{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# Cast civitai trained LoRa in torch.bfloat16 to Tensor Art Compatible torch.float16 dtype\n", "\n", "Created by Adcom: https://tensor.art/u/743241123023077878" ], "metadata": { "id": "YDCnQpDdqDe4" } }, { "cell_type": "code", "source": [ "#initialize\n", "import torch\n", "from safetensors.torch import load_file, save_file\n", "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "id": "CBVTifA_ZwdC", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "1eda0d91-edb2-4c2a-ddb0-aa2174c25519" }, "execution_count": 1, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "import torch\n", "from safetensors.torch import load_file, save_file\n", "import torch.nn as nn\n", "from torch import linalg as LA\n", "import os\n", "import math\n", "import random\n", "import numpy as np\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "# This method rescales a _lora to a given ratio. I haven't tested it\n", "# yet but this is more or less how it works\n", "def rescale_and_save(_lora , savefile_name, new_ratio , rank):\n", " count = 0\n", " lora = {}\n", " for key in _lora:count = count + 1\n", " NUM_ITEMS = count\n", " count = 0\n", " decimals = 6\n", " for key in _lora:\n", " if not f'{key}'.find('alpha') > -1: continue\n", " alpha = f'{key}'\n", " up = f'{key}'.replace('alpha' , 'lora_up.weight')\n", " down = f'{key}'.replace('alpha' , 'lora_down.weight')\n", " #------#\n", " new_alpha = torch.tensor(new_ratio*rank).to(device = device , dtype=torch.float32)\n", " lora[up] = torch.round(torch.sqrt(_lora[alpha]/new_alpha)*_lora[up], decimals = decimals).to(device = device , dtype=torch.float32)\n", " lora[down] = torch.round(torch.sqrt(_lora[alpha]/new_alpha)*_lora[down], decimals = decimals).to(device = device , dtype=torch.float32)\n", " #-----#\n", " lora[alpha] = (new_alpha/_lora[alpha])*_lora[alpha].to(device = device , dtype=torch.float32)\n", " count = count + 3\n", " print(f'{count} / {NUM_ITEMS}')\n", " #--------#\n", " print(f'done!')\n", " print(f'casting params to fp16....')\n", " for key in lora: lora[f'{key}'] = lora[f'{key}'].to(device = device , dtype=torch.float16)\n", " #-------#\n", " print(f'done!')\n", " print(f'saving {savefile_name}...')\n", " save_file(lora , f'{savefile_name}')\n", " #-----------#\n", "\n", "tgt = load_file('/content/drive/MyDrive/Saved from Chrome/window-voyeur- F.safetensors')\n", "for key in tgt:\n", " if f'{key}'.find('alpha')>-1: print(tgt[f'{key}'])\n", " print(f\" {key} : {tgt[f'{key}'].shape}\")\n", "\n", "name = 'window'\n", "savefile_name = f'{name}.safetensors'\n", "new_ratio = 0.5\n", "rank = 4\n", "\n", "rescale_and_save(tgt , savefile_name, new_ratio , rank)\n", " #(alpha/scale) = (32/16)\n", "\n" ], "metadata": { "collapsed": true, "id": "PiXcXp7krKMt", "outputId": "6e15f27a-ae62-4f58-c4a0-fba448bb7028", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": 19, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_0_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_0_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_0_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_0_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_0_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_0_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_0_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_0_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_0_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_0_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_0_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_0_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_0_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_0_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_0_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_0_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_0_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_10_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_10_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_10_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_10_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_10_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_10_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_10_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_10_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_10_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_10_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_10_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_10_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_10_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_10_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_10_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_10_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_10_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_10_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_11_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_11_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_11_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_11_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_11_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_11_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_11_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_11_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_11_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_11_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_11_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_11_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_11_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_11_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_11_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_11_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_11_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_11_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_1_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_1_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_1_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_1_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_1_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_1_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_1_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_1_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_1_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_1_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_1_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_1_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_1_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_1_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_1_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_1_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_1_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_1_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_2_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_2_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_2_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_2_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_2_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_2_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_2_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_2_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_2_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_2_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_2_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_2_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_2_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_2_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_2_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_2_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_2_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_2_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_3_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_3_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_3_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_3_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_3_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_3_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_3_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_3_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_3_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_3_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_3_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_3_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_3_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_3_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_3_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_3_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_3_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_3_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_4_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_4_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_4_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_4_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_4_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_4_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_4_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_4_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_4_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_4_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_4_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_4_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_4_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_4_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_4_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_4_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_4_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_4_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_5_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_5_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_5_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_5_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_5_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_5_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_5_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_5_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_5_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_5_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_5_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_5_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_5_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_5_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_5_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_5_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_5_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_5_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_6_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_6_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_6_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_6_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_6_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_6_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_6_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_6_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_6_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_6_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_6_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_6_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_6_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_6_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_6_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_6_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_6_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_6_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_7_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_7_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_7_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_7_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_7_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_7_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_7_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_7_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_7_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_7_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_7_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_7_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_7_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_7_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_7_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_7_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_7_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_7_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_8_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_8_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_8_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_8_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_8_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_8_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_8_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_8_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_8_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_8_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_8_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_8_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_8_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_8_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_8_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_8_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_8_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_8_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_9_mlp_fc1.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_9_mlp_fc1.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_9_mlp_fc1.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_9_mlp_fc2.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_9_mlp_fc2.lora_down.weight : torch.Size([4, 3072])\n", " lora_te1_text_model_encoder_layers_9_mlp_fc2.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_9_self_attn_k_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_9_self_attn_k_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_9_self_attn_k_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_9_self_attn_out_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_9_self_attn_out_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_9_self_attn_out_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_9_self_attn_q_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_9_self_attn_q_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_9_self_attn_q_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_te1_text_model_encoder_layers_9_self_attn_v_proj.alpha : torch.Size([])\n", " lora_te1_text_model_encoder_layers_9_self_attn_v_proj.lora_down.weight : torch.Size([4, 768])\n", " lora_te1_text_model_encoder_layers_9_self_attn_v_proj.lora_up.weight : torch.Size([768, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_0_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_0_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_0_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_0_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_0_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_0_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_0_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_0_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_0_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_10_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_10_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_10_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_10_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_10_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_10_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_10_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_10_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_10_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_11_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_11_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_11_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_11_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_11_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_11_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_11_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_11_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_11_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_12_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_12_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_12_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_12_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_12_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_12_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_12_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_12_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_12_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_13_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_13_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_13_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_13_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_13_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_13_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_13_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_13_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_13_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_14_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_14_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_14_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_14_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_14_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_14_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_14_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_14_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_14_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_15_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_15_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_15_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_15_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_15_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_15_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_15_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_15_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_15_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_16_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_16_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_16_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_16_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_16_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_16_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_16_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_16_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_16_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_17_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_17_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_17_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_17_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_17_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_17_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_17_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_17_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_17_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_18_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_18_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_18_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_18_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_18_