repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
ArchiveTeam/spuf-grab
pipeline.py
1
11245
# encoding=utf8 import datetime from distutils.version import StrictVersion import hashlib import os.path import random from seesaw.config import realize, NumberConfigValue from seesaw.externalprocess import ExternalProcess from seesaw.item import ItemInterpolation, ItemValue from seesaw.task import SimpleTask, LimitConcurrent from seesaw.tracker import GetItemFromTracker, PrepareStatsForTracker, \ UploadWithTracker, SendDoneToTracker import shutil import socket import subprocess import sys import time import string import seesaw from seesaw.externalprocess import WgetDownload from seesaw.pipeline import Pipeline from seesaw.project import Project from seesaw.util import find_executable # check the seesaw version if StrictVersion(seesaw.__version__) < StrictVersion("0.8.5"): raise Exception("This pipeline needs seesaw version 0.8.5 or higher.") ########################################################################### # Find a useful Wget+Lua executable. # # WGET_LUA will be set to the first path that # 1. does not crash with --version, and # 2. prints the required version string WGET_LUA = find_executable( "Wget+Lua", ["GNU Wget 1.14.lua.20130523-9a5c", "GNU Wget 1.14.lua.20160530-955376b"], [ "./wget-lua", "./wget-lua-warrior", "./wget-lua-local", "../wget-lua", "../../wget-lua", "/home/warrior/wget-lua", "/usr/bin/wget-lua" ] ) if not WGET_LUA: raise Exception("No usable Wget+Lua found.") ########################################################################### # The version number of this pipeline definition. # # Update this each time you make a non-cosmetic change. # It will be added to the WARC files and reported to the tracker. VERSION = "20170615.01" USER_AGENT = 'ArchiveTeam' TRACKER_ID = 'spuf' TRACKER_HOST = 'tracker.archiveteam.org' ########################################################################### # This section defines project-specific tasks. # # Simple tasks (tasks that do not need any concurrency) are based on the # SimpleTask class and have a process(item) method that is called for # each item. class CheckIP(SimpleTask): def __init__(self): SimpleTask.__init__(self, "CheckIP") self._counter = 0 def process(self, item): # NEW for 2014! Check if we are behind firewall/proxy if self._counter <= 0: item.log_output('Checking IP address.') ip_set = set() ip_set.add(socket.gethostbyname('twitter.com')) ip_set.add(socket.gethostbyname('facebook.com')) ip_set.add(socket.gethostbyname('youtube.com')) ip_set.add(socket.gethostbyname('microsoft.com')) ip_set.add(socket.gethostbyname('icanhas.cheezburger.com')) ip_set.add(socket.gethostbyname('archiveteam.org')) if len(ip_set) != 6: item.log_output('Got IP addresses: {0}'.format(ip_set)) item.log_output( 'Are you behind a firewall/proxy? That is a big no-no!') raise Exception( 'Are you behind a firewall/proxy? That is a big no-no!') # Check only occasionally if self._counter <= 0: self._counter = 10 else: self._counter -= 1 class PrepareDirectories(SimpleTask): def __init__(self, warc_prefix): SimpleTask.__init__(self, "PrepareDirectories") self.warc_prefix = warc_prefix def process(self, item): item_name = item["item_name"] escaped_item_name = item_name.replace(':', '_').replace('/', '_').replace('~', '_') dirname = "/".join((item["data_dir"], escaped_item_name)) if os.path.isdir(dirname): shutil.rmtree(dirname) os.makedirs(dirname) item["item_dir"] = dirname item["warc_file_base"] = "%s-%s-%s" % (self.warc_prefix, escaped_item_name, time.strftime("%Y%m%d-%H%M%S")) open("%(item_dir)s/%(warc_file_base)s.warc.gz" % item, "w").close() class MoveFiles(SimpleTask): def __init__(self): SimpleTask.__init__(self, "MoveFiles") def process(self, item): # NEW for 2014! Check if wget was compiled with zlib support if os.path.exists("%(item_dir)s/%(warc_file_base)s.warc" % item): raise Exception('Please compile wget with zlib support!') os.rename("%(item_dir)s/%(warc_file_base)s.warc.gz" % item, "%(data_dir)s/%(warc_file_base)s.warc.gz" % item) shutil.rmtree("%(item_dir)s" % item) def get_hash(filename): with open(filename, 'rb') as in_file: return hashlib.sha1(in_file.read()).hexdigest() CWD = os.getcwd() PIPELINE_SHA1 = get_hash(os.path.join(CWD, 'pipeline.py')) LUA_SHA1 = get_hash(os.path.join(CWD, 'spuf.lua')) def stats_id_function(item): # NEW for 2014! Some accountability hashes and stats. d = { 'pipeline_hash': PIPELINE_SHA1, 'lua_hash': LUA_SHA1, 'python_version': sys.version, } return d class WgetArgs(object): def realize(self, item): wget_args = [ WGET_LUA, "-U", USER_AGENT, "-nv", "--load-cookies", "cookies.txt", #"--no-cookies", "--lua-script", "spuf.lua", "-o", ItemInterpolation("%(item_dir)s/wget.log"), "--no-check-certificate", "--output-document", ItemInterpolation("%(item_dir)s/wget.tmp"), "--truncate-output", "-e", "robots=off", "--rotate-dns", "--recursive", "--level=inf", "--no-parent", "--page-requisites", "--timeout", "30", "--tries", "inf", "--domains", "steampowered.com", "--span-hosts", "--waitretry", "30", "--warc-file", ItemInterpolation("%(item_dir)s/%(warc_file_base)s"), "--warc-header", "operator: Archive Team", "--warc-header", "steam-users-forum-dld-script-version: " + VERSION, "--warc-header", ItemInterpolation("steam-users-forum-item: %(item_name)s"), ] item_name = item['item_name'] assert ':' in item_name item_type, item_value = item_name.split(':', 1) item['item_type'] = item_type item['item_value'] = item_value tries = 0 while tries < 10: if os.path.isfile('login.php?do=login'): os.remove('login.php?do=login') os.system("wget --save-cookies cookies.txt --user-agent 'ArchiveTeam' --keep-session-cookies --post-data 'vb_login_username=archiveTeam&cookieuser=1&vb_login_password=&s=&securitytoken=guest&do=login&vb_login_md5password=9aa65d84012ee50e456c4e6916089636&vb_login_md5password_utf=9aa65d84012ee50e456c4e6916089636' --referer http://forums.steampowered.com/forums/ http://forums.steampowered.com/forums/login.php?do=login") if not os.path.isfile('login.php?do=login'): continue with open('login.php?do=login') as f: if 'alt="Forum Database Error"' in f.read(): continue break else: raise Exception('Could not log in.') wget_args.append('http://forums.steampowered.com/forums/showthread.php') if item_type == 'threads': start, stop = item_value.split('-') for i in range(int(start), int(stop)+1): wget_args.extend(['--warc-header', 'steam-users-forum-thread: {i}'.format(i=i)]) wget_args.append('http://forums.steampowered.com/forums/showthread.php?t={i}'.format(i=i)) elif item_type == 'forums': start, stop = item_value.split('-') for i in range(int(start), int(stop)+1): wget_args.extend(['--warc-header', 'steam-users-forum-forum: {i}'.format(i=i)]) wget_args.append('http://forums.steampowered.com/forums/forumdisplay.php?f={i}&daysprune=-1'.format(i=i)) wget_args.append('http://forums.steampowered.com/forums/forumdisplay.php?f={i}'.format(i=i)) elif item_type == 'members': start, stop = item_value.split('-') for i in range(int(start), int(stop)+1): wget_args.extend(['--warc-header', 'steam-users-forum-member: {i}'.format(i=i)]) wget_args.append('http://forums.steampowered.com/forums/member.php?u={i}'.format(i=i)) else: raise Exception('Unknown item') if 'bind_address' in globals(): wget_args.extend(['--bind-address', globals()['bind_address']]) print('') print('*** Wget will bind address at {0} ***'.format( globals()['bind_address'])) print('') return realize(wget_args, item) ########################################################################### # Initialize the project. # # This will be shown in the warrior management panel. The logo should not # be too big. The deadline is optional. project = Project( title = "Steam Users' Forum", project_html = """ <img class="project-logo" alt="Steam Logo" src="http://archiveteam.org/images/thumb/4/48/Steam_Icon_2014.png/100px-Steam_Icon_2014.png" /> <h2>Steam Users' Forum <span class="links"><a href="http://forums.steampowered.com/forums">Website</a> &middot; <a href="http://tracker.archiveteam.org/spuf/">Leaderboard</a></span></h2> <p>Getting killed June 5th.</p> """, utc_deadline = datetime.datetime(2017, 6, 4, 23, 59, 0) ) pipeline = Pipeline( CheckIP(), GetItemFromTracker("http://%s/%s" % (TRACKER_HOST, TRACKER_ID), downloader, VERSION), PrepareDirectories(warc_prefix="spuf"), WgetDownload( WgetArgs(), max_tries=2, accept_on_exit_code=[0, 4, 8], env={ "item_dir": ItemValue("item_dir"), "item_value": ItemValue("item_value"), "item_type": ItemValue("item_type"), "warc_file_base": ItemValue("warc_file_base"), } ), PrepareStatsForTracker( defaults={"downloader": downloader, "version": VERSION}, file_groups={ "data": [ ItemInterpolation("%(item_dir)s/%(warc_file_base)s.warc.gz") ] }, id_function=stats_id_function, ), MoveFiles(), LimitConcurrent(NumberConfigValue(min=1, max=4, default="1", name="shared:rsync_threads", title="Rsync threads", description="The maximum number of concurrent uploads."), UploadWithTracker( "http://%s/%s" % (TRACKER_HOST, TRACKER_ID), downloader=downloader, version=VERSION, files=[ ItemInterpolation("%(data_dir)s/%(warc_file_base)s.warc.gz") ], rsync_target_source_path=ItemInterpolation("%(data_dir)s/"), rsync_extra_args=[ "--recursive", "--partial", "--partial-dir", ".rsync-tmp", ] ), ), SendDoneToTracker( tracker_url="http://%s/%s" % (TRACKER_HOST, TRACKER_ID), stats=ItemValue("stats") ) )
unlicense
-1,336,016,031,714,418,700
35.868852
432
0.574033
false
3.543965
false
false
false
Encrylize/flask-blogger
app/utils/helpers.py
1
1218
from urllib.parse import urljoin, urlparse from flask import request def get_or_create(model, **kwargs): """ Gets or creates an instance of model. Args: model: SQLAlchemy model **kwargs: Model properties Returns: An instance of model and True if it was created, False if it was not. """ instance = model.query.filter_by(**kwargs).first() if instance: return instance, False else: instance = model(**kwargs) return instance, True def is_safe_url(target): """ Checks if a URL is safe. Args: target: The URL to check Returns: True if the URL is safe, False if it is not. """ ref_url = urlparse(request.host_url) test_url = urlparse(urljoin(request.host_url, target)) return test_url.scheme in ('http', 'https') and ref_url.netloc == test_url.netloc def get_redirect_target(): """ Gets a safe redirect target. Returns: The first safe redirect target. """ for target in request.args.get('next'), request.referrer: if not target: continue elif is_safe_url(target): return target
mit
7,296,754,981,301,055,000
20
77
0.591954
false
4.2
false
false
false
Azure/azure-sdk-for-python
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2019_12_01/aio/operations/_images_operations.py
1
29335
