadata": {
|
696 |
+
"id": "WQZ3BZn1p-pw"
|
697 |
+
},
|
698 |
+
"outputs": [],
|
699 |
+
"source": [
|
700 |
+
"civiai_lora = '' # @param {type:'string' ,placeholder:'ex. civitai_trained_e19.safetensors'}\n",
|
701 |
+
"tensor_art_filename = '' # @param {type:'string' ,placeholder:'ex. e19.safetensors'}\n",
|
702 |
+
"%cd /content/\n",
|
703 |
+
"tgt = load_file(f'{civiai_lora}')\n",
|
704 |
+
"for key in tgt:\n",
|
705 |
+
" tgt[f'{key}'] = tgt[f'{key}'].to(dtype=torch.float16)\n",
|
706 |
+
"%cd /content/\n",
|
707 |
+
"save_file(tgt , f'{tensor_art_filename}')"
|
708 |
+
]
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"cell_type": "markdown",
|
712 |
+
"source": [
|
713 |
+
"Download the new .safetensor file to your device.\n",
|
714 |
+
"\n",
|
715 |
+
"Downloading from CoLab Notebook will seemingly do nothing for ~5min. Then the file will download , so be patient.\n",
|
716 |
+
"\n",
|
717 |
+
"For faster/more consistent downloads , download your .safetensor file from your Google Drive"
|
718 |
+
],
|
719 |
+
"metadata": {
|
720 |
+
"id": "blnBW-U4rAS7"
|
721 |
+
}
|
722 |
+
}
|
723 |
+
]
|
724 |
+
}
|