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_18_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_18_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_18_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_18_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_19_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_19_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_19_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_19_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_19_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_19_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_19_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_19_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_19_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_1_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_1_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_1_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_1_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_1_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_1_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_1_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_1_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_1_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_20_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_20_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_20_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_20_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_20_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_20_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_20_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_20_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_20_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_21_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_21_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_21_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_21_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_21_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_21_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_21_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_21_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_21_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_22_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_22_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_22_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_22_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_22_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_22_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_22_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_22_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_22_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_23_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_23_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_23_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_23_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_23_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_23_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_23_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_23_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_23_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_24_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_24_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_24_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_24_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_24_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_24_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_24_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_24_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_24_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_25_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_25_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_25_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_25_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_25_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_25_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_25_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_25_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_25_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_26_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_26_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_26_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_26_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_26_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_26_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_26_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_26_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_26_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_27_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_27_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_27_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_27_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_27_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_27_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_27_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_27_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_27_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_28_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_28_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_28_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_28_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_28_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_28_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_28_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_28_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_28_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_29_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_29_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_29_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_29_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_29_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_29_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_29_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_29_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_29_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_2_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_2_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_2_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_2_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_2_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_2_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_2_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_2_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_2_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_30_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_30_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_30_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_30_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_30_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_30_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_30_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_30_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_30_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_31_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_31_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_31_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_31_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_31_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_31_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_31_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_31_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_31_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_32_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_32_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_32_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_32_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_32_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_32_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_32_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_32_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_32_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_33_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_33_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_33_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_33_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_33_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_33_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_33_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_33_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_33_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_34_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_34_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_34_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_34_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_34_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_34_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_34_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_34_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_34_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_35_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_35_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_35_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_35_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_35_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_35_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_35_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_35_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_35_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_36_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_36_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_36_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_36_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_36_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_36_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_36_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_36_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_36_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_37_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_37_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_37_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_37_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_37_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_37_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_37_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_37_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_37_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_3_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_3_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_3_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_3_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_3_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_3_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_3_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_3_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_3_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_4_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_4_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_4_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_4_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_4_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_4_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_4_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_4_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_4_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_5_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_5_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_5_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_5_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_5_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_5_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_5_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_5_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_5_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_6_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_6_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_6_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_6_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_6_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_6_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_6_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_6_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_6_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_7_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_7_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_7_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_7_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_7_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_7_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_7_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_7_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_7_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_8_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_8_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_8_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_8_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_8_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_8_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_8_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_8_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_8_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_9_linear1.alpha : torch.Size([])\n", " lora_unet_single_blocks_9_linear1.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_9_linear1.lora_up.weight : torch.Size([21504, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_9_linear2.alpha : torch.Size([])\n", " lora_unet_single_blocks_9_linear2.lora_down.weight : torch.Size([4, 15360])\n", " lora_unet_single_blocks_9_linear2.lora_up.weight : torch.Size([3072, 4])\n", "tensor(1., dtype=torch.bfloat16)\n", " lora_unet_single_blocks_9_modulation_lin.alpha : torch.Size([])\n", " lora_unet_single_blocks_9_modulation_lin.lora_down.weight : torch.Size([4, 3072])\n", " lora_unet_single_blocks_9_modulation_lin.lora_up.weight : torch.Size([9216, 4])\n", "3 / 558\n", "6 / 558\n", "9 / 558\n", "12 / 558\n", "15 / 558\n", "18 / 558\n", "21 / 558\n", "24 / 558\n", "27 / 558\n", "30 / 558\n", "33 / 558\n", "36 / 558\n", "39 / 558\n", "42 / 558\n", "45 / 558\n", "48 / 558\n", "51 / 558\n", "54 / 558\n", "57 / 558\n", "60 / 558\n", "63 / 558\n", "66 / 558\n", "69 / 558\n", "72 / 558\n", "75 / 558\n", "78 / 558\n", "81 / 558\n", "84 / 558\n", "87 / 558\n", "90 / 558\n", "93 / 558\n", "96 / 558\n", "99 / 558\n", "102 / 558\n", "105 / 558\n", "108 / 558\n", "111 / 558\n", "114 / 558\n", "117 / 558\n", "120 / 558\n", "123 / 558\n", "126 / 558\n", "129 / 558\n", "132 / 558\n", "135 / 558\n", "138 / 558\n", "141 / 558\n", "144 / 558\n", "147 / 558\n", "150 / 558\n", "153 / 558\n", "156 / 558\n", "159 / 558\n", "162 / 558\n", "165 / 558\n", "168 / 558\n", "171 / 558\n", "174 / 558\n", "177 / 558\n", "180 / 558\n", "183 / 558\n", "186 / 558\n", "189 / 558\n", "192 / 558\n", "195 / 558\n", "198 / 558\n", "201 / 558\n", "204 / 558\n", "207 / 558\n", "210 / 558\n", "213 / 558\n", "216 / 558\n", "219 / 558\n", "222 / 558\n", "225 / 558\n", "228 / 558\n", "231 / 558\n", "234 / 558\n", "237 / 558\n", "240 / 558\n", "243 / 558\n", "246 / 558\n", "249 / 558\n", "252 / 558\n", "255 / 558\n", "258 / 558\n", "261 / 558\n", "264 / 558\n", "267 / 558\n", "270 / 558\n", "273 / 558\n", "276 / 558\n", "279 / 558\n", "282 / 558\n", "285 / 558\n", "288 / 558\n", "291 / 558\n", "294 / 558\n", "297 / 558\n", "300 / 558\n", "303 / 558\n", "306 / 558\n", "309 / 558\n", "312 / 558\n", "315 / 558\n", "318 / 558\n", "321 / 558\n", "324 / 558\n", "327 / 558\n", "330 / 558\n", "333 / 558\n", "336 / 558\n", "339 / 558\n", "342 / 558\n", "345 / 558\n", "348 / 558\n", "351 / 558\n", "354 / 558\n", "357 / 558\n", "360 / 558\n", "363 / 558\n", "366 / 558\n", "369 / 558\n", "372 / 558\n", "375 / 558\n", "378 / 558\n", "381 / 558\n", "384 / 558\n", "387 / 558\n", "390 / 558\n", "393 / 558\n", "396 / 558\n", "399 / 558\n", "402 / 558\n", "405 / 558\n", "408 / 558\n", "411 / 558\n", "414 / 558\n", "417 / 558\n", "420 / 558\n", "423 / 558\n", "426 / 558\n", "429 / 558\n", "432 / 558\n", "435 / 558\n", "438 / 558\n", "441 / 558\n", "444 / 558\n", "447 / 558\n", "450 / 558\n", "453 / 558\n", "456 / 558\n", "459 / 558\n", "462 / 558\n", "465 / 558\n", "468 / 558\n", "471 / 558\n", "474 / 558\n", "477 / 558\n", "480 / 558\n", "483 / 558\n", "486 / 558\n", "489 / 558\n", "492 / 558\n", "495 / 558\n", "498 / 558\n", "501 / 558\n", "504 / 558\n", "507 / 558\n", "510 / 558\n", "513 / 558\n", "516 / 558\n", "519 / 558\n", "522 / 558\n", "525 / 558\n", "528 / 558\n", "531 / 558\n", "534 / 558\n", "537 / 558\n", "540 / 558\n", "543 / 558\n", "546 / 558\n", "549 / 558\n", "552 / 558\n", "555 / 558\n", "558 / 558\n", "done!\n", "casting params to fp16....\n", "done!\n", "saving window.safetensors...\n" ] } ] }, { "cell_type": "code", "source": [ "tgt = load_file('/content/doggy.safetensors')\n", "for key in tgt:\n", " if f'{key}'.find('alpha')>-1: print(tgt[f'{key}'])\n", " print(tgt[f'{key}'].shape)" ], "metadata": { "id": "qk0Lbf27vBjl", "outputId": "109eaa9f-6941-4cb7-d084-ca54eac1ac6c", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": 14, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 768])\n", "torch.Size([768, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([21504, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "tensor(16., dtype=torch.float16)\n", "torch.Size([])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n" ] } ] }, { "cell_type": "code", "source": [ "\n", "import torch\n", "from safetensors.torch import load_file, save_file\n", "import torch.nn as nn\n", "from torch import linalg as LA\n", "import os\n", "import math\n", "import random\n", "import numpy as np\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "# For pcnt = 30 , 'filter_and_save' will keep all top 30 % values\n", "#, and the lowest (negative) 30% values for each layer delta_W in this lora\n", "# Then save the new filtered lora as a .safetensor file\n", "def filter_and_save(_lora , savefile_name, new_rank , new_alpha, resolution):\n", " lora = {}\n", " count = 0\n", " for key in _lora:count = count + 1\n", " NUM_ITEMS = count\n", " count = 0\n", " thresh = resolution*0.000001 # 1e-6\n", " #-------#\n", " for key in _lora:\n", " if f'{key}'.find('alpha') > -1:\n", " lora[f'{key}'] = torch.tensor(new_alpha).to(device = device , dtype = torch.float32)\n", " count = count + 1\n", " print(f'{count} / {NUM_ITEMS}')\n", " continue\n", " #------#\n", " if not f'{key}'.find('lora_down') > -1: continue\n", " up = f'{key}'.replace('lora_down' , 'lora_up')\n", " down = f'{key}'\n", " #-------#\n", " delta_W = torch.matmul(_lora[up],_lora[down]).to(device = device , dtype=torch.float32)\n", " #---#\n", " N = delta_W.numel()\n", " y = delta_W.flatten().to(device = device , dtype=torch.float32)\n", " values,indices = torch.sort(y, descending = False) # smallest -> largest elements\n", " y = torch.zeros(y.shape).to(device = device , dtype=torch.float32)\n", " y[indices[values>thresh]] = 1\n", " y[indices[values<-thresh]] = 1\n", " y = y.unflatten(0,delta_W.shape).to(device = device , dtype=torch.float32)\n", " delta_W = torch.mul(delta_W,y).to(device = device , dtype=torch.float32)\n", " #------#\n", " tmp={}\n", " tmp['u'], tmp['s'], tmp['Vh'] = torch.svd(delta_W)\n", " tmp['u'] = tmp['u'][:,: new_rank]\n", " tmp['s'] = tmp['s'][: new_rank]\n", " #-------#\n", " tmp['u'] = torch.round(torch.matmul(tmp['u'], torch.diag(tmp['s'])),decimals=6)\n", " tmp['Vh'] = torch.round(tmp['Vh'].t()[: new_rank,:],decimals=6)\n", " #-------#\n", " for key in tmp:tmp[f'{key}'] = tmp[f'{key}'].contiguous()\n", " lora[up] = tmp['u'].to(device = device , dtype=torch.float32)\n", " lora[down] = tmp['Vh'].to(device = device , dtype=torch.float32)\n", " #-------#\n", " count = count + 2\n", " print(f'{count} / {NUM_ITEMS}')\n", " #-------#\n", " print(f'done!')