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ImagesOperations: """ImagesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2019_12_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _create_or_update_initial( self, resource_group_name: str, image_name: str, parameters: "_models.Image", **kwargs: Any ) -> "_models.Image": cls = kwargs.pop('cls', None) # type: ClsType["_models.Image"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'imageName': self._serialize.url("image_name", image_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'Image') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('Image', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('Image', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images/{imageName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, image_name: str, parameters: "_models.Image", **kwargs: Any ) -> AsyncLROPoller["_models.Image"]: """Create or update an image. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param image_name: The name of the image. :type image_name: str :param parameters: Parameters supplied to the Create Image operation. :type parameters: ~azure.mgmt.compute.v2019_12_01.models.Image :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either Image or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2019_12_01.models.Image] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Image"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, image_name=image_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('Image', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'imageName': self._serialize.url("image_name", image_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images/{imageName}'} # type: ignore async def _update_initial( self, resource_group_name: str, image_name: str, parameters: "_models.ImageUpdate", **kwargs: Any ) -> "_models.Image": cls = kwargs.pop('cls', None) # type: ClsType["_models.Image"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'imageName': self._serialize.url("image_name", image_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ImageUpdate') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('Image', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('Image', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images/{imageName}'} # type: ignore async def begin_update( self, resource_group_name: str, image_name: str, parameters: "_models.ImageUpdate", **kwargs: Any ) -> AsyncLROPoller["_models.Image"]: """Update an image. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param image_name: The name of the image. :type image_name: str :param parameters: Parameters supplied to the Update Image operation. :type parameters: ~azure.mgmt.compute.v2019_12_01.models.ImageUpdate :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either Image or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2019_12_01.models.Image] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Image"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, image_name=image_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('Image', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'imageName': self._serialize.url("image_name", image_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images/{imageName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, image_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'imageName': self._serialize.url("image_name", image_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images/{imageName}'} # type: ignore async def begin_delete( self, resource_group_name: str, image_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes an Image. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param image_name: The name of the image. :type image_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, image_name=image_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'imageName': self._serialize.url("image_name", image_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images/{imageName}'} # type: ignore async def get( self, resource_group_name: str, image_name: str, expand: Optional[str] = None, **kwargs: Any ) -> "_models.Image": """Gets an image. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param image_name: The name of the image. :type image_name: str :param expand: The expand expression to apply on the operation. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Image, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2019_12_01.models.Image :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Image"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'imageName': self._serialize.url("image_name", image_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Image', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images/{imageName}'} # type: ignore def list_by_resource_group( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.ImageListResult"]: """Gets the list of images under a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ImageListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2019_12_01.models.ImageListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ImageListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ImageListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/images'} # type: ignore def list( self, **kwargs: Any ) -> AsyncIterable["_models.ImageListResult"]: """Gets the list of Images in the subscription. Use nextLink property in the response to get the next page of Images. Do this till nextLink is null to fetch all the Images. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ImageListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2019_12_01.models.ImageListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ImageListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ImageListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/images'} # type: ignore
mit
-7,266,428,311,589,017,000
47.407591
181
0.634907
false
4.309534
true
false
false
pradyu1993/scikit-learn
sklearn/gaussian_process/gaussian_process.py
1
34415
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: Vincent Dubourg <[email protected]> # (mostly translation, see implementation details) # License: BSD style import numpy as np from scipy import linalg, optimize, rand from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import array2d, check_random_state from ..utils import deprecated from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works def solve_triangular(x, y, lower=True): return linalg.solve(x, y) def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = array2d(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) / 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij.astype(np.int) class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood rstimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- `theta_`: array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). `reduced_likelihood_function_value_`: array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state # Run input checks self._check_params() def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) with the observations of the scalar output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X = array2d(X) y = np.asarray(y).ravel()[:, np.newaxis] # Check shapes of DOE & observations n_samples_X, n_features = X.shape n_samples_y = y.shape[0] if n_samples_X != n_samples_y: raise ValueError("X and y must have the same number of rows.") else: n_samples = n_samples_X # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if np.min(np.sum(D, axis=1)) == 0. \ and self.corr != correlation.pure_nugget: raise Exception("Multiple input features cannot have the same" " value") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " + "likely something is going wrong with the " + "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " + "n_samples=%d must be greater than the " + "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " + "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " + "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " + "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " + "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simulatneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like An array with shape (n_eval, ) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) with the Mean Squared Error at x. """ # Check input shapes X = array2d(X) n_eval, n_features_X = X.shape n_samples, n_features = self.X.shape # Run input checks self._check_params(n_samples) if n_features_X != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " + "should match the sample size used for fit() " + "which is %d.") % (n_features_X, n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " + "at instanciation. Need to recompute " + "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T) else: # Ordinary Kriging u = np.zeros(y.shape) MSE = self.sigma2 * (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0)) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if np.min(np.sum(D, axis=1)) == 0. \ and self.corr != correlation.pure_nugget: raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " + "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par @deprecated("to be removed in 0.14, access ``self.theta_`` etc. directly " " after fit.") def arg_max_reduced_likelihood_function(self): return self._arg_max_reduced_likelihood_function() @property @deprecated('``theta`` is deprecated and will be removed in 0.14, ' 'please use ``theta_`` instead.') def theta(self): return self.theta_ @property @deprecated("``reduced_likelihood_function_value`` is deprecated and will" "be removed in 0.14, please use " "``reduced_likelihood_function_value_`` instead.") def reduced_likelihood_function_value(self): return self.reduced_likelihood_function_value_ def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print "The chosen optimizer is: " + str(self.optimizer) if self.random_start > 1: print str(self.random_start) + " random starts are required." percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function(theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t: \ log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t: \ np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = np.log10(self.thetaL) \ + rand(self.theta0.size).reshape(self.theta0.shape) \ * np.log10(self.thetaU / self.thetaL) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_minus_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) optimal_rlf_value = - optimal_minus_rlf_value # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print "%s completed" % (5 * percent_completed) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = array2d(self.theta0.min()) self.thetaL = array2d(self.thetaL.min()) self.thetaU = array2d(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print "Proceeding along dimension %d..." % (i + 1) self.theta0 = array2d(theta_iso) self.thetaL = array2d(thetaL[0, i]) self.thetaU = array2d(thetaU[0, i]) def corr_cut(t, d): return corr(array2d(np.hstack([ optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError(("This optimizer ('%s') is not " + "implemented yet. Please contribute!") % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError(("regr should be one of %s or callable, " + "%s was given.") % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = array2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError(("corr should be one of %s or callable, " + "%s was given.") % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " + "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = array2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = array2d(self.thetaL) self.thetaU = array2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " + "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " + "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " + "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if not self.optimizer in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
-5,101,911,511,660,186,000
37.366778
79
0.555165
false
4.222181
false
false
false
bdh1011/wau
venv/lib/python2.7/site-packages/pandas/core/internals.py
1
151884
import copy import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from pandas.core.base import PandasObject from pandas.core.common import (_possibly_downcast_to_dtype, isnull, _NS_DTYPE, _TD_DTYPE, ABCSeries, is_list_like, ABCSparseSeries, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalent, _maybe_convert_string_to_object, is_categorical) from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import maybe_convert_indices, length_of_indexer from pandas.core.categorical import Categorical, maybe_to_categorical import pandas.core.common as com from pandas.sparse.array import _maybe_to_sparse, SparseArray import pandas.lib as lib import pandas.tslib as tslib import pandas.computation.expressions as expressions from pandas.util.decorators import cache_readonly from pandas.tslib import Timestamp, Timedelta from pandas import compat from pandas.compat import range, map, zip, u from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type from pandas.lib import BlockPlacement class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if len(self.mgr_locs) != len(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( len(self.values), len(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, copy=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if copy: values = values.copy() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, len(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __len__(self): return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.get_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def merge(self, other): return _merge_blocks([self, other]) def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def get(self, item): loc = self.items.get_loc(item) return self.values[loc] def iget(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not isinstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillna(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] mask = isnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or isinstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.get(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.append(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def astype(self, dtype, copy=False, raise_on_error=True, values=None, **kwargs): return self._astype(dtype, copy=copy, raise_on_error=raise_on_error, values=values, **kwargs) def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ # may need to convert to categorical # this is only called for non-categoricals if self.is_categorical_astype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # astype processing dtype = np.dtype(dtype) if self.dtype == dtype: if copy: return self.copy() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the copy here if values is None: # _astype_nansafe works fine with 1-d only values = com._astype_nansafe(self.values.ravel(), dtype, copy=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.copy() if copy else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set astype for copy = [%s] for dtype " "(%s [%s]) with smaller itemsize that current " "(%s [%s])" % (copy, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, copy=True, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return [self.copy()] if copy else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have roundtripped thru object in the mean-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if isinstance(dtype, compat.string_types) and dtype == 'infer': return result if not isinstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if isnull(result).all(): return result.astype(np.bool_) else: result = result.astype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.astype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) if not self.is_object and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def copy(self, deep=True): values = self.values if deep: values = values.copy() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.astype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = len(values) # length checking # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and l: if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") try: def _is_scalar_indexer(indexer): # return True if we are all scalar indexers if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.astype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(convert_numeric=False) return block except (ValueError, TypeError) as detail: raise except Exception as detail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() # may need to align the new if hasattr(new, 'reindex_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindex_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and isnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if isinstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): n = new[i] if isinstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.copy() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.append(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.append(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".format(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillna but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.copy() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".format(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def get_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # get the result, may need to transpose the other def get_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(detail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # get the result try: result = get_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of allowing to pass through except ValueError as detail: raise except Exception as detail: result = handle_error() # technically a broadcast error in numpy can 'work' by returning a # boolean False if not isinstance(result, np.ndarray): if not isinstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if isinstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindex_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.ravel().all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as detail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(detail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not isinstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.append(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a length. self.mgr_locs = placement # kludgetastic if ndim is None: if len(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not isinstance(values, self._holder): raise TypeError("values must be {0}".format(self._holder.__name__)) self.values = values def get_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def get(self, item): if self.ndim == 1: loc = self.items.get_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.get_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return isinstance(element, (float, int, np.float_, np.int_)) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) formatter = None if float_format and decimal != '.': formatter = lambda v : (float_format % v).replace('.',decimal,1) elif decimal != '.': formatter = lambda v : ('%g' % v).replace('.',decimal,1) elif float_format: formatter = lambda v : float_format % v if formatter is None and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatter: imask = (~mask).ravel() values.flat[imask] = np.array( [formatter(val) for val in values.ravel()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (isinstance(element, (float, int, complex, np.float_, np.int_)) and not isinstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT elif isinstance(value, Timedelta): value = value.value elif isinstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif isinstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = isnull(v) v = v.astype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif isinstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if isinstance(result, np.ndarray): mask = isnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('m8[ns]') result[mask] = tslib.iNaT elif isinstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).ravel() #### FIXME #### # should use the core.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(format='all') for val in values.ravel()[imask]], dtype=object) return rvalues def get_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return isinstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super(BoolBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert(self, convert_dates=True, convert_numeric=True, convert_timedeltas=True, copy=True, by_item=True): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.iget(i) values = com._possibly_convert_objects( values.ravel(), convert_dates=convert_dates, convert_numeric=convert_numeric, convert_timedeltas=convert_timedeltas, ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.append(newb) else: values = com._possibly_convert_objects( self.values.ravel(), convert_dates=convert_dates, convert_numeric=convert_numeric ).reshape(self.values.shape) blocks.append(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = len(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(convert_dates=True, convert_numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replace) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replace): blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replace, value): blk[0], = blk[0]._replace_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replace: blk[0], = blk[0]._replace_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=regex) return blk def _replace_single(self, to_replace, value, inplace=False, filter=None, regex=False): # to_replace is regex compilable to_rep_re = regex and com.is_re_compilable(to_replace) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replace and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string try: pattern = to_replace.pattern except AttributeError: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object result = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) if not isinstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isnull(value) or not isinstance(value, compat.string_types): def re_replacer(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() @property def shape(self): return (len(self.mgr_locs), len(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.fillna(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.copy() return self.make_block_same_class(values=values.fillna(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ if self.is_categorical_astype(dtype): values = self.values else: values = np.asarray(self.values).astype(dtype, copy=False) if copy: values = values.copy() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,len(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (com.is_integer(element) or isinstance(element, datetime) or isnull(element)) def _try_cast(self, element): try: return int(element) except: return element def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smallest i8, and will correctly round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be """ values = values.view('i8') if is_null_datelike_scalar(other): other = tslib.iNaT elif isinstance(other, datetime): other = lib.Timestamp(other).asm8.view('i8') elif