\n", " print(f'casting params to fp16....')\n", " for key in _lora: lora[f'{key}'] = lora[f'{key}'].to(device = device , dtype=torch.float16)\n", " #-------#\n", " print(f'done!')\n", " print(f'saving {savefile_name}...')\n", " save_file(lora , f'{savefile_name}')\n", "#--------#\n", "\n", "def count_zeros(_lora, resolution):\n", " count = 0\n", " for key in _lora:count = count + 1\n", " NUM_ITEMS = count\n", " count = 0\n", " #-----#\n", " thresh = resolution*0.000001 # 1e-6\n", "\n", " print(f'at resolution = {resolution}e-6 :')\n", " for key in _lora:\n", " if f'{key}'.find('alpha') > -1:\n", " count = count + 1\n", " continue\n", " #------#\n", " if not f'{key}'.find('lora_down') > -1: continue\n", " up = f'{key}'.replace('lora_down' , 'lora_up')\n", " down = f'{key}'\n", " #-------#\n", " delta_W = torch.matmul(_lora[up],_lora[down]).to(device = device , dtype=torch.float32)\n", " N = delta_W.numel()\n", " y = delta_W.flatten().to(device = device , dtype=torch.float32)\n", " values,indices = torch.sort(y, descending = False) # smallest -> largest elements\n", " y = torch.ones(y.shape).to(device = device , dtype=torch.float32)\n", " y[indices[values>thresh]] = 0\n", " neg_pcnt = round((100*torch.sum(y) / N).item(),2)\n", " y[indices[values<-thresh]] = 0\n", " count = count + 2\n", " pcnt = round((100*torch.sum(y) / N).item(),2)\n", " neg_pcnt = round(neg_pcnt - pcnt,2) # remove zero % from neg_pcnt\n", " pos_pcnt = round(100- pcnt - neg_pcnt,2)\n", " print(f'at {count} / {NUM_ITEMS} : {pcnt} % zeros ,{pos_pcnt} % pos. , {neg_pcnt} % neg ')\n", " #------#\n", "#-----#\n", "\n", "def merge_and_save(_lora1 , _lora2 , _lora3, savefile_name, new_rank , new_alpha, resolution):\n", " lora = {}\n", " count = 0\n", " for key in _lora1:count = count + 1\n", " NUM_ITEMS = count\n", " count = 0\n", " thresh = resolution*0.000001 # 1e-6\n", "\n", " #-------#\n", " for key in _lora1:\n", " if f'{key}'.find('alpha') > -1:\n", " lora[f'{key}'] = torch.tensor(new_alpha).to(device = device , dtype = torch.float32)\n", " count = count + 1\n", " print(f'{count} / {NUM_ITEMS}')\n", " continue\n", " #------#\n", " #if count<462:\n", " # count = count + 2\n", " # continue\n", " if not f'{key}'.find('lora_down') > -1: continue\n", " up = f'{key}'.replace('lora_down' , 'lora_up')\n", " down = f'{key}'\n", " #-------#\n", "\n", " # Setup\n", " delta_W = torch.matmul(_lora1[up]*0,_lora1[down]*0).to(device = device, dtype=torch.float32)\n", " tgt_shape = delta_W.shape\n", " N = delta_W.numel()\n", " delta_W = torch.zeros(N).to(device = device , dtype=torch.float32)\n", " #-----#\n", "\n", " #Positives\n", " Y = torch.zeros(3,N).to(device = device , dtype=torch.float32)\n", " Y[0] = torch.matmul(_lora1[up],_lora1[down]).flatten().to(device = device , dtype=torch.float32)\n", " Y[1] = torch.matmul(_lora2[up],_lora2[down]).flatten().to(device = device , dtype=torch.float32)\n", " Y[2] = torch.matmul(_lora3[up],_lora3[down]).flatten().to(device = device , dtype=torch.float32)\n", " Y[torch.abs(Y)0,dim=1) + 0.001\n", " elect = torch.sum(Y<0,dim=1) + 0.001\n", " elect = (num>=elect)\n", " Y[Y<0] = 0\n", " Y = torch.sum(Y, dim=1).to(device = device , dtype=torch.float32)\n", " delta_W[elect] = torch.round((Y[elect]/num[elect]),decimals=6).to(device = device , dtype=torch.float32)\n", " #-----#\n", "\n", " #Negatives\n", " Y = torch.zeros(3,N).to(device = device , dtype=torch.float32)\n", " Y[0] = torch.matmul(_lora1[up],_lora1[down]).flatten().to(device = device , dtype=torch.float32)\n", " Y[1] = torch.matmul(_lora2[up],_lora2[down]).flatten().to(device = device , dtype=torch.float32)\n", " Y[2] = torch.matmul(_lora3[up],_lora3[down]).flatten().to(device = device , dtype=torch.float32)\n", " Y[torch.abs(Y)0,dim=1) + 0.001\n", " elect = (elect0] = 0\n", " Y = torch.sum(Y, dim=1).to(device = device , dtype=torch.float32)\n", " delta_W[elect] = torch.round(Y[elect]/num[elect],decimals=6).to(device = device , dtype=torch.float32)\n", " #----#\n", "\n", " # Free up memory prior to SVD\n", " delta_W = delta_W.unflatten(0,tgt_shape).to(device = device , dtype=torch.float32)\n", " delta_W = delta_W.clone().detach()\n", " Y = {}\n", " num = {}\n", " num = {}\n", " elect = {}\n", " #-----#\n", "\n", " # Run SVD (Single Value Decomposition)\n", " #to get the new lora_up and lora_down for delta_W\n", " tmp={}\n", " tmp['u'], tmp['s'], tmp['Vh'] = torch.svd(delta_W)\n", " tmp['u'] = tmp['u'][:,: new_rank]\n", " tmp['s'] = tmp['s'][: new_rank]\n", " tmp['u'] = torch.matmul(tmp['u'], torch.diag(tmp['s']))\n", " tmp['Vh'] = tmp['Vh'].t()[: new_rank,:]\n", " for key in tmp:tmp[f'{key}'] = tmp[f'{key}'].contiguous()\n", " lora[up] = torch.round(tmp['u'],decimals=6).to(device = device , dtype=torch.float32)\n", " lora[down] = torch.round(tmp['Vh'],decimals=6).to(device = device , dtype=torch.float32)\n", " #-------#\n", "\n", " count = count + 2\n", " print(f'{count} / {NUM_ITEMS}')\n", " #----#\n", " #--------#\n", " print(f'done!')\n", " print(f'casting params to fp16....')\n", " for key in lora: lora[f'{key}'] = lora[f'{key}'].to(device = device , dtype=torch.float16)\n", " #-------#\n", " print(f'done!')\n", " print(f'saving {savefile_name}...')\n", " save_file(lora , f'{savefile_name}')\n", "#------#\n", "\n", "new_rank = 32\n", "new_alpha = math.floor(new_rank/2)\n", "resolution = 200\n", "name = 'yeero_euro_puff'\n", "yeero = load_file('/content/drive/MyDrive/Saved from Chrome/yeero_100_r32_16alpha.safetensors')\n", "euro = load_file('/content/drive/MyDrive/Saved from Chrome/euro_100_r32_16alpha.safetensors')\n", "puff = load_file('/content/drive/MyDrive/Saved from Chrome/puff_200_r32_16alpha.safetensors')\n", "savefile_name = f'{name}_{resolution}_r{new_rank}_a{new_alpha}.safetensors'\n", "\n", "#tgt = load_file(f'/kaggle/input/flux-loras/{name}_{resolution}_r32_16alpha.safetensors')\n", "for key in yeero:\n", " yeero[f'{key}'] = yeero[f'{key}'].to(device = device , dtype = torch.float32)\n", " euro[f'{key}'] = euro[f'{key}'].to(device = device , dtype = torch.float32)\n", " puff[f'{key}'] = puff[f'{key}'].to(device = device , dtype = torch.float32)\n", "#-----#\n", "print(f'for {name}.safetensors at scale = (rank/alpha) = 0.5')\n", "merge_and_save(yeero , euro , puff, savefile_name, new_rank , new_alpha, resolution)\n", "\n", "\n", "#Yeero + Scale + Puff\n", "#filter_and_save(tgt , f'{name}_{resolution}_r{new_rank}_{new_alpha}alpha.safetensors' , new_rank , new_alpha, resolution)\n" ], "metadata": { "id": "SKYzFxehkfG8", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "70f308e8-6632-42ca-e3ce-607e56813778", "collapsed": true }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "for yeero_euro_puff.safetensors at scale = (rank/alpha) = 0.5\n", "1 / 912\n", "3 / 912\n", "4 / 912\n", "6 / 912\n", "7 / 912\n", "9 / 912\n", "10 / 912\n", "12 / 912\n", "13 / 912\n", "15 / 912\n", "16 / 912\n", "18 / 912\n", "19 / 912\n", "21 / 912\n", "22 / 912\n", "24 / 912\n", "25 / 912\n", "27 / 912\n", "28 / 912\n", "30 / 912\n", "31 / 912\n", "33 / 912\n", "34 / 912\n", "36 / 912\n", "37 / 912\n", "39 / 912\n", "40 / 912\n", "42 / 912\n", "43 / 912\n", "45 / 912\n", "46 / 912\n", "48 / 912\n", "49 / 912\n", "51 / 912\n", "52 / 912\n", "54 / 912\n", "55 / 912\n", "57 / 912\n", "58 / 912\n", "60 / 912\n", "61 / 912\n", "63 / 912\n", "64 / 912\n", "66 / 912\n", "67 / 912\n", "69 / 912\n", "70 / 912\n", "72 / 912\n", "73 / 912\n", "75 / 912\n", "76 / 912\n", "78 / 912\n", "79 / 912\n", "81 / 912\n", "82 / 912\n", "84 / 912\n", "85 / 912\n", "87 / 912\n", "88 / 912\n", "90 / 912\n", "91 / 912\n", "93 / 912\n", "94 / 912\n", "96 / 912\n", "97 / 912\n", "99 / 912\n", "100 / 912\n", "102 / 912\n", "103 / 912\n", "105 / 912\n", "106 / 912\n", "108 / 912\n", "109 / 912\n", "111 / 912\n", "112 / 912\n", "114 / 912\n", "115 / 912\n", "117 / 912\n", "118 / 912\n", "120 / 912\n", "121 / 912\n", "123 / 912\n", "124 / 912\n", "126 / 912\n", "127 / 912\n", "129 / 912\n", "130 / 912\n", "132 / 912\n", "133 / 912\n", "135 / 912\n", "136 / 912\n", "138 / 912\n", "139 / 912\n", "141 / 912\n", "142 / 912\n", "144 / 912\n", "145 / 912\n", "147 / 912\n", "148 / 912\n", "150 / 912\n", "151 / 912\n", "153 / 912\n", "154 / 912\n", "156 / 912\n", "157 / 912\n", "159 / 912\n", "160 / 912\n", "162 / 912\n", "163 / 912\n", "165 / 912\n", "166 / 912\n", "168 / 912\n", "169 / 912\n", "171 / 912\n", "172 / 912\n", "174 / 912\n", "175 / 912\n", "177 / 912\n", "178 / 912\n", "180 / 912\n", "181 / 912\n", "183 / 912\n", "184 / 912\n", "186 / 912\n", "187 / 912\n", "189 / 912\n", "190 / 912\n", "192 / 912\n", "193 / 912\n", "195 / 912\n", "196 / 912\n", "198 / 912\n", "199 / 912\n", "201 / 912\n", "202 / 912\n", "204 / 912\n", "205 / 912\n", "207 / 912\n", "208 / 912\n", "210 / 912\n", "211 / 912\n", "213 / 912\n", "214 / 912\n", "216 / 912\n", "217 / 912\n", "219 / 912\n", "220 / 912\n", "222 / 912\n", "223 / 912\n", "225 / 912\n", "226 / 912\n", "228 / 912\n", "229 / 912\n", "231 / 912\n", "232 / 912\n", "234 / 912\n", "235 / 912\n", "237 / 912\n", "238 / 912\n", "240 / 912\n", "241 / 912\n", "243 / 912\n", "244 / 912\n", "246 / 912\n", "247 / 912\n", "249 / 912\n", "250 / 912\n", "252 / 912\n", "253 / 912\n", "255 / 912\n", "256 / 912\n", "258 / 912\n", "259 / 912\n", "261 / 912\n", "262 / 912\n", "264 / 912\n", "265 / 912\n", "267 / 912\n", "268 / 912\n", "270 / 912\n", "271 / 912\n", "273 / 912\n", "274 / 912\n", "276 / 912\n", "277 / 912\n", "279 / 912\n", "280 / 912\n", "282 / 912\n", "283 / 912\n", "285 / 912\n", "286 / 912\n", "288 / 912\n", "289 / 912\n", "291 / 912\n", "292 / 912\n", "294 / 912\n", "295 / 912\n", "297 / 912\n", "298 / 912\n", "300 / 912\n", "301 / 912\n", "303 / 912\n", "304 / 912\n", "306 / 912\n", "307 / 912\n", "309 / 912\n", "310 / 912\n", "312 / 912\n", "313 / 912\n", "315 / 912\n", "316 / 912\n", "318 / 912\n", "319 / 912\n", "321 / 912\n", "322 / 912\n", "324 / 912\n", "325 / 912\n", "327 / 912\n", "328 / 912\n", "330 / 912\n", "331 / 912\n", "333 / 912\n", "334 / 912\n", "336 / 912\n", "337 / 912\n", "339 / 912\n", "340 / 912\n", "342 / 912\n", "343 / 912\n", "345 / 912\n", "346 / 912\n", "348 / 912\n", "349 / 912\n", "351 / 912\n", "352 / 912\n", "354 / 912\n", "355 / 912\n", "357 / 912\n", "358 / 912\n", "360 / 912\n", "361 / 912\n", "363 / 912\n", "364 / 912\n", "366 / 912\n", "367 / 912\n", "369 / 912\n", "370 / 912\n", "372 / 912\n", "373 / 912\n", "375 / 912\n", "376 / 912\n", "378 / 912\n", "379 / 912\n", "381 / 912\n", "382 / 912\n", "384 / 912\n", "385 / 912\n", "387 / 912\n", "388 / 912\n", "390 / 912\n", "391 / 912\n", "393 / 912\n", "394 / 912\n", "396 / 912\n", "397 / 912\n", "399 / 912\n", "400 / 912\n", "402 / 912\n", "403 / 912\n", "405 / 912\n", "406 / 912\n", "408 / 912\n", "409 / 912\n", "411 / 912\n", "412 / 912\n", "414 / 912\n", "415 / 912\n", "417 / 912\n", "418 / 912\n", "420 / 912\n", "421 / 912\n", "423 / 912\n", "424 / 912\n", "426 / 912\n", "427 / 912\n", "429 / 912\n", "430 / 912\n", "432 / 912\n", "433 / 912\n", "435 / 912\n", "436 / 912\n", "438 / 912\n", "439 / 912\n", "441 / 912\n", "442 / 912\n", "444 / 912\n", "445 / 912\n", "447 / 912\n", "448 / 912\n", "450 / 912\n", "451 / 912\n", "453 / 912\n", "454 / 912\n", "456 / 912\n", "457 / 912\n", "459 / 912\n", "460 / 912\n", "462 / 912\n", "463 / 912\n", "465 / 912\n", "466 / 912\n", "468 / 912\n", "469 / 912\n", "471 / 912\n", "472 / 912\n", "474 / 912\n", "475 / 912\n", "477 / 912\n", "478 / 912\n", "480 / 912\n", "481 / 912\n", "483 / 912\n", "484 / 912\n", "486 / 912\n", "487 / 912\n", "489 / 912\n", "490 / 912\n", "492 / 912\n", "493 / 912\n", "495 / 912\n", "496 / 912\n", "498 / 912\n", "499 / 912\n", "501 / 912\n", "502 / 912\n", "504 / 912\n", "505 / 912\n", "507 / 912\n", "508 / 912\n", "510 / 912\n", "511 / 912\n", "513 / 912\n", "514 / 912\n", "516 / 912\n", "517 / 912\n", "519 / 912\n", "520 / 912\n", "522 / 912\n", "523 / 912\n", "525 / 912\n", "526 / 912\n", "528 / 912\n", "529 / 912\n", "531 / 912\n", "532 / 912\n", "534 / 912\n", "535 / 912\n", "537 / 912\n", "538 / 912\n", "540 / 912\n", "541 / 912\n", "543 / 912\n", "544 / 912\n", "546 / 912\n", "547 / 912\n", "549 / 912\n", "550 / 912\n", "552 / 912\n", "553 / 912\n", "555 / 912\n", "556 / 912\n", "558 / 912\n", "559 / 912\n", "561 / 912\n", "562 / 912\n", "564 / 912\n", "565 / 912\n", "567 / 912\n", "568 / 912\n", "570 / 912\n", "571 / 912\n", "573 / 912\n", "574 / 912\n", "576 / 912\n", "577 / 912\n", "579 / 912\n", "580 / 912\n", "582 / 912\n", "583 / 912\n", "585 / 912\n", "586 / 912\n", "588 / 912\n", "589 / 912\n", "591 / 912\n", "592 / 912\n", "594 / 912\n", "595 / 912\n", "597 / 912\n", "598 / 912\n", "600 / 912\n", "601 / 912\n", "603 / 912\n", "604 / 912\n", "606 / 912\n", "607 / 912\n", "609 / 912\n", "610 / 912\n", "612 / 912\n", "613 / 912\n", "615 / 912\n", "616 / 912\n", "618 / 912\n", "619 / 912\n", "621 / 912\n", "622 / 912\n", "624 / 912\n", "625 / 912\n", "627 / 912\n", "628 / 912\n", "630 / 912\n", "631 / 912\n", "633 / 912\n", "634 / 912\n", "636 / 912\n", "637 / 912\n", "639 / 912\n", "640 / 912\n", "642 / 912\n", "643 / 912\n", "645 / 912\n", "646 / 912\n", "648 / 912\n", "649 / 912\n", "651 / 912\n", "652 / 912\n", "654 / 912\n", "655 / 912\n", "657 / 912\n", "658 / 912\n", "660 / 912\n", "661 / 912\n", "663 / 912\n", "664 / 912\n", "666 / 912\n", "667 / 912\n", "669 / 912\n", "670 / 912\n", "672 / 912\n", "673 / 912\n", "675 / 912\n", "676 / 912\n", "678 / 912\n", "679 / 912\n", "681 / 912\n", "682 / 912\n", "684 / 912\n", "685 / 912\n", "687 / 912\n", "688 / 912\n", "690 / 912\n", "691 / 912\n", "693 / 912\n", "694 / 912\n", "696 / 912\n", "697 / 912\n", "699 / 912\n", "700 / 912\n", "702 / 912\n", "703 / 912\n", "705 / 912\n", "706 / 912\n", "708 / 912\n", "709 / 912\n", "711 / 912\n", "712 / 912\n", "714 / 912\n", "715 / 912\n", "717 / 912\n", "718 / 912\n", "720 / 912\n", "721 / 912\n", "723 / 912\n", "724 / 912\n", "726 / 912\n", "727 / 912\n", "729 / 912\n", "730 / 912\n", "732 / 912\n", "733 / 912\n", "735 / 912\n", "736 / 912\n", "738 / 912\n", "739 / 912\n", "741 / 912\n", "742 / 912\n", "744 / 912\n", "745 / 912\n", "747 / 912\n", "748 / 912\n", "750 / 912\n", "751 / 912\n", "753 / 912\n", "754 / 912\n", "756 / 912\n", "757 / 912\n", "759 / 912\n", "760 / 912\n", "762 / 912\n", "763 / 912\n", "765 / 912\n", "766 / 912\n", "768 / 912\n", "769 / 912\n", "771 / 912\n", "772 / 912\n", "774 / 912\n", "775 / 912\n", "777 / 912\n", "778 / 912\n", "780 / 912\n", "781 / 912\n", "783 / 912\n", "784 / 912\n", "786 / 912\n", "787 / 912\n", "789 / 912\n", "790 / 912\n", "792 / 912\n", "793 / 912\n", "795 / 912\n", "796 / 912\n", "798 / 912\n", "799 / 912\n", "801 / 912\n", "802 / 912\n", "804 / 912\n", "805 / 912\n", "807 / 912\n", "808 / 912\n", "810 / 912\n", "811 / 912\n", "813 / 912\n", "814 / 912\n", "816 / 912\n", "817 / 912\n", "819 / 912\n", "820 / 912\n", "822 / 912\n", "823 / 912\n", "825 / 912\n", "826 / 912\n", "828 / 912\n", "829 / 912\n", "831 / 912\n", "832 / 912\n", "834 / 912\n", "835 / 912\n", "837 / 912\n", "838 / 912\n", "840 / 912\n", "841 / 912\n", "843 / 912\n", "844 / 912\n", "846 / 912\n", "847 / 912\n", "849 / 912\n", "850 / 912\n", "852 / 912\n", "853 / 912\n", "855 / 912\n", "856 / 912\n", "858 / 912\n", "859 / 912\n", "861 / 912\n", "862 / 912\n", "864 / 912\n", "865 / 912\n", "867 / 912\n", "868 / 912\n", "870 / 912\n", "871 / 912\n", "873 / 912\n", "874 / 912\n", "876 / 912\n", "877 / 912\n", "879 / 912\n", "880 / 912\n", "882 / 912\n", "883 / 912\n", "885 / 912\n", "886 / 912\n", "888 / 912\n", "889 / 912\n", "891 / 912\n", "892 / 912\n", "894 / 912\n", "895 / 912\n", "897 / 912\n", "898 / 912\n", "900 / 912\n", "901 / 912\n", "903 / 912\n", "904 / 912\n", "906 / 912\n", "907 / 912\n", "909 / 912\n", "910 / 912\n", "912 / 912\n", "done!\n", "casting params to fp16....\n", "done!\n", "saving yeero_euro_puff_200_r32_a16.safetensors...\n" ] } ] }, { "cell_type": "code", "source": [ "from safetensors.torch import load_file, save_file\n", "_puff = load_file('/content/drive/MyDrive/Saved from Chrome/pfbkFLUX.safetensors')\n", "puff = {}\n", "\n", "#alpha = 64\n", "#rank = 64\n", "\n", "# = > so scale = 1\n", "#desired scale = 0.5\n", "# so multiply matrices by 2 and set alpha to 32\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "for key in _puff:\n", " if f'{key}'.find('alpha')>-1:\n", " puff[f'{key}'] = torch.tensor(32).to(device=device , dtype = torch.float16)\n", " #print(puff[f'{key}'])\n", " continue\n", " puff[f'{key}'] = 2*_puff[f'{key}'].to(device=device , dtype = torch.float16)\n", "\n", " #print(puff[f'{key}'].shape)\n", "\n", "save_file(puff, 'puff.safetensors')" ], "metadata": { "id": "U8fCk78GimS8" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from safetensors.torch import load_file, save_file\n", "_tongue = load_file('/content/drive/MyDrive/Saved from Chrome/tongue-flux-v2.1.safetensors')\n", "tongue = {}\n", "# Scale = 32/16 = 2\n", "# Desired scale = 0.5 => multiply all matrices by 4 and set alpha to 8\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "for key in _tongue:\n", " if f'{key}'.find('alpha')>-1:\n", " tongue[f'{key}'] = torch.tensor(8).to(device=device , dtype = torch.float16)\n", " continue\n", " #-------#\n", " tongue[f'{key}'] = 4*_tongue[f'{key}'].to(device=device , dtype = torch.float16)\n", "#-------#\n", "save_file(tongue, 'tongue.safetensors')" ], "metadata": { "id": "lFNa6vgrgdSA" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "_oily = load_file('/content/drive/MyDrive/Saved from Chrome/OiledSkin_FluxDev.safetensors')\n", "\n", "star = load_file('/content/drive/MyDrive/Saved from Chrome/star_100_r32_16alpha.safetensors')\n", "#A = vs , B = u\n", "#lora_down = A , lora_up = B\n", "\n", "oily = {}\n", "for key in _oily:\n", " if not f'{key}'.find('_A.')>-1:continue\n", " A = f'{key}'\n", " B = f'{key}'.replace('_A.','_B.')\n", " down = f'{key}'.replace('_A.','_down.')\n", " up = f'{key}'.replace('_A.','_up.')\n", " #-----#\n", " oily[f'{up}'] = _oily[f'{B}'].to(device = device , dtype=torch.float16)\n", " oily[f'{down}'] = _oily[f'{A}'].to(device = device , dtype=torch.float16)\n", " #------#\n", " if not f'{key}'.find('to_k.')>-1:continue\n", " k = f'{key}'\n", " q = k.replace('to_k.','to_q.')\n", " v = k.replace('to_k.','to_v.')\n", "\n", "print(\"---------OILY---------\")\n", "for key in oily:\n", " print(key)\n", " #if f'{key}'.find('alpha')>-1:print(key)\n", "\n", "print(\"---------STAR---------\")\n", "for key in star:\n", " break\n", " print(key)" ], "metadata": { "id": "1oxeJYHRqxQC", "collapsed": true, "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "12e3a407-f9d1-403e-949b-31330be59577" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "---------OILY---------\n", "transformer.single_transformer_blocks.0.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.0.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.0.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.0.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.0.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.0.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.0.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.0.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.0.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.0.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.0.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.0.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.1.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.1.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.1.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.1.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.1.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.1.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.1.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.1.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.1.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.1.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.1.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.1.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.10.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.10.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.10.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.10.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.10.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.10.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.10.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.10.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.10.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.10.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.10.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.10.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.11.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.11.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.11.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.11.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.11.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.11.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.11.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.11.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.11.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.11.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.11.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.11.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.12.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.12.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.12.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.12.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.12.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.12.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.12.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.12.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.12.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.12.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.12.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.12.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.13.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.13.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.13.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.13.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.13.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.13.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.13.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.13.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.13.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.13.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.13.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.13.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.14.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.14.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.14.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.14.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.14.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.14.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.14.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.14.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.14.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.14.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.14.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.14.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.15.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.15.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.15.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.15.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.15.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.15.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.15.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.15.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.15.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.15.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.15.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.15.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.16.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.16.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.16.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.16.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.16.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.16.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.16.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.16.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.16.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.16.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.16.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.16.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.17.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.17.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.17.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.17.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.17.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.17.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.17.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.17.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.17.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.17.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.17.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.17.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.18.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.18.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.18.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.18.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.18.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.18.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.18.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.18.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.18.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.18.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.18.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.18.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.19.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.19.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.19.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.19.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.19.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.19.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.19.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.19.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.19.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.19.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.19.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.19.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.2.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.2.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.2.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.2.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.2.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.2.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.2.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.2.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.2.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.2.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.2.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.2.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.20.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.20.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.20.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.20.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.20.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.20.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.20.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.20.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.20.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.20.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.20.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.20.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.21.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.21.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.21.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.21.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.21.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.21.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.21.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.21.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.21.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.21.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.21.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.21.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.22.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.22.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.22.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.22.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.22.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.22.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.22.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.22.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.22.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.22.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.22.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.22.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.23.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.23.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.23.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.23.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.23.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.23.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.23.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.23.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.23.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.23.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.23.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.23.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.24.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.24.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.24.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.24.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.24.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.24.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.24.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.24.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.24.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.24.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.24.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.24.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.25.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.25.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.25.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.25.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.25.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.25.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.25.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.25.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.25.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.25.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.25.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.25.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.26.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.26.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.26.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.26.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.26.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.26.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.26.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.26.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.26.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.26.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.26.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.26.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.27.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.27.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.27.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.27.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.27.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.27.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.27.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.27.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.27.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.27.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.27.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.27.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.28.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.28.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.28.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.28.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.28.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.28.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.28.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.28.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.28.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.28.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.28.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.28.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.29.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.29.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.29.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.29.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.29.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.29.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.29.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.29.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.29.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.29.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.29.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.29.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.3.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.3.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.3.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.3.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.3.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.3.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.3.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.3.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.3.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.3.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.3.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.3.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.30.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.30.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.30.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.30.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.30.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.30.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.30.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.30.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.30.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.30.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.30.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.30.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.31.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.31.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.31.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.31.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.31.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.31.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.31.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.31.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.31.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.31.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.31.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.31.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.32.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.32.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.32.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.32.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.32.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.32.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.32.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.32.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.32.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.32.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.32.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.32.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.33.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.33.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.33.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.33.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.33.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.33.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.33.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.33.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.33.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.33.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.33.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.33.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.34.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.34.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.34.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.34.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.34.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.34.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.34.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.34.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.34.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.34.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.34.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.34.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.35.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.35.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.35.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.35.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.35.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.35.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.35.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.35.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.35.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.35.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.35.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.35.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.36.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.36.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.36.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.36.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.36.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.36.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.36.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.36.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.36.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.36.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.36.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.36.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.37.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.37.