hasattr(other, 'dtype') and com.is_integer_dtype(other): other = other.view('i8') else: other = np.array(other, dtype='i8') return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if isinstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('M8[ns]') elif isinstance(result, (np.integer, np.datetime64)): result = lib.Timestamp(result) return result @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT return value def fillna(self, value, limit=None, inplace=False, downcast=None): # straight putmask here values = self.values if inplace else self.values.copy() mask = isnull(self.values) value = self._try_fill(value) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1)>limit]=False np.putmask(values, mask, value) return [self if inplace else make_block(values, fastpath=True, placement=self.mgr_locs)] def to_native_types(self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] from pandas.core.format import _get_format_datetime64_from_values format = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime(values.view('i8').ravel(), tz=None, format=format, na_rep=na_rep).reshape(values.shape) return result def should_store(self, value): return issubclass(value.dtype.type, np.datetime64) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workaround for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values def get_values(self, dtype=None): # return object dtype as Timestamps if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timestamp)\ .reshape(self.values.shape) return self.values class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (len(self.mgr_locs), self.sp_index.length) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): #return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): # we may need to upcast our fill to match our dtype if issubclass(self.dtype.type, np.floating): v = float(v) self.values.fill_value = v @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, copy=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def __len__(self): try: return self.sp_index.length except: return 0 def copy(self, deep=True): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, copy=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, copy=False, fastpath=True): """ return a new block """ if dtype is None: dtype = self.dtype if fill_value is None: fill_value = self.values.fill_value # if not isinstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True,) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, copy=copy) return make_block(new_values, ndim=self.ndim, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = com.interpolate_2d( self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") if issubclass(self.dtype.type, np.floating): value = float(value) values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.get_values(value), fill_value=value, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods """ N = len(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindex(self, new_index): """ sparse reindex and return a new block current reindex only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindex( values.sp_values.astype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if isinstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): klass = DatetimeBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_ftype_counts get_dtypes get_ftypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) get_scalar(label_tup) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if len(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple items") else: if self.ndim != block.ndim: raise AssertionError(('Number of Block dimensions (%d) must ' 'equal number of axes (%d)') % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [_ensure_index([])] + [ _ensure_index(a) for a in self.axes[1:] ] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self): return len(self.axes) def set_axis(self, axis, new_labels): new_labels = _ensure_index(new_labels) old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError('Length mismatch: Expected axis has %d elements, ' 'new values have %d elements' % (old_len, new_len)) self.axes[axis] = new_labels def rename_axis(self, mapper, axis, copy=True): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True """ obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper)) return obj def add_prefix(self, prefix): f = (str(prefix) + '%s').__mod__ return self.rename_axis(f, axis=0) def add_suffix(self, suffix): f = ('%s' + str(suffix)).__mod__ return self.rename_axis(f, axis=0) @property def _is_single_block(self): if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice(0, len(self), 1)) def _rebuild_blknos_and_blklocs(self): """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs # make items read only for now def _get_items(self): return self.axes[0] items = property(fget=_get_items) def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_ftype_counts(self): return self._get_counts(lambda b: b.ftype) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return com.take_1d(dtypes, self._blknos, allow_fill=False) def get_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return com.take_1d(ftypes, self._blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = [ax for ax in self.axes] extra_state = { '0.14.1': { 'axes': axes_array, 'blocks': [dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks] } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): # numpy < 1.7 pickle compat if values.dtype == 'M8[us]': values = values.astype('M8[ns]') return make_block(values, placement=mgr_locs) if (isinstance(state, tuple) and len(state) >= 4 and '0.14.1' in state[3]): state = state[3]['0.14.1'] self.axes = [_ensure_index(ax) for ax in state['axes']] self.blocks = tuple( unpickle_block(b['values'], b['mgr_locs']) for b in state['blocks']) else: # discard anything after 3rd, support beta pickling format for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [_ensure_index(ax) for ax in ax_arrays] if len(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workaround for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-unique # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the assumption that # block items corresponded to manager items 1-to-1. all_mgr_locs = [slice(0, len(bitems[0]))] else: all_mgr_locs = [self.axes[0].get_indexer(blk_items) for blk_items in bitems] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, all_mgr_locs)) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self): return len(self.items) def __unicode__(self): output = com.pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += u('\nItems: %s') % ax else: output += u('\nAxis %d: %s') % (i, ax) for block in self.blocks: output += u('\n%s') % com.pprint_thing(block) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = sum(len(x.mgr_locs) for x in self.blocks) for block in self.blocks: if not block.is_sparse and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if len(self.items) != tot_items: raise AssertionError('Number of manager items must equal union of ' 'block items\n# manager items: {0}, # ' 'tot_items: {1}'.format(len(self.items), tot_items)) def apply(self, f, axes=None, filter=None, do_integrity_check=False, **kwargs): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the callable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only call the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs['filter'] = filter_locs if f == 'where' and kwargs.get('align', True): align_copy = True align_keys = ['other', 'cond'] elif f == 'putmask' and kwargs.get('align', True): align_copy = False align_keys = ['new', 'mask'] elif f == 'eval': align_copy = False align_keys = ['other'] elif f == 'fillna': # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? align_copy = False align_keys = ['value'] else: align_keys = [] aligned_args = dict((k, kwargs[k]) for k in align_keys if hasattr(kwargs[k], 'reindex_axis')) for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = getattr(obj, '_info_axis_number', 0) kwargs[k] = obj.reindex_axis(b_items, axis=axis, copy=align_copy) applied = getattr(b, f)(**kwargs) if isinstance(applied, list): result_blocks.extend(applied) else: result_blocks.append(applied) if len(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__(result_blocks, axes or self.axes, do_integrity_check=do_integrity_check) bm._consolidate_inplace() return bm def isnull(self, **kwargs): return self.apply('apply', **kwargs) def where(self, **kwargs): return self.apply('where', **kwargs) def eval(self, **kwargs): return self.apply('eval', **kwargs) def setitem(self, **kwargs): return self.apply('setitem', **kwargs) def putmask(self, **kwargs): return self.apply('putmask', **kwargs) def diff(self, **kwargs): return self.apply('diff', **kwargs) def interpolate(self, **kwargs): return self.apply('interpolate', **kwargs) def shift(self, **kwargs): return self.apply('shift', **kwargs) def fillna(self, **kwargs): return self.apply('fillna', **kwargs) def downcast(self, **kwargs): return self.apply('downcast', **kwargs) def astype(self, dtype, **kwargs): return self.apply('astype', dtype=dtype, **kwargs) def convert(self, **kwargs): return self.apply('convert', **kwargs) def replace(self, **kwargs): return self.apply('replace', **kwargs) def replace_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replace """ # figure out our mask a-priori to avoid repeated replacements values = self.as_matrix() def comp(s): if isnull(s): return isnull(values) return _possibly_compare(values, getattr(s, 'asm8', s), operator.eq) masks = [comp(s) for i, s in enumerate(src_list)] result_blocks = [] for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): new_rb = [] for b in rb: if b.dtype == np.object_: result = b.replace(s, d, inplace=inplace, regex=regex) if isinstance(result, list): new_rb.extend(result) else: new_rb.append(result) else: # get our mask for this element, sized to this # particular block m = masks[i][b.mgr_locs.indexer] if m.any(): new_rb.extend(b.putmask(m, d, inplace=True)) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def reshape_nd(self, axes, **kwargs): """ a 2d-nd reshape operation on a BlockManager """ return self.apply('reshape_nd', axes=axes, **kwargs) def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = len(ftypes) == len(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return len(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return all([block.is_numeric for block in self.blocks]) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return any([block.is_datelike for block in self.blocks]) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if len(self.blocks) == 1: return self.blocks[0].is_view # It is technically possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def get_bool_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], copy) def get_numeric_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], copy) def combine(self, blocks, copy=True): """ return a new manager with the blocks """ if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_items = self.items.take(indexer) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = com.take_1d(inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False) new_blocks.append(b) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(new_blocks, new_axes, do_integrity_check=False) def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.getitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False, fastpath=True) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return