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.37.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.37.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.37.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.37.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.37.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.37.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.37.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.37.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.37.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.37.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.4.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.4.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.4.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.4.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.4.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.4.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.4.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.4.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.4.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.4.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.4.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.4.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.5.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.5.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.5.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.5.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.5.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.5.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.5.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.5.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.5.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.5.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.5.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.5.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.6.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.6.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.6.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.6.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.6.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.6.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.6.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.6.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.6.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.6.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.6.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.6.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.7.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.7.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.7.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.7.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.7.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.7.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.7.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.7.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.7.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.7.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.7.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.7.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.8.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.8.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.8.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.8.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.8.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.8.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.8.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.8.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.8.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.8.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.8.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.8.proj_out.lora_down.weight\n", "transformer.single_transformer_blocks.9.attn.to_k.lora_up.weight\n", "transformer.single_transformer_blocks.9.attn.to_k.lora_down.weight\n", "transformer.single_transformer_blocks.9.attn.to_q.lora_up.weight\n", "transformer.single_transformer_blocks.9.attn.to_q.lora_down.weight\n", "transformer.single_transformer_blocks.9.attn.to_v.lora_up.weight\n", "transformer.single_transformer_blocks.9.attn.to_v.lora_down.weight\n", "transformer.single_transformer_blocks.9.norm.linear.lora_up.weight\n", "transformer.single_transformer_blocks.9.norm.linear.lora_down.weight\n", "transformer.single_transformer_blocks.9.proj_mlp.lora_up.weight\n", "transformer.single_transformer_blocks.9.proj_mlp.lora_down.weight\n", "transformer.single_transformer_blocks.9.proj_out.lora_up.weight\n", "transformer.single_transformer_blocks.9.proj_out.lora_down.weight\n", "transformer.transformer_blocks.0.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.0.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.0.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.0.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.0.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.0.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.0.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.0.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.0.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.0.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.0.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.0.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.0.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.0.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.0.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.0.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.0.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.0.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.0.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.0.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.0.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.0.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.0.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.0.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.0.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.0.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.0.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.0.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.1.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.1.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.1.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.1.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.1.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.1.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.1.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.1.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.1.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.1.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.1.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.1.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.1.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.1.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.1.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.1.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.1.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.1.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.1.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.1.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.1.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.1.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.1.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.1.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.1.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.1.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.1.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.1.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.10.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.10.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.10.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.10.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.10.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.10.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.10.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.10.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.10.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.10.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.10.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.10.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.10.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.10.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.10.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.10.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.10.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.10.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.10.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.10.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.10.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.10.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.10.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.10.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.10.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.10.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.10.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.10.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.11.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.11.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.11.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.11.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.11.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.11.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.11.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.11.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.11.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.11.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.11.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.11.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.11.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.11.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.11.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.11.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.11.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.11.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.11.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.11.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.11.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.11.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.11.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.11.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.11.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.11.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.11.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.11.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.12.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.12.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.12.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.12.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.12.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.12.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.12.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.12.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.12.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.12.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.12.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.12.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.12.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.12.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.12.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.12.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.12.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.12.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.12.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.12.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.12.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.12.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.12.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.12.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.12.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.12.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.12.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.12.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.13.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.13.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.13.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.13.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.13.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.13.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.13.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.13.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.13.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.13.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.13.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.13.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.13.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.13.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.13.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.13.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.13.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.13.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.13.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.13.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.13.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.13.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.13.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.13.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.13.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.13.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.13.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.13.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.14.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.14.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.14.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.14.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.14.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.14.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.14.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.14.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.14.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.14.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.14.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.14.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.14.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.14.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.14.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.14.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.14.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.14.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.14.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.14.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.14.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.14.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.14.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.14.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.14.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.14.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.14.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.14.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.15.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.15.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.15.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.15.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.15.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.15.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.15.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.15.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.15.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.15.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.15.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.15.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.15.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.15.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.15.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.15.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.15.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.15.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.15.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.15.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.15.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.15.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.15.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.15.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.15.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.15.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.15.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.15.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.16.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.16.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.16.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.16.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.16.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.16.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.16.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.16.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.16.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.16.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.16.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.16.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.16.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.16.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.16.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.16.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.16.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.16.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.16.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.16.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.16.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.16.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.16.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.16.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.16.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.16.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.16.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.16.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.17.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.17.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.17.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.17.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.17.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.17.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.17.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.17.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.17.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.17.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.17.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.17.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.17.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.17.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.17.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.17.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.17.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.17.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.17.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.17.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.17.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.17.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.17.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.17.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.17.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.17.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.17.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.17.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.18.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.18.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.18.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.18.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.18.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.18.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.18.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.18.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.18.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.18.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.18.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.18.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.18.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.18.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.18.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.18.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.18.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.18.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.18.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.18.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.18.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.18.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.18.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.18.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.18.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.18.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.18.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.18.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.2.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.2.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.2.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.2.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.2.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.2.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.2.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.2.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.2.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.2.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.2.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.2.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.2.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.2.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.2.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.2.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.2.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.2.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.2.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.2.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.2.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.2.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.2.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.2.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.2.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.2.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.2.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.2.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.3.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.3.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.3.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.3.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.3.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.3.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.3.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.3.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.3.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.3.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.3.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.3.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.3.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.3.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.3.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.3.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.3.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.3.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.3.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.3.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.3.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.3.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.3.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.3.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.3.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.3.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.3.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.3.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.4.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.4.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.4.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.4.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.4.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.4.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.4.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.4.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.4.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.4.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.4.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.4.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.4.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.4.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.4.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.4.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.4.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.4.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.4.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.4.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.4.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.4.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.4.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.4.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.4.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.4.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.4.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.4.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.5.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.5.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.5.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.5.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.5.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.5.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.5.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.5.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.5.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.5.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.5.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.5.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.5.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.5.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.5.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.5.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.5.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.5.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.5.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.5.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.5.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.5.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.5.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.5.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.5.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.5.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.5.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.5.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.6.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.6.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.6.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.6.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.6.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.6.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.6.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.6.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.6.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.6.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.6.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.6.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.6.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.6.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.6.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.6.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.6.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.6.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.6.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.6.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.6.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.6.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.6.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.6.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.6.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.6.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.6.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.6.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.7.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.7.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.7.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.7.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.7.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.7.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.7.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.7.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.7.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.7.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.7.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.7.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.7.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.7.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.7.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.7.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.7.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.7.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.7.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.7.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.7.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.7.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.7.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.7.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.7.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.7.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.7.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.7.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.8.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.8.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.8.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.8.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.8.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.8.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.8.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.8.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.8.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.8.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.8.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.8.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.8.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.8.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.8.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.8.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.8.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.8.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.8.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.8.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.8.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.8.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.8.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.8.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.8.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.8.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.8.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.8.norm1_context.linear.lora_down.weight\n", "transformer.transformer_blocks.9.attn.add_k_proj.lora_up.weight\n", "transformer.transformer_blocks.9.attn.add_k_proj.lora_down.weight\n", "transformer.transformer_blocks.9.attn.add_q_proj.lora_up.weight\n", "transformer.transformer_blocks.9.attn.add_q_proj.lora_down.weight\n", "transformer.transformer_blocks.9.attn.add_v_proj.lora_up.weight\n", "transformer.transformer_blocks.9.attn.add_v_proj.lora_down.weight\n", "transformer.transformer_blocks.9.attn.to_add_out.lora_up.weight\n", "transformer.transformer_blocks.9.attn.to_add_out.lora_down.weight\n", "transformer.transformer_blocks.9.attn.to_k.lora_up.weight\n", "transformer.transformer_blocks.9.attn.to_k.lora_down.weight\n", "transformer.transformer_blocks.9.attn.to_out.0.lora_up.weight\n", "transformer.transformer_blocks.9.attn.to_out.0.lora_down.weight\n", "transformer.transformer_blocks.9.attn.to_q.lora_up.weight\n", "transformer.transformer_blocks.9.attn.to_q.lora_down.weight\n", "transformer.transformer_blocks.9.attn.to_v.lora_up.weight\n", "transformer.transformer_blocks.9.attn.to_v.lora_down.weight\n", "transformer.transformer_blocks.9.ff.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.9.ff.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.9.ff.net.2.lora_up.weight\n", "transformer.transformer_blocks.9.ff.net.2.lora_down.weight\n", "transformer.transformer_blocks.9.ff_context.net.0.proj.lora_up.weight\n", "transformer.transformer_blocks.9.ff_context.net.0.proj.lora_down.weight\n", "transformer.transformer_blocks.9.ff_context.net.2.lora_up.weight\n", "transformer.transformer_blocks.9.ff_context.net.2.lora_down.weight\n", "transformer.transformer_blocks.9.norm1.linear.lora_up.weight\n", "transformer.transformer_blocks.9.norm1.linear.lora_down.weight\n", "transformer.transformer_blocks.9.norm1_context.linear.lora_up.weight\n", "transformer.transformer_blocks.9.norm1_context.linear.lora_down.weight\n", "---------STAR---------\n" ] } ] }, { "cell_type": "code", "source": [ "down = 'lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight'\n", "up = 'lora_unet_double_blocks_0_img_attn_qkv.lora_up.weight'\n", "tgt = star\n", "print(\"STAR\")\n", "print(tgt[f'{up}'].shape)\n", "#print(torch.matmul(tgt[f'{up}'],tgt[f'{down}']).shape)\n", "\n", "down = 'transformer.transformer_blocks.0.attn.to_k.lora_down.weight'\n", "up = 'transformer.transformer_blocks.0.attn.to_k.lora_up.weight'\n", "tgt = oily\n", "print(\"VS. OILY\")\n", "print(tgt[f'{up}'].shape)\n", "#print(torch.matmul(tgt[f'{up}'],tgt[f'{down}']).shape)\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GoDfgENYaWD7", "outputId": "9336ae1a-6244-4e76-f291-82cda4482831" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "STAR\n", "torch.Size([9216, 32])\n", "VS. OILY\n", "torch.Size([3072, 32])\n" ] } ] }, { "cell_type": "code", "source": [ "for key in oily:\n", " print(oily[f'{key}'].shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xQhVLouEfmGE", "outputId": "662176b3-480d-48eb-f5db-97ec71b5e970" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([9216, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 15360])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([12288, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([3072, 32])\n", "torch.Size([32, 12288])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n", "torch.Size([18432, 32])\n", "torch.Size([32, 3072])\n" ] } ] }, { "cell_type": "code", "source": [ "\n", "import torch\n", "from safetensors.torch import load_file, save_file\n", "import torch.nn as nn\n", "from torch import linalg as LA\n", "import os\n", "import math\n", "import random\n", "import numpy as np\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "def _filter(tgt , pcnt, largest):\n", " num_topk = math.floor(tgt.numel()*(pcnt/100))\n", " y = tgt.flatten().to(device = device , dtype=torch.float32)\n", " values,indices = torch.topk( y , num_topk , largest=largest)\n", " _values,_indices = torch.topk( -y , num_topk , largest=largest)\n", " y = y*0\n", " y[indices] = 1\n", " y[_indices] = 1\n", " y = y.unflatten(0,tgt.shape).to(device = device , dtype=torch.float32)\n", " return torch.mul(tgt,y)\n", "\n", "#----#\n", "\n", "# For pcnt = 30 , 'filter_and_save' will keep all top 30 % values\n", "#, and the lowest (negative) 30% values for each layer delta_W in this lora\n", "# Then save the new filtered lora as a .safetensor file\n", "def filter_and_save(_lora , savefile_name, new_rank , new_alpha, thresh):\n", " lora = {}\n", " count = 0\n", " for key in _lora:count = count + 1\n", " NUM_ITEMS = count\n", " count = 0\n", " thresh = resolution*0.000001 # 1e-6\n", " #-------#\n", " for key in _lora:\n", " if f'{key}'.find('alpha') > -1:\n", " lora[f'{key}'] = torch.tensor(new_alpha).to(device = device , dtype = torch.float32)\n", " count = count + 1\n", " print(f'{count} / {NUM_ITEMS}')\n", " continue\n", " #------#\n", " if not f'{key}'.find('lora_down') > -1: continue\n", " up = f'{key}'.replace('lora_down' , 'lora_up')\n", " down = f'{key}'\n", " #-------#\n", " delta_W = torch.matmul(_lora[up],_lora[down]).to(device = device , dtype=torch.float32)\n", " #---#\n", " N = delta_W.numel()\n", " y = delta_W.flatten().to(device = device , dtype=torch.float32)\n", " values,indices = torch.sort(y, descending = False) # smallest -> largest elements\n", " y = torch.zeros(y.shape).to(device = device , dtype=torch.float32)\n", " y[indices[values>thresh]] = 1\n", " y[indices[values<-thresh]] = 1\n", " y = y.unflatten(0,delta_W.shape).to(device = device , dtype=torch.float32)\n", " delta_W = torch.mul(delta_W,y).to(device = device , dtype=torch.float32)\n", " #------#\n", " tmp={}\n", " tmp['u'], tmp['s'], tmp['Vh'] = torch.svd(delta_W)\n", " tmp['u'] = tmp['u'][:,: new_rank]\n", " tmp['s'] = tmp['s'][: new_rank]\n", " #-------#\n", " tmp['u'] = torch.round(torch.matmul(tmp['u'], torch.diag(tmp['s'])),decimals=6)\n", " tmp['Vh'] = torch.round(tmp['Vh'].t()[: new_rank,:],decimals=6)\n", " #-------#\n", " for key in tmp:tmp[f'{key}'] = tmp[f'{key}'].contiguous()\n", " lora[up] = tmp['u'].to(device = device , dtype=torch.float32)\n", " lora[down] = tmp['Vh'].to(device = device , dtype=torch.float32)\n", " #-------#\n", " count = count + 2\n", " print(f'{count} / {NUM_ITEMS}')\n", " #-------#\n", " print(f'done!')\n", " print(f'casting params to fp16....')\n", " for key in _lora: lora[f'{key}'] = lora[f'{key}'].to(device = device , dtype=torch.float16)\n", " #-------#\n", " print(f'done!')\n", " print(f'saving {savefile_name}...')