len(self.blocks) def copy(self, deep=True): """ Make deep or shallow copy of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- copy : BlockManager """ # this preserves the notion of view copying of axes if deep: if deep == 'all': copy = lambda ax: ax.copy(deep=True) else: copy = lambda ax: ax.view() new_axes = [ copy(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.apply('copy', axes=new_axes, deep=deep, do_integrity_check=False) def as_matrix(self, items=None): if len(self.blocks) == 0: return np.empty(self.shape, dtype=float) if items is not None: mgr = self.reindex_axis(items, axis=0) else: mgr = self if self._is_single_block or not self.is_mixed_type: return mgr.blocks[0].get_values() else: return mgr._interleave() def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) result = np.empty(self.shape, dtype=dtype) if result.shape[0] == 0: # Workaround for numpy 1.7 bug: # # >>> a = np.empty((0,10)) # >>> a[slice(0,0)] # array([], shape=(0, 10), dtype=float64) # >>> a[[]] # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # IndexError: index 0 is out of bounds for axis 0 with size 0 return result itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError('Some items were not contained in blocks') return result def xs(self, key, axis=1, copy=True, takeable=False): if axis < 1: raise AssertionError('Can only take xs across axis >= 1, got %d' % axis) # take by position if takeable: loc = key else: loc = self.axes[axis].get_loc(key) slicer = [slice(None, None) for _ in range(self.ndim)] slicer[axis] = loc slicer = tuple(slicer) new_axes = list(self.axes) # could be an array indexer! if isinstance(loc, (slice, np.ndarray)): new_axes[axis] = new_axes[axis][loc] else: new_axes.pop(axis) new_blocks = [] if len(self.blocks) > 1: # we must copy here as we are mixed type for blk in self.blocks: newb = make_block(values=blk.values[slicer], klass=blk.__class__, fastpath=True, placement=blk.mgr_locs) new_blocks.append(newb) elif len(self.blocks) == 1: block = self.blocks[0] vals = block.values[slicer] if copy: vals = vals.copy() new_blocks = [make_block(values=vals, placement=block.mgr_locs, klass=block.__class__, fastpath=True,)] return self.__class__(new_blocks, new_axes) def fast_xs(self, loc): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if len(self.blocks) == 1: return self.blocks[0].values[:, loc] items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk._try_coerce_result(blk.iget((i, loc))) return result def consolidate(self): """ Join together blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def get(self, item, fastpath=True): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_unique: if not isnull(item): loc = self.items.get_loc(item) else: indexer = np.arange(len(self.items))[isnull(self.items)] # allow a single nan location indexer if not np.isscalar(indexer): if len(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.iget(loc, fastpath=fastpath) else: if isnull(item): raise ValueError("cannot label index with a null key") indexer = self.items.get_indexer_for([item]) return self.reindex_indexer(new_axis=self.items[indexer], indexer=indexer, axis=0, allow_dups=True) def iget(self, i, fastpath=True): """ Return the data as a SingleBlockManager if fastpath=True and possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.iget(self._blklocs[i]) if not fastpath or block.is_sparse or values.ndim != 1: return values # fastpath shortcut for select a single-dim from a 2-dim BM return SingleBlockManager([ block.make_block_same_class(values, placement=slice(0, len(values)), ndim=1, fastpath=True) ], self.axes[1]) def get_scalar(self, tup): """ Retrieve single item """ full_loc = list(ax.get_loc(x) for ax, x in zip(self.axes, tup)) blk = self.blocks[self._blknos[full_loc[0]]] full_loc[0] = self._blklocs[full_loc[0]] # FIXME: this may return non-upcasted types? return blk.values[tuple(full_loc)] def delete(self, item): """ Delete selected item (items if non-unique) in-place. """ indexer = self.items.get_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumsum() is_blk_deleted = [False] * len(self.blocks) if isinstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smallints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if len(blk_del) == len(bml): is_blk_deleted[blkno] = True continue elif len(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple(b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno]) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value, check=False): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items if check, then validate that we are not setting the same data in-place """ # FIXME: refactor, clearly separate broadcasting & zip-like assignment # can prob also fix the various if tests for sparse/categorical value_is_sparse = isinstance(value, SparseArray) value_is_cat = is_categorical(value) value_is_nonconsolidatable = value_is_sparse or value_is_cat if value_is_sparse: # sparse assert self.ndim == 2 def value_getitem(placement): return value elif value_is_cat: # categorical def value_getitem(placement): return value else: if value.ndim == self.ndim - 1: value = value.reshape((1,) + value.shape) def value_getitem(placement): return value else: def value_getitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError('Shape of new values must be compatible ' 'with manager shape') try: loc = self.items.get_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(len(self.items), item, value) return if isinstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].copy() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in _get_blkno_placements(blknos, len(self.blocks), group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_getitem(val_locs), check=check) else: unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.append(val_locs) # If all block items are unfit, schedule the block for removal. if len(val_locs) == len(blk.mgr_locs): removed_blknos.append(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk)) if len(removed_blknos): # Remove blocks & update blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos)) self._blknos = com.take_1d(new_blknos, self._blknos, axis=0, allow_fill=False) self.blocks = tuple(blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos)) if unfit_val_locs: unfit_mgr_locs = np.concatenate(unfit_mgr_locs) unfit_count = len(unfit_mgr_locs) new_blocks = [] if value_is_nonconsolidatable: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block(values=value.copy(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1)) for mgr_loc in unfit_mgr_locs) self._blknos[unfit_mgr_locs] = (np.arange(unfit_count) + len(self.blocks)) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:]) new_blocks.append( make_block(values=value_getitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs)) self._blknos[unfit_mgr_locs] = len(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc, item, value, allow_duplicates=False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """ if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError('cannot insert %s, already exists' % item) if not isinstance(loc, int): raise TypeError("loc must be int") block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc+1)) for blkno, count in _fast_count_smallints(self._blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.append is a lot faster (at least in numpy 1.7.1), let's use it # if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = self.items.insert(loc, item) self.blocks += (block,) self._shape = None self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace() def reindex_axis(self, new_index, axis, method=None, limit=None, fill_value=None, copy=True): """ Conform block manager to new index. """ new_index = _ensure_index(new_index) new_index, indexer = self.axes[axis].reindex( new_index, method=method, limit=limit) return self.reindex_indexer(new_index, indexer, axis=axis, fill_value=fill_value, copy=copy) def reindex_indexer(self, new_axis, indexer, axis, fill_value=None, allow_dups=False, copy=True): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object allow_dups : bool pandas-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not copy: return self result = self.copy(deep=copy) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't allow reindexing with dups if not allow_dups: self.axes[axis]._can_reindex(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0( indexer, fill_tuple=(fill_value,)) else: new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=(fill_value if fill_value is not None else blk.fill_value,)) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill) if self._is_single_block: blk = self.blocks[0] if sl_type in ('slice', 'mask'): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = com._maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [blk.take_nd(slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple)] if sl_type in ('slice', 'mask'): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = com.take_1d(self._blknos, slobj, fill_value=-1, allow_fill=allow_fill) blklocs = com.take_1d(self._blklocs, slobj, fill_value=-1, allow_fill=allow_fill) # When filling blknos, make sure blknos is updated before appending to # blocks list, that way new blkno is exactly len(blocks). # # FIXME: mgr_groupby_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in _get_blkno_placements(blknos, len(self.blocks), group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.append(self._make_na_block( placement=mgr_locs, fill_value=fill_value)) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's only one item # and each mgr loc is a copy of that single item. for mgr_loc in mgr_locs: newblk = blk.copy(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append(blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None)) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = len(placement) dtype, fill_value = com._infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """ self._consolidate_inplace() indexer = np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if isinstance(indexer, slice) \ else np.asanyarray(indexer, dtype='int64') n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception('Indices must be nonzero and less than ' 'the axis length') new_labels = self.axes[axis].take(indexer) return self.reindex_indexer(new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True) def merge(self, other, lsuffix='', rsuffix=''): if not self._is_indexed_like(other): raise AssertionError('Must have same axes to merge managers') l, r = items_overlap_with_suffix(left=self.items, lsuffix=lsuffix, right=other.items, rsuffix=rsuffix) new_items = _concat_indexes([l, r]) new_blocks = [blk.copy(deep=False) for blk in self.blocks] offset = self.shape[0] for blk in other.blocks: blk = blk.copy(deep=False) blk.mgr_locs = blk.mgr_locs.add(offset) new_blocks.append(blk) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(_consolidate(new_blocks), new_axes) def _is_indexed_like(self, other): """ Check all axes except items """ if self.ndim != other.ndim: raise AssertionError(('Number of dimensions must agree ' 'got %d and %d') % (self.ndim, other.ndim)) for ax, oax in zip(self.axes[1:], other.axes[1:]): if not