\n", " save_file(lora , f'{savefile_name}')\n", "#--------#\n", "\n", "\n", "new_rank = 32\n", "new_alpha = new_rank/2\n", "resolution = 100\n", "star = load_file('/kaggle/input/flux-loras/yeero.safetensors')\n", "for key in star:\n", " star[f'{key}'] = star[f'{key}'].to(device = device , dtype = torch.float32)\n", "\n", "filter_and_save(star , f'yeero_{resolution}_r{new_rank}_{new_alpha}alpha.safetensors' , new_rank , new_alpha, resolution)\n", "\n", "#pcnt = 30\n", "#new_rank = 6\n", "#filter_and_save(yeero , f'yeero_topk{pcnt}_r{new_rank}.safetensors' , pcnt , new_rank)\n", "#filter_and_save(euro , f'euro_topk{pcnt}_r{new_rank}.safetensors' , pcnt , new_rank)\n", "#filter_and_save(star , f'star_topk{pcnt}_r{new_rank}.safetensors' , pcnt , new_rank)\n" ], "metadata": { "id": "f46xbSVkUlDl" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi_style.safetensors')" ], "metadata": { "id": "JuGDCX5272Bh" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "#cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi_style.safetensors')\n", "doll = load_file('/content/drive/MyDrive/Saved from Chrome/dolls.safetensors')\n", "euro = load_file('/content/drive/MyDrive/Saved from Chrome/euro.safetensors')\n", "scale = load_file('/content/drive/MyDrive/Saved from Chrome/scale.safetensors')\n", "cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi.safetensors')\n", "guns = load_file('/content/drive/MyDrive/Saved from Chrome/guns.safetensors')\n", "iris = load_file('/content/drive/MyDrive/Saved from Chrome/iris.safetensors')" ], "metadata": { "id": "FftDdBRG7su6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "for key in doll:\n", " doll[f'{key}'] = doll[f'{key}'].to(dtype=torch.float16)\n", " euro[f'{key}'] = euro[f'{key}'].to(dtype=torch.float16)\n", " scale[f'{key}'] = scale[f'{key}'].to(dtype=torch.float16)" ], "metadata": { "id": "RII9SEqh8KH2" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import torch\n", "import torch.nn as nn\n", "#define metric for similarity\n", "tgt_dim = torch.Size([64, 3072])\n", "cos0 = nn.CosineSimilarity(dim=1)\n", "cos = nn.CosineSimilarity(dim=1)\n", "\n", "\n", "def sim(tgt , ref ,key):\n", " return torch.sum(torch.abs(cos(tgt, ref[f'{key}']))) + torch.sum(torch.abs(cos0(tgt, ref[f'{key}'])))\n", "#-----#\n", "\n", "from torch import linalg as LA\n", "\n", "LA.matrix_norm\n", "def rand_search(A , B , key , iters):\n", " tgt_norm = (LA.matrix_norm(A[f'{key}']) + LA.matrix_norm(B[f'{key}']))/2\n", " tgt_avg = (A[f'{key}'] + B[f'{key}'])/2\n", "\n", " max_sim = (sim(tgt_avg , A , key) + sim(tgt_avg , B , key))\n", " cand = tgt_avg\n", "\n", " for iter in range(iters):\n", " rand = torch.ones(tgt_dim)*(-0.5) + torch.rand(tgt_dim)\n", " rand = rand * (tgt_norm/LA.matrix_norm(rand))\n", " #rand = (rand + tgt_avg)/2\n", " #rand = rand * (tgt_norm/LA.matrix_norm(rand))\n", "\n", " tmp = sim(rand,A, key) + sim(rand , B, key)\n", " if (tmp > max_sim):\n", " max_sim = tmp\n", " cand = rand\n", " print('found!')\n", " break\n", " #------#\n", " print('returning')\n", " return cand , max_sim\n", "#-----#" ], "metadata": { "id": "hJL6QEclHdHn" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "cand , max_sim = rand_search(cgi , iris , 'lora_unet_double_blocks_0_img_attn_proj.lora_down.weight' , 1000)\n", "print(sim(cand , iris , key))\n", "print(sim(cand , cgi , key))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ckyBSQi5Ll4F", "outputId": "341f7192-083d-4423-f61f-4f49d5756e79" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "returning\n", "tensor(91.1875, dtype=torch.float16)\n", "tensor(90.2500, dtype=torch.float16)\n" ] } ] }, { "cell_type": "code", "source": [ "(torch.rand(1).to(dtype=torch.float16)*3).item()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "XLwslN61hiIJ", "outputId": "9e3cbba6-3727-4772-f453-fecf8a408790" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0.2138671875" ] }, "metadata": {}, "execution_count": 16 } ] }, { "cell_type": "code", "source": [ "torch.rand(1).to(dtype=torch.float16)*10" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AKwh0lZ1f8dJ", "outputId": "59186526-bd73-4efe-925a-3e7a9c738e53" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "tensor([6.8555], dtype=torch.float16)" ] }, "metadata": {}, "execution_count": 13 } ] }, { "cell_type": "code", "source": [ "import torch\n", "import torch.nn as nn\n", "#define metric for similarity\n", "tgt_dim = torch.Size([64, 3072])\n", "cos0 = nn.CosineSimilarity(dim=0)\n", "\n", "\n", "\n", "cos = nn.CosineSimilarity(dim=1)\n", "\n", "\n", "def sim(tgt , ref ,key):\n", " return torch.sum(torch.abs(cos(tgt, ref[f'{key}']))) + torch.sum(torch.abs(cos0(tgt, ref[f'{key}'])))\n", "#-----#" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SNCvvkb2h3Zb", "outputId": "725fabd1-3fe2-4ac2-f24c-5f9309d45e4a" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "7.715576171875" ] }, "metadata": {}, "execution_count": 37 } ] }, { "cell_type": "code", "source": [ "from safetensors.torch import load_file , save_file\n", "import torch\n", "import torch.nn as nn\n", "from torch import linalg as LA\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "#define metric for similarity\n", "cos0 = nn.CosineSimilarity(dim=0).to(device)\n", "final_score = 0\n", "highest_score = 0\n", "w_cgi = 1\n", "w_doll = 2\n", "w_euro = 2\n", "w_guns = 1\n", "w_iris = 2\n", "w_scale = 1\n", "\n", "w_noise = 0.00001 * (w_cgi + w_doll + w_euro + w_guns + w_iris + w_scale)\n", "fixed_noise = {}\n", "\n", "#for key in doll:\n", "# fixed_noise[f'{key}'] = torch.zeros(doll[f'{key}'].shape).to(device = device , dtype=torch.float16)\n", "#------#\n", "#w_offset = 0* (w1+w2+w3)\n", "#_w_offset = 0\n", "\n", "W = (w_cgi + w_doll + w_euro + w_guns + w_iris + w_scale + w_noise)*torch.ones(1).to(device = device,dtype=torch.float16)\n", "\n", "SCALE = 0.0001\n", "one = torch.ones(1).to(dtype=torch.float16).to(device)\n", "\n", "for attempt in range(1000):\n", " print(f'attempt no : {attempt+1} ')\n", " merge = load_file('/content/drive/MyDrive/Saved from Chrome/dolls.safetensors')\n", " for key in doll:\n", " tgt_dim = doll[f'{key}'].shape\n", " if tgt_dim == torch.Size([]): continue\n", " r_cgi = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_cgi\n", " r_doll = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_doll\n", " r_euro = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_euro\n", " r_guns = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_guns\n", " r_iris = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_iris\n", " r_scale = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_scale\n", " #------#\n", " noise = torch.rand(tgt_dim).to(device = device,dtype=torch.float16)\n", " noise_norm = LA.matrix_norm(noise).to(device = device,dtype=torch.float16).item()\n", " noise = (w_noise/noise_norm)*noise.to(device = device,dtype=torch.float16)\n", " #-----#\n", " merge[f'{key}'] = r_cgi * cgi[f'{key}'] #overwrite\n", " merge[f'{key}'] = merge[f'{key}'] + r_doll * doll[f'{key}']\n", " merge[f'{key}'] = merge[f'{key}'] + r_euro * euro[f'{key}']\n", " merge[f'{key}'] = merge[f'{key}'] + r_guns * guns[f'{key}']\n", " merge[f'{key}'] = merge[f'{key}'] + r_iris * iris[f'{key}']\n", " merge[f'{key}'] = merge[f'{key}'] + r_scale * scale[f'{key}']\n", " merge[f'{key}'] = ((merge[f'{key}'] + noise)/W).to(device = device,dtype=torch.float16)\n", " #-------#\n", " score = torch.zeros(1).to(device = device, dtype=torch.float32)\n", " #----#\n", " NUM_ITERS = 10\n", " for iter in range(NUM_ITERS):\n", " for key in doll:\n", " tgt_dim = doll[f'{key}'].shape\n", " if tgt_dim == torch.Size([]): continue\n", " vec = torch.rand(tgt_dim[0]).to(device = device,dtype=torch.float16)\n", " cgi_out = torch.matmul(vec , cgi[f'{key}']).to(device = device,dtype=torch.float16)\n", " doll_out = torch.matmul(vec , doll[f'{key}']).to(device = device,dtype=torch.float16)\n", " euro_out = torch.matmul(vec , euro[f'{key}']).to(device = device,dtype=torch.float16)\n", " guns_out = torch.matmul(vec , guns[f'{key}']).to(device = device,dtype=torch.float16)\n", " iris_out = torch.matmul(vec , iris[f'{key}']).to(device = device,dtype=torch.float16)\n", " scale_out = torch.matmul(vec , scale[f'{key}']).to(device = device,dtype=torch.float16)\n", " merge_out = torch.matmul(vec , merge[f'{key}']).to(device = device,dtype=torch.float16)\n", " #-------#\n", " sim_value_cgi = torch.abs(cos0(cgi_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n", " sim_value_doll = torch.abs(cos0(doll_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n", " sim_value_euro = torch.abs(cos0(euro_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n", " sim_value_guns = torch.abs(cos0(guns_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n", " sim_value_iris = torch.abs(cos0(iris_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n", " sim_value_scale = torch.abs(cos0(scale_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n", " score = score + SCALE*(sim_value_cgi + 2*sim_value_doll + 2*sim_value_euro + sim_value_guns + 2*sim_value_iris + sim_value_scale)/9 #<--- This score can be anything at all\n", " #----#\n", " #-----#\n", "\n", " final_score = (1000/(NUM_ITERS * SCALE))*score.to(device = 'cpu' , dtype=torch.float32).item()\n", " if (final_score>highest_score) :\n", " highest_score = final_score\n", " print('new highscore!')\n", " print(f'score : {final_score} pts')\n", " #------#\n", " save_file(merge , 'all_merge_R4.safetensors')\n", " #------#\n", "\n", "print(f'------------')\n", "print(f'Final score : {highest_score} pts')\n", "\n", "\n", "#all R1 23.190992578747682\n", "\n", "#all R2 23.333244826062582\n", "\n", "#all R3 23.34471355425194\n", "\n", "#all R4 23.402637452818453" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "9L_g5Zp9Du2E", "outputId": "a3aa2bde-061e-43f5-ca35-96bdc470be80" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "attempt no : 1 \n", "new highscore!\n", "score : 23.264414267032407 pts\n", "attempt no : 2 \n", "attempt no : 3 \n", "attempt no : 4 \n", "new highscore!\n", "score : 23.29399467271287 pts\n", "attempt no : 5 \n", "attempt no : 6 \n", "attempt no : 7 \n", "attempt no : 8 \n", "attempt no : 9 \n", "attempt no : 10 \n", "attempt no : 11 \n", "new highscore!\n", "score : 23.362628780887462 pts\n", "attempt no : 12 \n", "attempt no : 13 \n", "attempt no : 14 \n", "attempt no : 15 \n", "attempt no : 16 \n", "attempt no : 17 \n", "attempt no : 18 \n", "attempt no : 19 \n", "attempt no : 20 \n", "attempt no : 21 \n", "attempt no : 22 \n", "attempt no : 23 \n", "new highscore!\n", "score : 23.37011210329365 pts\n", "attempt no : 24 \n", "attempt no : 25 \n", "attempt no : 26 \n", "attempt no : 27 \n", "attempt no : 28 \n", "attempt no : 29 \n", "attempt no : 30 \n", "attempt no : 31 \n", "attempt no : 32 \n", "attempt no : 33 \n", "attempt no : 34 \n", "new highscore!\n", "score : 23.402637452818453 pts\n", "attempt no : 35 \n", "attempt no : 36 \n", "attempt no : 37 \n", "attempt no : 38 \n", "attempt no : 39 \n", "attempt no : 40 \n", "attempt no : 41 \n", "attempt no : 42 \n", "attempt no : 43 \n", "attempt no : 44 \n", "attempt no : 45 \n", "attempt no : 46 \n", "attempt no : 47 \n", "attempt no : 48 \n", "attempt no : 49 \n", "attempt no : 50 \n", "attempt no : 51 \n", "attempt no : 52 \n", "attempt no : 53 \n", "attempt no : 54 \n", "attempt no : 55 \n", "attempt no : 56 \n", "attempt no : 57 \n", "attempt no : 58 \n", "attempt no : 59 \n", "attempt no : 60 \n", "attempt no : 61 \n", "attempt no : 62 \n", "attempt no : 63 \n", "attempt no : 64 \n", "attempt no : 65 \n", "attempt no : 66 \n", "attempt no : 67 \n", "attempt no : 68 \n", "attempt no : 69 \n", "attempt no : 70 \n", "attempt no : 71 \n", "attempt no : 72 \n", "attempt no : 73 \n", "attempt no : 74 \n", "attempt no : 75 \n", "attempt no : 76 \n", "attempt no : 77 \n", "attempt no : 78 \n", "attempt no : 79 \n", "attempt no : 80 \n", "attempt no : 81 \n", "attempt no : 82 \n", "attempt no : 83 \n", "attempt no : 84 \n", "attempt no : 85 \n", "attempt no : 86 \n" ] }, { "output_type": "error", "ename": "KeyboardInterrupt", "evalue": "", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0mtgt_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdoll\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{key}'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtgt_dim\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mvec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrand\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtgt_dim\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mcgi_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvec\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mcgi\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{key}'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0mdoll_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvec\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mdoll\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{key}'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ] }, { "cell_type": "code", "source": [ " for key in doll:\n", " if final_score<38.5: break\n", " _w_offset = w_offset\n", " W = (w1+w2+w3 + w_noise + _w_offset)*torch.ones(1).to(device = device,dtype=torch.float16)\n", " tgt_dim = doll[f'{key}'].shape\n", " if tgt_dim == torch.Size([]): continue\n", " fixed_noise[f'{key}'] = fixed_noise[f'{key}'] + merge[f'{key}']\n", " fixed_noise[f'{key}'] = (fixed_noise[f'{key}'] * (w_offset*torch.ones(1).to(device = device,dtype=torch.float16)/LA.matrix_norm(fixed_noise[f'{key}']))).to(device = device,dtype=torch.float16)" ], "metadata": { "id": "jWFHMJN6TqDq" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ " vec = torch.rand(tgt_dim[0]).to(dtype=torch.float16)\n", " same = torch.abs(cos0(vec ,vec))" ], "metadata": { "id": "k7Pq-kDbuNnQ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "same" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ANBPfP7tuOoa", "outputId": "24300487-f874-4f1b-beb7-0f441ec7df4a" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "tensor(1., dtype=torch.float16)" ] }, "metadata": {}, "execution_count": 65 } ] }, { "cell_type": "code", "source": [ "torch.ones(1).to(dtype=torch.float16)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "zN92j8JJuQ6G", "outputId": "b810f4e6-a8f3-426a-ae52-ffbd44fb3f00" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "tensor([1.], dtype=torch.float16)" ] }, "metadata": {}, "execution_count": 66 } ] }, { "cell_type": "code", "source": [ "\n", "\n", "\n", "\n", "\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "py-JMJzhsAI4", "outputId": "207cd809-031c-48e3-af0a-98bc114d910e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "score : 45.8125 pts\n" ] } ] }, { "cell_type": "code", "source": [ "%cd /content/\n", "save_file(merge , 'doll_euro_scale_R_merge.safetensors')" ], "metadata": { "id": "7qogsYsAr2QU" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "9wzLwurSpwpL" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "test = torch.rand(tgt_dim)\n", "vec = torch.rand(tgt_dim[0])" ], "metadata": { "id": "DHdy4DptowYG" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "tgt_dim[0]" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WeNJ0bquphtx", "outputId": "442bfb2e-c1ab-4549-a4ea-ca80d3cc9a7d" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "9216" ] }, "metadata": {}, "execution_count": 46 } ] }, { "cell_type": "code", "source": [ "(torch.matmul(vec,test)).shape" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xqZp3Xo8pQuW", "outputId": "68e5c25e-3391-45e7-9c73-45e0174ddbc1" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "torch.Size([64])" ] }, "metadata": {}, "execution_count": 48 } ] }, { "cell_type": "code", "source": [ "tgt_dim = torch.Size([64, 3072])\n", "cosa = nn.CosineSimilarity(dim=0)\n", "cos_dim1 = nn.CosineSimilarity(dim=1)\n", "\n", "for key in cgi:\n", " if not cgi[f'{key}'].shape == torch.Size([64, 3072]): continue\n", " print(f'{key} : ')\n", " print(torch.sum(torch.abs(cos_dim1(cgi[f'{key}'] , iris[f'{key}']))))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "VFNw0Nck8V6Q", "outputId": "e48bab98-18f7-43bb-d1cf-89f3e00f7ccf" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "lora_unet_double_blocks_0_img_attn_proj.lora_down.weight : \n", "tensor(1.6982, dtype=torch.float16)\n", "lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight : \n", "tensor(1.8145, dtype=torch.float16)\n", "lora_unet_double_blocks_0_img_mlp_0.lora_down.weight : \n", "tensor(1.6309, dtype=torch.float16)\n", "lora_unet_double_blocks_0_img_mod_lin.lora_down.weight : \n", "tensor(2.6211, dtype=torch.float16)\n", "lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight : \n", "tensor(2.3203, dtype=torch.float16)\n", "lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight : \n", "tensor(2.3027, dtype=torch.float16)\n", "lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight : \n", "tensor(2.5898, dtype=torch.float16)\n", "lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight : \n", "tensor(2.7402, dtype=torch.float16)\n", "lora_unet_double_blocks_10_img_attn_proj.lora_down.weight : \n", "tensor(2.0410, dtype=torch.float16)\n", "lora_unet_double_blocks_10_img_attn_qkv.lora_down.weight : \n", "tensor(1.3350, dtype=torch.float16)\n", "lora_unet_double_blocks_10_img_mlp_0.lora_down.weight : \n", "tensor(2.0020, dtype=torch.float16)\n", "lora_unet_double_blocks_10_img_mod_lin.lora_down.weight : \n", "tensor(2.6562, dtype=torch.float16)\n", "lora_unet_double_blocks_10_txt_attn_proj.lora_down.weight : \n", "tensor(1.1816, dtype=torch.float16)\n", "lora_unet_double_blocks_10_txt_attn_qkv.lora_down.weight : \n", "tensor(1.1348, dtype=torch.float16)\n", "lora_unet_double_blocks_10_txt_mlp_0.lora_down.weight : \n", "tensor(3.0156, dtype=torch.float16)\n", "lora_unet_double_blocks_10_txt_mod_lin.lora_down.weight : \n", "tensor(1.4746, dtype=torch.float16)\n", "lora_unet_double_blocks_11_img_attn_proj.lora_down.weight : \n", "tensor(1.8359, dtype=torch.float16)\n", "lora_unet_double_blocks_11_img_attn_qkv.lora_down.weight : \n", "tensor(1.5312, dtype=torch.float16)\n", "lora_unet_double_blocks_11_img_mlp_0.lora_down.weight : \n", "tensor(2.1465, dtype=torch.float16)\n", "lora_unet_double_blocks_11_img_mod_lin.lora_down.weight : \n", "tensor(3.9277, dtype=torch.float16)\n", "lora_unet_double_blocks_11_txt_attn_proj.lora_down.weight : \n", "tensor(1.7246, dtype=torch.float16)\n", "lora_unet_double_blocks_11_txt_attn_qkv.lora_down.weight : \n", "tensor(1.8594, dtype=torch.float16)\n", "lora_unet_double_blocks_11_txt_mlp_0.lora_down.weight : \n", "tensor(3.6465, dtype=torch.float16)\n", "lora_unet_double_blocks_11_txt_mod_lin.lora_down.weight : \n", "tensor(2.6152, dtype=torch.float16)\n", "lora_unet_double_blocks_12_img_attn_proj.lora_down.weight : \n", "tensor(1.7295, dtype=torch.float16)\n", "lora_unet_double_blocks_12_img_attn_qkv.lora_down.weight : \n", "tensor(1.4795, dtype=torch.float16)\n", "lora_unet_double_blocks_12_img_mlp_0.lora_down.weight : \n", "tensor(3.4043, dtype=torch.float16)\n", "lora_unet_double_blocks_12_img_mod_lin.lora_down.weight : \n", "tensor(2.0137, dtype=torch.float16)\n", "lora_unet_double_blocks_12_txt_attn_proj.lora_down.weight : \n", "tensor(1.4375, dtype=torch.float16)\n", "lora_unet_double_blocks_12_txt_attn_qkv.lora_down.weight : \n", "tensor(1.8994, dtype=torch.float16)\n", "lora_unet_double_blocks_12_txt_mlp_0.lora_down.weight : \n", "tensor(2.1152, dtype=torch.float16)\n", "lora_unet_double_blocks_12_txt_mod_lin.lora_down.weight : \n", "tensor(1.2744, dtype=torch.float16)\n", "lora_unet_double_blocks_13_img_attn_proj.lora_down.weight : \n", "tensor(3.0742, dtype=torch.float16)\n", "lora_unet_double_blocks_13_img_attn_qkv.lora_down.weight : \n", "tensor(1.4980, dtype=torch.float16)\n", "lora_unet_double_blocks_13_img_mlp_0.lora_down.weight : \n", "tensor(1.9609, dtype=torch.float16)\n", "lora_unet_double_blocks_13_img_mod_lin.lora_down.weight : \n", "tensor(2.6133, dtype=torch.float16)\n", "lora_unet_double_blocks_13_txt_attn_proj.lora_down.weight : \n", "tensor(1.6904, dtype=torch.float16)\n", "lora_unet_double_blocks_13_txt_attn_qkv.lora_down.weight : \n", "tensor(2.1680, dtype=torch.float16)\n", "lora_unet_double_blocks_13_txt_mlp_0.lora_down.weight : \n", "tensor(2.8574, dtype=torch.float16)\n", "lora_unet_double_blocks_13_txt_mod_lin.lora_down.weight : \n", "tensor(1.9053, dtype=torch.float16)\n", "lora_unet_double_blocks_14_img_attn_proj.lora_down.weight : \n", "tensor(1.8135, dtype=torch.float16)\n", "lora_unet_double_blocks_14_img_attn_qkv.lora_down.weight : \n", "tensor(1.4033, dtype=torch.float16)\n", "lora_unet_double_blocks_14_img_mlp_0.lora_down.weight : \n", "tensor(1.5547, dtype=torch.float16)\n", "lora_unet_double_blocks_14_img_mod_lin.lora_down.weight : \n", "tensor(2.8906, dtype=torch.float16)\n", "lora_unet_double_blocks_14_txt_attn_proj.lora_down.weight : \n", "tensor(1.1328, dtype=torch.float16)\n", "lora_unet_double_blocks_14_txt_attn_qkv.lora_down.weight : \n", "tensor(1.3701, dtype=torch.float16)\n", "lora_unet_double_blocks_14_txt_mlp_0.lora_down.weight : \n", "tensor(3.3145, dtype=torch.float16)\n", "lora_unet_double_blocks_14_txt_mod_lin.lora_down.weight : \n", "tensor(1.2031, dtype=torch.float16)\n", "lora_unet_double_blocks_15_img_attn_proj.lora_down.weight : \n", "tensor(1.5137, dtype=torch.float16)\n", "lora_unet_double_blocks_15_img_attn_qkv.lora_down.weight : \n", "tensor(1.3809, dtype=torch.float16)\n", "lora_unet_double_blocks_15_img_mlp_0.lora_down.weight : \n", "tensor(1.4834, dtype=torch.float16)\n", "lora_unet_double_blocks_15_img_mod_lin.lora_down.weight : \n", "tensor(1.6465, dtype=torch.float16)\n", "lora_unet_double_blocks_15_txt_attn_proj.lora_down.weight : \n", "tensor(1.7256, dtype=torch.float16)\n", "lora_unet_double_blocks_15_txt_attn_qkv.lora_down.weight : \n", "tensor(2.8672, dtype=torch.float16)\n", "lora_unet_double_blocks_15_txt_mlp_0.lora_down.weight : \n", "tensor(2.1953, dtype=torch.float16)\n", "lora_unet_double_blocks_15_txt_mod_lin.lora_down.weight : \n", "tensor(0.9858, dtype=torch.float16)\n", "lora_unet_double_blocks_16_img_attn_proj.lora_down.weight : \n", "tensor(1.5703, dtype=torch.float16)\n", "lora_unet_double_blocks_16_img_attn_qkv.lora_down.weight : \n", "tensor(1.4648, dtype=torch.float16)\n", "lora_unet_double_blocks_16_img_mlp_0.lora_down.weight : \n", "tensor(1.5537, dtype=torch.float16)\n", "lora_unet_double_blocks_16_img_mod_lin.lora_down.weight : \n", "tensor(2.6133, dtype=torch.float16)\n", "lora_unet_double_blocks_16_txt_attn_proj.lora_down.weight : \n", "tensor(2.2559, dtype=torch.float16)\n", "lora_unet_double_blocks_16_txt_attn_qkv.lora_down.weight : \n", "tensor(1.9365, dtype=torch.float16)\n", "lora_unet_double_blocks_16_txt_mlp_0.lora_down.weight : \n", "tensor(2.7891, dtype=torch.float16)\n", "lora_unet_double_blocks_16_txt_mod_lin.lora_down.weight : \n", "tensor(1.3174, dtype=torch.float16)\n", "lora_unet_double_blocks_17_img_attn_proj.lora_down.weight : \n", "tensor(2.4609, dtype=torch.float16)\n", "lora_unet_double_blocks_17_img_attn_qkv.lora_down.weight : \n", "tensor(1.6240, dtype=torch.float16)\n", "lora_unet_double_blocks_17_img_mlp_0.lora_down.weight : \n", "tensor(3.1406, dtype=torch.float16)\n", "lora_unet_double_blocks_17_img_mod_lin.lora_down.weight : \n", "tensor(2.1055, dtype=torch.float16)\n", "lora_unet_double_blocks_17_txt_attn_proj.lora_down.weight : \n", "tensor(1.7480, dtype=torch.float16)\n", "lora_unet_double_blocks_17_txt_attn_qkv.lora_down.weight : \n", "tensor(1.6436, dtype=torch.float16)\n", "lora_unet_double_blocks_17_txt_mlp_0.lora_down.weight : \n", "tensor(1.9688, dtype=torch.float16)\n", "lora_unet_double_blocks_17_txt_mod_lin.lora_down.weight : \n", "tensor(1.8184, dtype=torch.float16)\n", "lora_unet_double_blocks_18_img_attn_proj.lora_down.weight : \n", "tensor(2.3887, dtype=torch.float16)\n", "lora_unet_double_blocks_18_img_attn_qkv.lora_down.weight : \n", "tensor(1.6738, dtype=torch.float16)\n", "lora_unet_double_blocks_18_img_mlp_0.lora_down.weight : \n", "tensor(3.7500, dtype=torch.float16)\n", "lora_unet_double_blocks_18_img_mod_lin.lora_down.weight : \n", "tensor(2.7285, dtype=torch.float16)\n", "lora_unet_double_blocks_18_txt_attn_proj.lora_down.weight : \n", "tensor(2.0410, dtype=torch.float16)\n", "lora_unet_double_blocks_18_txt_attn_qkv.lora_down.weight : \n", "tensor(2.0586, dtype=torch.float16)\n", "lora_unet_double_blocks_18_txt_mlp_0.lora_down.weight : \n", "tensor(2.0801, dtype=torch.float16)\n", "lora_unet_double_blocks_18_txt_mod_lin.lora_down.weight : \n", "tensor(1.5684, dtype=torch.float16)\n", "lora_unet_double_blocks_1_img_attn_proj.lora_down.weight : \n", "tensor(4.9844, dtype=torch.float16)\n", "lora_unet_double_blocks_1_img_attn_qkv.lora_down.weight : \n", "tensor(1.8613, dtype=torch.float16)\n", "lora_unet_double_blocks_1_img_mlp_0.lora_down.weight : \n", "tensor(2.2266, dtype=torch.float16)\n", "lora_unet_double_blocks_1_img_mod_lin.lora_down.weight : \n", "tensor(2.8164, dtype=torch.float16)\n", "lora_unet_double_blocks_1_txt_attn_proj.lora_down.weight : \n", "tensor(1.7500, dtype=torch.float16)\n", "lora_unet_double_blocks_1_txt_attn_qkv.lora_down.weight : \n", "tensor(2.3105, dtype=torch.float16)\n", "lora_unet_double_blocks_1_txt_mlp_0.lora_down.weight : \n", "tensor(1.9639, dtype=torch.float16)\n", "lora_unet_double_blocks_1_txt_mod_lin.lora_down.weight : \n", "tensor(2.6504, dtype=torch.float16)\n", "lora_unet_double_blocks_2_img_attn_proj.lora_down.weight : \n", "tensor(4.6367, dtype=torch.float16)\n", "lora_unet_double_blocks_2_img_attn_qkv.lora_down.weight : \n", "tensor(1.7988, dtype=torch.float16)\n", "lora_unet_double_blocks_2_img_mlp_0.lora_down.weight : \n", "tensor(4.6758, dtype=torch.float16)\n", "lora_unet_double_blocks_2_img_mod_lin.lora_down.weight : \n", "tensor(3.1445, dtype=torch.float16)\n", "lora_unet_double_blocks_2_txt_attn_proj.lora_down.weight : \n", "tensor(2.2285, dtype=torch.float16)\n", "lora_unet_double_blocks_2_txt_attn_qkv.lora_down.weight : \n", "tensor(1.4990, dtype=torch.float16)\n", "lora_unet_double_blocks_2_txt_mlp_0.lora_down.weight : \n", "tensor(2.3984, dtype=torch.float16)\n", "lora_unet_double_blocks_2_txt_mod_lin.lora_down.weight : \n", "tensor(1.4443, dtype=torch.float16)\n", "lora_unet_double_blocks_3_img_attn_proj.lora_down.weight : \n", "tensor(3.6855, dtype=torch.float16)\n", "lora_unet_double_blocks_3_img_attn_qkv.lora_down.weight : \n", "tensor(1.9971, dtype=torch.float16)\n", "lora_unet_double_blocks_3_img_mlp_0.lora_down.weight : \n", "tensor(3.3301, dtype=torch.float16)\n", "lora_unet_double_blocks_3_img_mod_lin.lora_down.weight : \n", "tensor(2.3379, dtype=torch.float16)\n", "lora_unet_double_blocks_3_txt_attn_proj.lora_down.weight : \n", "tensor(2.0117, dtype=torch.float16)\n", "lora_unet_double_blocks_3_txt_attn_qkv.lora_down.weight : \n", "tensor(2.1621, dtype=torch.float16)\n", "lora_unet_double_blocks_3_txt_mlp_0.lora_down.weight : \n", "tensor(2.7676, dtype=torch.float16)\n", "lora_unet_double_blocks_3_txt_mod_lin.lora_down.weight : \n", "tensor(3.1895, dtype=torch.float16)\n", "lora_unet_double_blocks_4_img_attn_proj.lora_down.weight : \n", "tensor(2.3848, dtype=torch.float16)\n", "lora_unet_double_blocks_4_img_attn_qkv.lora_down.weight : \n", "tensor(1.7783, dtype=torch.float16)\n", "lora_unet_double_blocks_4_img_mlp_0.lora_down.weight : \n", "tensor(2.0234, dtype=torch.float16)\n", "lora_unet_double_blocks_4_img_mod_lin.lora_down.weight : \n", "tensor(1.9082, dtype=torch.float16)\n", "lora_unet_double_blocks_4_txt_attn_proj.lora_down.weight : \n", "tensor(1.7588, dtype=torch.float16)\n", "lora_unet_double_blocks_4_txt_attn_qkv.lora_down.weight : \n", "tensor(2.9902, dtype=torch.float16)\n", "lora_unet_double_blocks_4_txt_mlp_0.lora_down.weight : \n", "tensor(1.5859, dtype=torch.float16)\n", "lora_unet_double_blocks_4_txt_mod_lin.lora_down.weight : \n", "tensor(1.5654, dtype=torch.float16)\n", "lora_unet_double_blocks_5_img_attn_proj.lora_down.weight : \n", "tensor(2.7402, dtype=torch.float16)\n", "lora_unet_double_blocks_5_img_attn_qkv.lora_down.weight : \n", "tensor(1.6221, dtype=torch.float16)\n", "lora_unet_double_blocks_5_img_mlp_0.lora_down.weight : \n", "tensor(1.6318, dtype=torch.float16)\n", "lora_unet_double_blocks_5_img_mod_lin.lora_down.weight : \n", "tensor(1.7988, dtype=torch.float16)\n", "lora_unet_double_blocks_5_txt_attn_proj.lora_down.weight : \n", "tensor(1.1699, dtype=torch.float16)\n", "lora_unet_double_blocks_5_txt_attn_qkv.lora_down.weight : \n", "tensor(3.5566, dtype=torch.float16)\n", "lora_unet_double_blocks_5_txt_mlp_0.lora_down.weight : \n", "tensor(1.5791, dtype=torch.float16)\n", "lora_unet_double_blocks_5_txt_mod_lin.lora_down.weight : \n", "tensor(1.5547, dtype=torch.float16)\n", "lora_unet_double_blocks_6_img_attn_proj.lora_down.weight : \n", "tensor(1.7988, dtype=torch.float16)\n", "lora_unet_double_blocks_6_img_attn_qkv.lora_down.weight : \n", "tensor(1.4531, dtype=torch.float16)\n", "lora_unet_double_blocks_6_img_mlp_0.lora_down.weight : \n", "tensor(2.4141, dtype=torch.float16)\n", "lora_unet_double_blocks_6_img_mod_lin.lora_down.weight : \n", "tensor(6.0234, dtype=torch.float16)\n", "lora_unet_double_blocks_6_txt_attn_proj.lora_down.weight : \n", "tensor(1.0068, dtype=torch.float16)\n", "lora_unet_double_blocks_6_txt_attn_qkv.lora_down.weight : \n", "tensor(2.0098, dtype=torch.float16)\n", "lora_unet_double_blocks_6_txt_mlp_0.lora_down.weight : \n", "tensor(4.0312, dtype=torch.float16)\n", "lora_unet_double_blocks_6_txt_mod_lin.lora_down.weight : \n", "tensor(2.6309, dtype=torch.float16)\n", "lora_unet_double_blocks_7_img_attn_proj.lora_down.weight : \n", "tensor(1.4814, dtype=torch.float16)\n", "lora_unet_double_blocks_7_img_attn_qkv.lora_down.weight : \n", "tensor(1.4854, dtype=torch.float16)\n", "lora_unet_double_blocks_7_img_mlp_0.lora_down.weight : \n", "tensor(1.3877, dtype=torch.float16)\n", "lora_unet_double_blocks_7_img_mod_lin.lora_down.weight : \n", "tensor(2.3125, dtype=torch.float16)\n", "lora_unet_double_blocks_7_txt_attn_proj.lora_down.weight : \n", "tensor(3.4746, dtype=torch.float16)\n", "lora_unet_double_blocks_7_txt_attn_qkv.lora_down.weight : \n", "tensor(2.0430, dtype=torch.float16)\n", "lora_unet_double_blocks_7_txt_mlp_0.lora_down.weight : \n", "tensor(1.8018, dtype=torch.float16)\n", "lora_unet_double_blocks_7_txt_mod_lin.lora_down.weight : \n", "tensor(1.1709, dtype=torch.float16)\n", "lora_unet_double_blocks_8_img_attn_proj.lora_down.weight : \n", "tensor(1.8857, dtype=torch.float16)\n", "lora_unet_double_blocks_8_img_attn_qkv.lora_down.weight : \n", "tensor(1.8848, dtype=torch.float16)\n", "lora_unet_double_blocks_8_img_mlp_0.lora_down.weight : \n", "tensor(1.7627, dtype=torch.float16)\n", "lora_unet_double_blocks_8_img_mod_lin.lora_down.weight : \n", "tensor(4.2852, dtype=torch.float16)\n", "lora_unet_double_blocks_8_txt_attn_proj.lora_down.weight : \n", "tensor(1.3887, dtype=torch.float16)\n", "lora_unet_double_blocks_8_txt_attn_qkv.lora_down.weight : \n", "tensor(1.6289, dtype=torch.float16)\n", "lora_unet_double_blocks_8_txt_mlp_0.lora_down.weight : \n", "tensor(2.2188, dtype=torch.float16)\n", "lora_unet_double_blocks_8_txt_mod_lin.lora_down.weight : \n", "tensor(1.5742, dtype=torch.float16)\n", "lora_unet_double_blocks_9_img_attn_proj.lora_down.weight : \n", "tensor(2.3125, dtype=torch.float16)\n", "lora_unet_double_blocks_9_img_attn_qkv.lora_down.weight : \n", "tensor(1.4854, dtype=torch.float16)\n", "lora_unet_double_blocks_9_img_mlp_0.lora_down.weight : \n", "tensor(1.9492, dtype=torch.float16)\n", "lora_unet_double_blocks_9_img_mod_lin.lora_down.weight : \n", "tensor(2.2949, dtype=torch.float16)\n", "lora_unet_double_blocks_9_txt_attn_proj.lora_down.weight : \n", "tensor(2.0781, dtype=torch.float16)\n", "lora_unet_double_blocks_9_txt_attn_qkv.lora_down.weight : \n", "tensor(2.6172, dtype=torch.float16)\n", "lora_unet_double_blocks_9_txt_mlp_0.lora_down.weight : \n", "tensor(3.1367, dtype=torch.float16)\n", "lora_unet_double_blocks_9_txt_mod_lin.lora_down.weight : \n", "tensor(1.2451, dtype=torch.float16)\n", "lora_unet_single_blocks_0_linear1.lora_down.weight : \n", "tensor(2.4375, dtype=torch.float16)\n", "lora_unet_single_blocks_0_modulation_lin.lora_down.weight : \n", "tensor(3.5684, dtype=torch.float16)\n", "lora_unet_single_blocks_10_linear1.lora_down.weight : \n", "tensor(2.6328, dtype=torch.float16)\n", "lora_unet_single_blocks_10_modulation_lin.lora_down.weight : \n", "tensor(2.9961, dtype=torch.float16)\n", "lora_unet_single_blocks_11_linear1.lora_down.weight : \n", "tensor(3.1211, dtype=torch.float16)\n", "lora_unet_single_blocks_11_modulation_lin.lora_down.weight : \n", "tensor(3.3672, dtype=torch.float16)\n", "lora_unet_single_blocks_12_linear1.lora_down.weight : \n", "tensor(3.0293, dtype=torch.float16)\n", "lora_unet_single_blocks_12_modulation_lin.lora_down.weight : \n", "tensor(3.6602, dtype=torch.float16)\n", "lora_unet_single_blocks_13_linear1.lora_down.weight : \n", "tensor(2.5918, dtype=torch.float16)\n", "lora_unet_single_blocks_13_modulation_lin.lora_down.weight : \n", "tensor(4.6367, dtype=torch.float16)\n", "lora_unet_single_blocks_14_linear1.lora_down.weight : \n", "tensor(2.0215, dtype=torch.float16)\n", "lora_unet_single_blocks_14_modulation_lin.lora_down.weight : \n", "tensor(3.5371, dtype=torch.float16)\n", "lora_unet_single_blocks_15_linear1.lora_down.weight : \n", "tensor(2.1719, dtype=torch.float16)\n", "lora_unet_single_blocks_15_modulation_lin.lora_down.weight : \n", "tensor(4.2812, dtype=torch.float16)\n", "lora_unet_single_blocks_16_linear1.lora_down.weight : \n", "tensor(2.1992, dtype=torch.float16)\n", "lora_unet_single_blocks_16_modulation_lin.lora_down.weight : \n", "tensor(4.1094, dtype=torch.float16)\n", "lora_unet_single_blocks_17_linear1.lora_down.weight : \n", "tensor(2.0703, dtype=torch.float16)\n", "lora_unet_single_blocks_17_modulation_lin.lora_down.weight : \n", "tensor(2.9277, dtype=torch.float16)\n", "lora_unet_single_blocks_18_linear1.lora_down.weight : \n", "tensor(2.0371, dtype=torch.float16)\n", "lora_unet_single_blocks_18_modulation_lin.lora_down.weight : \n", "tensor(2.6133, dtype=torch.float16)\n", "lora_unet_single_blocks_19_linear1.lora_down.weight : \n", "tensor(2.0723, dtype=torch.float16)\n", "lora_unet_single_blocks_19_modulation_lin.lora_down.weight : \n", "tensor(3.4980, dtype=torch.float16)\n", "lora_unet_single_blocks_1_linear1.lora_down.weight : \n", "tensor(1.7432, dtype=torch.float16)\n", "lora_unet_single_blocks_1_modulation_lin.lora_down.weight : \n", "tensor(2.3848, dtype=torch.float16)\n", "lora_unet_single_blocks_20_linear1.lora_down.weight : \n", "tensor(2.0137, dtype=torch.float16)\n", "lora_unet_single_blocks_20_modulation_lin.lora_down.weight : \n", "tensor(2.8203, dtype=torch.float16)\n", "lora_unet_single_blocks_21_linear1.lora_down.weight : \n", "tensor(1.8955, dtype=torch.float16)\n", "lora_unet_single_blocks_21_modulation_lin.lora_down.weight : \n", "tensor(2.7305, dtype=torch.float16)\n", "lora_unet_single_blocks_22_linear1.lora_down.weight : \n", "tensor(2.7559, dtype=torch.float16)\n", "lora_unet_single_blocks_22_modulation_lin.lora_down.weight : \n", "tensor(4.6133, dtype=torch.float16)\n", "lora_unet_single_blocks_23_linear1.lora_down.weight : \n", "tensor(2.5508, dtype=torch.float16)\n", "lora_unet_single_blocks_23_modulation_lin.lora_down.weight : \n", "tensor(4.4180, dtype=torch.float16)\n", "lora_unet_single_blocks_24_linear1.lora_down.weight : \n", "tensor(1.9219, dtype=torch.float16)\n", "lora_unet_single_blocks_24_modulation_lin.lora_down.weight : \n", "tensor(2.9453, dtype=torch.float16)\n", "lora_unet_single_blocks_25_linear1.lora_down.weight : \n", "tensor(2.7539, dtype=torch.float16)\n", "lora_unet_single_blocks_25_modulation_lin.lora_down.weight : \n", "tensor(4.5938, dtype=torch.float16)\n", "lora_unet_single_blocks_26_linear1.lora_down.weight : \n", "tensor(3.3750, dtype=torch.float16)\n", "lora_unet_single_blocks_26_modulation_lin.lora_down.weight : \n", "tensor(4.7344, dtype=torch.float16)\n", "lora_unet_single_blocks_27_linear1.lora_down.weight : \n", "tensor(2.3809, dtype=torch.float16)\n", "lora_unet_single_blocks_27_modulation_lin.lora_down.weight : \n", "tensor(4.9883, dtype=torch.float16)\n", "lora_unet_single_blocks_28_linear1.lora_down.weight : \n", "tensor(3.0859, dtype=torch.float16)\n", "lora_unet_single_blocks_28_modulation_lin.lora_down.weight : \n", "tensor(5.7539, dtype=torch.float16)\n", "lora_unet_single_blocks_29_linear1.lora_down.weight : \n", "tensor(2.3242, dtype=torch.float16)\n", "lora_unet_single_blocks_29_modulation_lin.lora_down.weight : \n", "tensor(3.9160, dtype=torch.float16)\n", "lora_unet_single_blocks_2_linear1.lora_down.weight : \n", "tensor(2.1406, dtype=torch.float16)\n", "lora_unet_single_blocks_2_modulation_lin.lora_down.weight : \n", "tensor(2.1621, dtype=torch.float16)\n", "lora_unet_single_blocks_30_linear1.lora_down.weight : \n", "tensor(2.1211, dtype=torch.float16)\n", "lora_unet_single_blocks_30_modulation_lin.lora_down.weight : \n", "tensor(4.8516, dtype=torch.float16)\n", "lora_unet_single_blocks_31_linear1.lora_down.weight : \n", "tensor(2.2773, dtype=torch.float16)\n", "lora_unet_single_blocks_31_modulation_lin.lora_down.weight : \n", "tensor(4.1367, dtype=torch.float16)\n", "lora_unet_single_blocks_32_linear1.lora_down.weight : \n", "tensor(2.5273, dtype=torch.float16)\n", "lora_unet_single_blocks_32_modulation_lin.lora_down.weight : \n", "tensor(5.0508, dtype=torch.float16)\n", "lora_unet_single_blocks_33_linear1.lora_down.weight : \n", "tensor(2.7051, dtype=torch.float16)\n", "lora_unet_single_blocks_33_modulation_lin.lora_down.weight : \n", "tensor(5.2930, dtype=torch.float16)\n", "lora_unet_single_blocks_34_linear1.lora_down.weight : \n", "tensor(2.6738, dtype=torch.float16)\n", "lora_unet_single_blocks_34_modulation_lin.lora_down.weight : \n", "tensor(4.7852, dtype=torch.float16)\n", "lora_unet_single_blocks_35_linear1.lora_down.weight : \n", "tensor(2.5117, dtype=torch.float16)\n", "lora_unet_single_blocks_35_modulation_lin.lora_down.weight : \n", "tensor(6.7734, dtype=torch.float16)\n", "lora_unet_single_blocks_36_linear1.lora_down.weight : \n", "tensor(1.8418, dtype=torch.float16)\n", "lora_unet_single_blocks_36_modulation_lin.lora_down.weight : \n", "tensor(6.5859, dtype=torch.float16)\n", "lora_unet_single_blocks_37_linear1.lora_down.weight : \n", "tensor(2.4473, dtype=torch.float16)\n", "lora_unet_single_blocks_37_modulation_lin.lora_down.weight : \n", "tensor(2.5742, dtype=torch.float16)\n", "lora_unet_single_blocks_3_linear1.lora_down.weight : \n", "tensor(2.5566, dtype=torch.float16)\n", "lora_unet_single_blocks_3_modulation_lin.lora_down.weight : \n", "tensor(4.7148, dtype=torch.float16)\n", "lora_unet_single_blocks_4_linear1.lora_down.weight : \n", "tensor(2.2832, dtype=torch.float16)\n", "lora_unet_single_blocks_4_modulation_lin.lora_down.weight : \n", "tensor(2.0566, dtype=torch.float16)\n", "lora_unet_single_blocks_5_linear1.lora_down.weight : \n", "tensor(2.2109, dtype=torch.float16)\n", "lora_unet_single_blocks_5_modulation_lin.lora_down.weight : \n", "tensor(2.7793, dtype=torch.float16)\n", "lora_unet_single_blocks_6_linear1.lora_down.weight : \n", "tensor(3.0176, dtype=torch.float16)\n", "lora_unet_single_blocks_6_modulation_lin.lora_down.weight : \n", "tensor(2.9180, dtype=torch.float16)\n", "lora_unet_single_blocks_7_linear1.lora_down.weight : \n", "tensor(2.2461, dtype=torch.float16)\n", "lora_unet_single_blocks_7_modulation_lin.lora_down.weight : \n", "tensor(2.1074, dtype=torch.float16)\n", "lora_unet_single_blocks_8_linear1.lora_down.weight : \n", "tensor(3.0391, dtype=torch.float16)\n", "lora_unet_single_blocks_8_modulation_lin.lora_down.weight : \n", "tensor(2.0039, dtype=torch.float16)\n", "lora_unet_single_blocks_9_linear1.lora_down.weight : \n", "tensor(3.8789, dtype=torch.float16)\n", "lora_unet_single_blocks_9_modulation_lin.lora_down.weight : \n", "tensor(4.0547, dtype=torch.float16)\n" ] } ] }, { "cell_type": "markdown", "source": [ "<---- Upload your civiai trained .safetensor file to Google Colab before running the next cell\n", "\n" ], "metadata": { "id": "oDAUwfFzqzgj" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WQZ3BZn1p-pw" }, "outputs": [], "source": [ "civiai_lora = '' # @param {type:'string' ,placeholder:'ex. civitai_trained_e19.safetensors'}\n", "tensor_art_filename = '' # @param {type:'string' ,placeholder:'ex. e19.safetensors'}\n", "%cd /content/\n", "tgt = load_file(f'{civiai_lora}')\n", "for key in tgt:\n", " tgt[f'{key}'] = tgt[f'{key}'].to(dtype=torch.float16)\n", "%cd /content/\n", "save_file(tgt , f'{tensor_art_filename}')" ] }, { "cell_type": "markdown", "source": [ "Download the new .safetensor file to your device.\n", "\n", "Downloading from CoLab Notebook will seemingly do nothing for ~5min. Then the file will download , so be patient.\n", "\n", "For faster/more consistent downloads , download your .safetensor file from your Google Drive" ], "metadata": { "id": "blnBW-U4rAS7" } } ] }