ax.equals(oax): return False return True def equals(self, other): self_axes, other_axes = self.axes, other.axes if len(self_axes) != len(other_axes): return False if not all (ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if len(self.blocks) != len(other.blocks): return False # canonicalize block order, using a tuple combining the type # name and then mgr_locs because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.dtype.name, block.mgr_locs.as_array.tolist()) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return all(block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks)) class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__(self, block, axis, do_integrity_check=False, fastpath=False): if isinstance(axis, list): if len(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis") axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if isinstance(block, list): # empty block if len(block) == 0: block = [np.array([])] elif len(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] else: self.axes = [_ensure_index(axis)] # create the block here if isinstance(block, list): # provide consolidation to the interleaved_dtype if len(block) > 1: dtype = _interleaved_dtype(block) block = [b.astype(dtype) for b in block] block = _consolidate(block) if len(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] if not isinstance(block, Block): block = make_block(block, placement=slice(0, len(axis)), ndim=1, fastpath=True) self.blocks = [block] def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values def reindex(self, new_axis, indexer=None, method=None, fill_value=None, limit=None, copy=True): # if we are the same and don't copy, just return if self.index.equals(new_axis): if copy: return self.copy(deep=True) else: return self values = self._block.get_values() if indexer is None: indexer = self.items.get_indexer_for(new_axis) if fill_value is None: # FIXME: is fill_value used correctly in sparse blocks? if not self._block.is_sparse: fill_value = self._block.fill_value else: fill_value = np.nan new_values = com.take_1d(values, indexer, fill_value=fill_value) # fill if needed if method is not None or limit is not None: new_values = com.interpolate_2d(new_values, method=method, limit=limit, fill_value=fill_value) if self._block.is_sparse: make_block = self._block.make_block_same_class block = make_block(new_values, copy=copy, placement=slice(0, len(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return self.__class__(self._block._slice(slobj), self.index[slobj], fastpath=True) @property def index(self): return self.axes[0] def convert(self, **kwargs): """ convert the whole block as one """ kwargs['by_item'] = False return self.apply('convert', **kwargs) @property def dtype(self): return self._values.dtype @property def array_dtype(self): return self._block.array_dtype @property def ftype(self): return self._block.ftype def get_dtype_counts(self): return {self.dtype.name: 1} def get_ftype_counts(self): return {self.ftype: 1} def get_dtypes(self): return np.array([self._block.dtype]) def get_ftypes(self): return np.array([self._block.ftype]) @property def values(self): return self._values.view() def get_values(self): """ return a dense type view """ return np.array(self._block.to_dense(),copy=False) @property def itemsize(self): return self._values.itemsize @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.get_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for getting a cross-section return a view of the data """ return self._block.values[loc] def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(map(int, [tot_items] + list(block_shape))) implied = tuple(map(int, [len(ax) for ax in axes])) if passed == implied and e is not None: raise e raise ValueError("Shape of passed values is {0}, indices imply {1}".format( passed,implied)) def create_block_manager_from_blocks(blocks, axes): try: if len(blocks) == 1 and not isinstance(blocks[0], Block): # if blocks[0] is of length 0, return empty blocks if not len(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement is # basically "all items", but if there're many, don't bother # converting, it's an error anyway. blocks = [make_block(values=blocks[0], placement=slice(0, len(axes[0])))] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: blocks = [getattr(b, 'values', b) for b in blocks] tot_items = sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: construction_error(len(arrays), arrays[0].shape, axes, e) def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? float_items = [] complex_items = [] int_items = [] bool_items = [] object_items = [] sparse_items = [] datetime_items = [] cat_items = [] extra_locs = [] names_idx = Index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(len(names_idx)) else: assert names_idx.intersection(axes[0]).is_unique names_indexer = names_idx.get_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.append(i) continue k = names[name_idx] v = arrays[name_idx] if isinstance(v, (SparseArray, ABCSparseSeries)): sparse_items.append((i, k, v)) elif issubclass(v.dtype.type, np.floating): float_items.append((i, k, v)) elif issubclass(v.dtype.type, np.complexfloating): complex_items.append((i, k, v)) elif issubclass(v.dtype.type, np.datetime64): if v.dtype != _NS_DTYPE: v = tslib.cast_to_nanoseconds(v) if hasattr(v, 'tz') and v.tz is not None: object_items.append((i, k, v)) else: datetime_items.append((i, k, v)) elif issubclass(v.dtype.type, np.integer): if v.dtype == np.uint64: # HACK #2355 definite overflow if (v > 2 ** 63 - 1).any(): object_items.append((i, k, v)) continue int_items.append((i, k, v)) elif v.dtype == np.bool_: bool_items.append((i, k, v)) elif is_categorical(v): cat_items.append((i, k, v)) else: object_items.append((i, k, v)) blocks = [] if len(float_items): float_blocks = _multi_blockify(float_items) blocks.extend(float_blocks) if len(complex_items): complex_blocks = _simple_blockify( complex_items, np.complex128) blocks.extend(complex_blocks) if len(int_items): int_blocks = _multi_blockify(int_items) blocks.extend(int_blocks) if len(datetime_items): datetime_blocks = _simple_blockify( datetime_items, _NS_DTYPE) blocks.extend(datetime_blocks) if len(bool_items): bool_blocks = _simple_blockify( bool_items, np.bool_) blocks.extend(bool_blocks) if len(object_items) > 0: object_blocks = _simple_blockify( object_items, np.object_) blocks.extend(object_blocks) if len(sparse_items) > 0: sparse_blocks = _sparse_blockify(sparse_items) blocks.extend(sparse_blocks) if len(cat_items) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, fastpath=True, placement=[i] ) for i, names, array in cat_items ] blocks.extend(cat_blocks) if len(extra_locs): shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.append(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.astype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes """ # group by dtype grouper = itertools.groupby(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays( list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.append(block) return new_blocks def _sparse_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes (and are sparse) """ new_blocks = [] for i, names, array in tuples: array = _maybe_to_sparse(array) block = make_block( array, klass=SparseBlock, fastpath=True, placement=[i]) new_blocks.append(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x.values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return len(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype(blocks): if not len(blocks): return None counts = defaultdict(lambda: []) for x in blocks: counts[type(x)].append(x) def _lcd_dtype(l): """ find the lowest dtype that can accomodate the given types """ m = l[0].dtype for x in l[1:]: if x.dtype.itemsize > m.itemsize: m = x.dtype return m have_int = len(counts[IntBlock]) > 0 have_bool = len(counts[BoolBlock]) > 0 have_object = len(counts[ObjectBlock]) > 0 have_float = len(counts[FloatBlock]) > 0 have_complex = len(counts[ComplexBlock]) > 0 have_dt64 = len(counts[DatetimeBlock]) > 0 have_td64 = len(counts[TimeDeltaBlock]) > 0 have_cat = len(counts[CategoricalBlock]) > 0 have_sparse = len(counts[SparseBlock]) > 0 have_numeric = have_float or have_complex or have_int has_non_numeric = have_dt64 or have_td64 or have_cat if (have_object or (have_bool and (have_numeric or have_dt64 or have_td64)) or (have_numeric and has_non_numeric) or have_cat or have_dt64 or have_td64): return np.dtype(object) elif have_bool: return np.dtype(bool) elif have_int and not have_float and not have_complex: # if we are mixing unsigned and signed, then return # the next biggest int type (if we can) lcd = _lcd_dtype(counts[IntBlock]) kinds = set([i.dtype.kind for i in counts[IntBlock]]) if len(kinds) == 1: return lcd if lcd == 'uint64' or lcd == 'int64': return np.dtype('int64') # return 1 bigger on the itemsize if unsinged if lcd.kind == 'u': return np.dtype('int%s' % (lcd.itemsize * 8 * 2)) return lcd elif have_complex: return np.dtype('c16') else: return _lcd_dtype(counts[FloatBlock] + counts[SparseBlock]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.groupby(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: merged_blocks = _merge_blocks(list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate) if isinstance(merged_blocks, list): new_blocks.extend(merged_blocks) else: new_blocks.append(merged_blocks) return new_blocks def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len(set([b.dtype for b in blocks])) != 1: raise AssertionError("_merge_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = _vstack([b.values for b in blocks], dtype) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, fastpath=True, placement=new_mgr_locs) # no merge return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim <= ndim: if shape is None: shape = values.shape values = values.reshape(tuple((1,) + shape)) return values def _vstack(to_stack, dtype): # work around NumPy 1.6 bug if dtype == _NS_DTYPE or dtype == _TD_DTYPE: new_values = np.vstack([x.view('i8') for x in to_stack]) return new_values.view(dtype) else: return np.vstack(to_stack) def _possibly_compare(a, b, op): res = op(a, b) is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) if np.isscalar(res) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = 'ndarray(dtype=%s)' % a.dtype if is_b_array: type_names[1] = 'ndarray(dtype=%s)' % b.dtype raise TypeError("Cannot compare types %r and %r" % tuple(type_names)) return res def _concat_indexes(indexes): return indexes[0].append(indexes[1:]) def _block2d_to_blocknd(values, placement, shape, labels, ref_items): """ pivot to the labels shape """ from pandas.core.internals import make_block panel_shape = (len(placement),) + shape # TODO: lexsort depth needs to be 2!! # Create observation selection vector using major and minor # labels, for converting to panel format. selector = _factor_indexer(shape[1:], labels) mask = np.zeros(np.prod(shape), dtype=bool) mask.put(selector, True) if mask.all(): pvalues = np.empty(panel_shape, dtype=values.dtype) else: dtype, fill_value = _maybe_promote(values.dtype) pvalues = np.empty(panel_shape, dtype=dtype) pvalues.fill(fill_value) values = values for i in range(len(placement)): pvalues[i].flat[mask] = values[:, i] return make_block(pvalues, placement=placement) def _factor_indexer(shape, labels): """ given a tuple of shape and a list of Categorical labels, return the expanded label indexer """ mult = np.array(shape)[::-1].cumprod()[::-1] return com._ensure_platform_int( np.sum(np.array(labels).T * np.append(mult, [1]), axis=1).T) def _get_blkno_placements(blknos, blk_count, group=True): """ Parameters ---------- blknos : array of int64 blk_count : int group : bool Returns ------- iterator yield (BlockPlacement, blkno) """ blknos = com._ensure_int64(blknos) # FIXME: blk_count is unused, but it may avoid the use of dicts in cython for blkno, indexer in lib.get_blkno_indexers(blknos, group): yield blkno, BlockPlacement(indexer) def items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_rename = left.intersection(right) if len(to_rename) == 0: return left, right else: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: %s' % to_rename) def lrenamer(x): if x in to_rename: return '%s%s' % (x, lsuffix) return x def rrenamer(x): if x in to_rename: return '%s%s' % (x, rsuffix) return x return (_transform_index(left, lrenamer), _transform_index(right, rrenamer)) def _transform_index(index, func): """ Apply function to all values found in index. This includes transforming multiindex entries separately. """ if isinstance(index, MultiIndex): items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name) def _putmask_smart(v, m, n): """ Return a new block, try to preserve dtype if possible. Parameters ---------- v : `values`, updated in-place (array like) m : `mask`, applies to both sides (array like) n : `new values` either scalar or an array like aligned with `values` """ # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.array([n] * len(m)) elif isinstance(n, np.ndarray) and n.ndim == 0: # numpy scalar n = np.repeat(np.array(n, ndmin=1), len(m)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[m] nn_at = nn.astype(v.dtype) comp = (nn == nn_at) if is_list_like(comp) and comp.all(): nv = v.copy() nv[m] = nn_at return nv except (ValueError, IndexError, TypeError): pass # change the dtype dtype, _ = com._maybe_promote(n.dtype) nv = v.astype(dtype) try: nv[m] = n[m] except ValueError: idx, = np.where(np.squeeze(m)) for mask_index, new_val in zip(idx, n[m]): nv[mask_index] = new_val return nv def concatenate_block_managers(mgrs_indexers, axes, concat_axis, copy): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool """ concat_plan = combine_concat_plans([get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers], concat_axis) blocks = [make_block(concatenate_join_units(join_units, concat_axis, copy=copy), placement=placement) for placement, join_units in concat_plan] return BlockManager(blocks, axes) def get_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatenating specified units. Returned N/A value may be None which means there was no casting involved. Returns ------- dtype na """ if len(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan has_none_blocks = False dtypes = [None] * len(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype # dtypes = set() upcast_classes = set() null_upcast_classes = set() for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if com.is_categorical_dtype(dtype): upcast_cls = 'category' elif issubclass(dtype.type, np.bool_): upcast_cls = 'bool' elif issubclass(dtype.type, np.object_): upcast_cls = 'object' elif is_datetime64_dtype(dtype): upcast_cls = 'datetime' elif is_timedelta64_dtype(dtype): upcast_cls = 'timedelta' else: upcast_cls = 'float' # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_null: null_upcast_classes.add(upcast_cls) else: upcast_classes.add(upcast_cls) if not upcast_classes: upcast_classes = null_upcast_classes # create the result if 'object' in upcast_classes: return np.dtype(np.object_), np.nan elif 'bool' in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif 'category' in upcast_classes: return com.CategoricalDtype(), np.nan elif 'float' in upcast_classes: return np.dtype(np.float64), np.nan elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslib.iNaT elif 'timedelta' in upcast_classes: return np.dtype('m8[ns]'), tslib.iNaT else: # pragma raise AssertionError("invalid dtype determination in get_concat_dtype") def concatenate_join_units(join_units, concat_axis, copy): """ Concatenate values from several join units along selected axis. """ if concat_axis == 0 and len(join_units) > 1: # Concatenating join units along ax0 is handled in _merge_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = get_empty_dtype_and_na(join_units) to_concat = [ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if len(to_concat) == 1: # Only one block, nothing to concatenate. concat_values = to_concat[0] if copy and concat_values.base is not None: concat_values = concat_values.copy() else: concat_values = com._concat_compat(to_concat, axis=concat_axis) return concat_values def get_mgr_concatenation_plan(mgr, indexers): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = len(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = com.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = com.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in _get_blkno_placements(blknos, len(mgr.blocks), group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape = list(mgr_shape) shape[0] = len(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = ( len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not needing to reindex its # block: no ax0 reindexing took place and block placement was # sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: all indexer locs are sequential (and # length match is checked above). (np.diff(ax0_blk_indexer) == 1).all())) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan def combine_concat_plans(plans, concat_axis): """ Combine multiple concatenation plans into one. existing_plan is updated in-place. """ if len(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concat_axis == 0: offset = 0 for plan in plans: last_plc = None for plc, unit in plan: yield plc.add(offset), [unit] last_plc = plc if last_plc is not None: offset += last_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(map(iter, plans)) next_items = list(map(_next_or_none, plans)) while num_ended[0] != len(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengths = list(map(len, placements)) min_len, max_len = min(lengths), max(lengths) if min_len == max_len: yield placements[0], units next_items[:] = map(_next_or_none, plans) else: yielded_placement = None yielded_units = [None] * len(next_items) for i, (plc, unit) in enumerate(next_items): yielded_units[i] = unit if len(plc) > min_len: # trim_join_unit updates unit in place, so only # placement needs to be sliced to skip min_len. next_items[i] = (plc[min_len:], trim_join_unit(unit, min_len)) else: yielded_placement = plc next_items[i] = _next_or_none(plans[i]) yield yielded_placement, yielded_units def trim_join_unit(join_unit, length): """ Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block. """ if 0 not in join_unit.indexers: extra_indexers = join_unit.indexers if join_unit.block is None: extra_block = None else: extra_block = join_unit.block.getitem_block(slice(length, None)) join_unit.block = join_unit.block.getitem_block(slice(length)) else: extra_block = join_unit.block extra_indexers = copy.copy(join_unit.indexers) extra_indexers[0] = extra_indexers[0][length:] join_unit.indexers[0] = join_unit.indexers[0][:length] extra_shape = (join_unit.shape[0] - length,) + join_unit.shape[1:] join_unit.shape = (length,) + join_unit.shape[1:] return JoinUnit(block=extra_block, indexers=extra_indexers, shape=extra_shape) class JoinUnit(object): def __init__(self, block, shape, indexers={}): # Passing shape explicitly is required for cases when block is None. self.block = block self.indexers = indexers self.shape = shape def __repr__(self): return '%s(%r, %s)' % (self.__class__.__name__, self.block, self.indexers) @cache_readonly def needs_filling(self): for indexer in self.indexers.values(): # FIXME: cache results of indexer == -1 checks. if (indexer == -1).any(): return True return False @cache_readonly def dtype(self): if self.block is None: raise AssertionError("Block is None, no dtype") if not self.needs_filling: return self.block.dtype else: return com._get_dtype(com._maybe_promote(self.block.dtype, self.block.fill_value)[0]) return self._dtype @cache_readonly def is_null(self): if self.block is None: return True if not self.block._can_hold_na: return False # Usually it's enough to check but a small fraction of values to see if # a block is NOT null, chunks should help in such cases. 1000 value # was chosen rather arbitrarily. values_flat = self.block.values.ravel() total_len = values_flat.shape[0] chunk_len = max(total_len // 40, 1000) for i in range(0, total_len, chunk_len): if not isnull(values_flat[i: i + chunk_len]).all(): return False return True @cache_readonly def needs_block_conversion(self): """ we might need to convert the joined values to a suitable block repr """ block = self.block return block is not None and (block.is_sparse or block.is_categorical) def get_reindexed_values(self, empty_dtype, upcasted_na): if upcasted_na is None: # No upcasting is necessary fill_value = self.block.fill_value values = self.block.get_values() else: fill_value = upcasted_na if self.is_null and not getattr(self.block,'is_categorical',None): missing_arr = np.empty(self.shape, dtype=empty_dtype) if np.prod(self.shape): # NumPy 1.6 workaround: this statement gets strange if all # blocks are of same dtype and some of them are empty: # empty one are considered "null" so they must be filled, # but no dtype upcasting happens and the dtype may not # allow NaNs. # # In general, no one should get hurt when one tries to put # incorrect values into empty array, but numpy 1.6 is # strict about that. missing_arr.fill(fill_value) return missing_arr if not self.indexers: if self.block.is_categorical: # preserve the categoricals for validation in _concat_compat return self.block.values elif self.block.is_sparse: # preserve the sparse array for validation in _concat_compat return self.block.values if self.block.is_bool: # External code requested filling/upcasting, bool values must # be upcasted to object to avoid being upcasted to numeric. values = self.block.astype(np.object_).values else: # No dtype upcasting is done here, it will be performed during # concatenation itself. values = self.block.get_values() if not self.indexers: # If there's no indexing to be done, we want to signal outside # code that this array must be copied explicitly. This is done # by returning a view and checking `retval.base`. values = values.view() else: for ax, indexer in self.indexers.items(): values = com.take_nd(values, indexer, axis=ax, fill_value=fill_value) return values def _fast_count_smallints(arr): """Faster version of set(arr) for sequences of small numbers.""" if len(arr) == 0: # Handle empty arr case separately: numpy 1.6 chokes on that. return np.empty((0, 2), dtype=arr.dtype) else: counts = np.bincount(arr.astype(np.int_)) nz = counts.nonzero()[0] return np.c_[nz, counts[nz]] def _preprocess_slice_or_indexer(slice_or_indexer, length, allow_fill): if isinstance(slice_or_indexer, slice): return 'slice', slice_or_indexer, lib.slice_len(slice_or_indexer, length) elif (isinstance(slice_or_indexer, np.ndarray) and slice_or_indexer.dtype == np.bool_): return 'mask', slice_or_indexer, slice_or_indexer.sum() else: indexer = np.asanyarray(slice_or_indexer, dtype=np.int64) if not allow_fill: indexer = maybe_convert_indices(indexer, length) return 'fancy', indexer, len(indexer)
mit
1,726,036,148,876,224,800
32.963327
134
0.537957
false
4.163943
false
false
false
ludbb/secp256k1-py
tests/test_schnorr.py
1
1732
import pytest import secp256k1 def test_schnorr_simple(): if not secp256k1.HAS_SCHNORR: pytest.skip('secp256k1_schnorr not enabled, skipping') return inst = secp256k1.PrivateKey() raw_sig = inst.schnorr_sign(b'hello') assert inst.pubkey.schnorr_verify(b'hello', raw_sig) key2 = secp256k1.PrivateKey() assert not key2.pubkey.schnorr_verify(b'hello', raw_sig) blank = secp256k1.PublicKey() pubkey = blank.schnorr_recover(b'hello', raw_sig) pub = secp256k1.PublicKey(pubkey) assert pub.serialize() == inst.pubkey.serialize() def test_schnorr_partial(): if not secp256k1.HAS_SCHNORR: pytest.skip('secp256k1_schnorr not enabled, skipping') return signer1 = secp256k1.PrivateKey() pubnonce1, privnonce1 = signer1.schnorr_generate_nonce_pair(b'hello') signer2 = secp256k1.PrivateKey() pubnonce2, privnonce2 = signer2.schnorr_generate_nonce_pair(b'hello') # First test partial signatures with only two signers. partial1 = signer1.schnorr_partial_sign(b'hello', privnonce1, pubnonce2) partial2 = signer2.schnorr_partial_sign(b'hello', privnonce2, pubnonce1) blank = secp256k1.PublicKey(flags=secp256k1.NO_FLAGS) sig = blank.schnorr_partial_combine([partial1, partial2]) # Recover the public key from the combined signature. pubkey = secp256k1.PublicKey().schnorr_recover(b'hello', sig) assert blank.public_key is None # Check that the combined public keys from signer1 and signer2 # match the recovered public key. blank.combine( [signer1.pubkey.public_key, signer2.pubkey.public_key]) assert blank.public_key assert secp256k1.PublicKey(pubkey).serialize() == blank.serialize()
mit
3,662,207,017,736,819,700
35.083333
76
0.711894
false
3.166362
true
false
false
Youwotma/portia
slybot/slybot/pageactions.py
1
1528
import json import re LUA_SOURCE = """ function main(splash) assert(splash:go(splash.args.url)) assert(splash:runjs(splash.args.js_source)) assert(splash:wait_for_resume(splash.args.slybot_actions_source)) splash:set_result_content_type("text/html") return splash.html() end """ JS_SOURCE = """ function main(splash) { var events = (%s); try{ __slybot__performEvents(events, function(){ splash.resume(); }); }catch(e){ splash.error(e); } } """ def filter_for_url(url): def _filter(page_action): accept = page_action.get('accept') reject = page_action.get('reject') if reject and re.search(reject, url): return False if accept and not re.search(accept, url): return False return True return _filter class PageActionsMiddleware(object): def process_request(self, request, spider): splash_options = request.meta.get('splash', None) if not splash_options: # Already processed or JS disabled return splash_args = splash_options.get('args', {}) events = spider.page_actions url = splash_args['url'] events = filter(filter_for_url(url), events) if len(events): splash_options['endpoint'] = 'execute' splash_args.update({ "lua_source": LUA_SOURCE, "slybot_actions_source": (JS_SOURCE % json.dumps(events)), }) __all__ = ['PageActionsMiddleware']
bsd-3-clause
-9,078,013,978,702,002,000
26.781818
74
0.590314
false
3.570093
false
false
false
jimmycallin/master-thesis
architectures/nn_discourse_parser/nets/data_reader.py
1
6857
import json import codecs class DRelation(object): """Implicit discourse relation object The object is created from the CoNLL-json formatted data. The format can be a bit clunky to get certain information. So convenient methods should be implemented here mostly to be used by the feature functions """ def __init__(self, relation_dict, parse): self.relation_dict = relation_dict self.parse = parse self._arg_tokens = {} self._arg_tokens[1] = None self._arg_tokens[2] = None self._arg_words = {} self._arg_words[1] = None self._arg_words[2] = None self._arg_tree = {} self._arg_tree[1] = None self._arg_tree[2] = None self._arg1_tree = None self._arg1_tree_token_indices = None self._arg2_tree = None self._arg2_tree_token_indices = None @property def senses(self): return self.relation_dict['Sense'] def arg_words(self, arg_pos): """Returns a list of Word objects""" assert(arg_pos == 1 or arg_pos == 2) if self._arg_words[arg_pos] is None: key = 'Arg%s' % arg_pos word_list = self.relation_dict[key]['TokenList'] self._arg_words[arg_pos] = [Word(x, self.parse[self.doc_id]) for x in word_list] return self._arg_words[arg_pos] def arg_tree(self, arg_pos): """Extract the tree for the argument One tree only. Truncated as needed Returns: 1) tree string 2) token indices (not address tuples) of that tree. """ assert(arg_pos == 1 or arg_pos == 2) if self._arg_tree[arg_pos] is None: trees, sentence_indices = self.arg_trees(arg_pos) if arg_pos == 1: tree = trees[-1] sentence_index = sentence_indices[-1] elif arg_pos == 2: tree = trees[0] sentence_index = sentence_indices[0] key = 'Arg%s' % arg_pos token_indices = [x[4] for x in self.relation_dict[key]['TokenList'] if x[3] == sentence_index] self._arg_tree[arg_pos] = (tree, token_indices) return self._arg_tree[arg_pos] def arg_dtree_rule_list(self, arg_pos): """Returns a list of arcs in the dependency tree(s) for the arg """ assert(arg_pos == 1 or arg_pos == 2) token_list = self.arg_token_addresses(arg_pos) sentence_indices = set([x[3] for x in token_list]) sentence_index_to_dependency_tree = {} for sentence_index in sentence_indices: dependencies = \ self.parse[self.doc_id]['sentences'][sentence_index]['dependencies'] index_to_dependency = {} # a dependency looks like this [u'prep', u'reported-8', u'In-1'] for dep in dependencies: rel_type = dep[0] head, _ = dep[1].rsplit('-', 1) dependent, index = dep[2].rsplit('-', 1) index_to_dependency[int(index)] = [rel_type, head, dependent] sentence_index_to_dependency_tree[sentence_index] = index_to_dependency rule_list = [] for token_address in token_list: _, _, _, sentence_index, token_index = token_address dtree = sentence_index_to_dependency_tree[sentence_index] if token_index in dtree: rule_list.append('_'.join(dtree[token_index])) return rule_list def arg_token_addresses(self, arg_pos): assert(arg_pos == 1 or arg_pos == 2) key = 'Arg%s' % arg_pos return self.relation_dict[key]['TokenList'] @property def doc_id(self): return self.relation_dict['DocID'] @property def relation_id(self): return self.relation_dict['ID'] @property def relation_type(self): return self.relation_dict['Type'] @property def doc_relation_id(self): return '%s_%s' % (self.doc_id, self.relation_id) def arg_tokens(self, arg_pos): """Returns a list of raw tokens""" assert(arg_pos == 1 or arg_pos == 2) if self._arg_tokens[arg_pos] is None: key = 'Arg%s' % arg_pos token_list = self.relation_dict[key]['TokenList'] self._arg_tokens[arg_pos] = [self.parse[self.doc_id]['sentences'][x[3]]['words'][x[4]][0] for x in token_list] return self._arg_tokens[arg_pos] def arg_trees(self, arg_pos): key = 'Arg%s' % arg_pos token_list = self.relation_dict[key]['TokenList'] sentence_indices = set([x[3] for x in token_list]) return [self.parse[self.doc_id]['sentences'][x]['parsetree'] for x in sentence_indices], list(sentence_indices) def __repr__(self): return self.relation_dict.__repr__() def __str__(self): return self.relation_dict.__str__() class Word(object): """Word class wrapper [u"'ve", {u'CharacterOffsetBegin':2449, u'CharacterOffsetEnd':2452, u'Linkers':[u'arg2_15006',u'arg1_15008'], u'PartOfSpeech':u'VBP'}] """ def __init__(self, word_address, parse): self.word_address = word_address self.word_token, self.word_info = parse['sentences'][word_address[3]]['words'][word_address[4]] @property def pos(self): return self.word_info['PartOfSpeech'] @property def lemma(self): return self.word_info['Lemma'] @property def sentence_index(self): return self.word_address[3] def extract_implicit_relations(data_folder, label_function=None): #parse_file = '%s/pdtb-parses-plus.json' % data_folder #parse_file = '%s/pdtb-parses.json' % data_folder parse_file = '%s/parses.json' % data_folder parse = json.load(codecs.open(parse_file, encoding='utf8')) #relation_file = '%s/pdtb-data-plus.json' % data_folder #relation_file = '%s/pdtb-data.json' % data_folder relation_file = '%s/relations.json' % data_folder relation_dicts = [json.loads(x) for x in open(relation_file)] relations = [DRelation(x, parse) for x in relation_dicts if x['Type'] == 'Implicit'] if label_function is not None: relations = [x for x in relations if label_function.label(x) is not None] return relations def extract_non_explicit_relations(data_folder, label_function=None): parse_file = '%s/pdtb-parses.json' % data_folder parse = json.load(codecs.open(parse_file, encoding='utf8')) relation_file = '%s/pdtb-data.json' % data_folder relation_dicts = [json.loads(x) for x in open(relation_file)] relations = [DRelation(x, parse) for x in relation_dicts if x['Type'] != 'Explicit'] if label_function is not None: relations = [x for x in relations if label_function.label(x) is not None] return relations
mit
4,789,138,021,986,704,000
35.473404
122
0.589616
false
3.503832
false
false
false
rwl/openpowersystem
cdpsm/iec61970/core/voltage_level.py
1
2591
#------------------------------------------------------------------------------ # Copyright (C) 2009 Richard Lincoln # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU Affero General Public License as published by the Free # Software Foundation; version 2 dated June, 1991. # # This software is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANDABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License # along with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA #------------------------------------------------------------------------------ """ A collection of equipment at one common system voltage forming a switchgear. The equipment typically consist of breakers, busbars, instrumentation, control, regulation and protection devices as well as assemblies of all these. """ # <<< imports # @generated from cdpsm.iec61970.core.equipment_container import EquipmentContainer from cdpsm.iec61970.core.base_voltage import BaseVoltage from cdpsm.iec61970.core.substation import Substation from cdpsm.iec61970.domain import Voltage from google.appengine.ext import db # >>> imports class VoltageLevel(EquipmentContainer): """ A collection of equipment at one common system voltage forming a switchgear. The equipment typically consist of breakers, busbars, instrumentation, control, regulation and protection devices as well as assemblies of all these. """ # <<< voltage_level.attributes # @generated # The bus bar's low voltage limit low_voltage_limit = Voltage # The bus bar's high voltage limit high_voltage_limit = Voltage # >>> voltage_level.attributes # <<< voltage_level.references # @generated # The base voltage used for all equipment within the VoltageLevel. base_voltage = db.ReferenceProperty(BaseVoltage, collection_name="voltage_level") # Virtual property. The association is used in the naming hierarchy. pass # bays # The association is used in the naming hierarchy. substation = db.ReferenceProperty(Substation, collection_name="voltage_levels") # >>> voltage_level.references # <<< voltage_level.operations # @generated # >>> voltage_level.operations # EOF -------------------------------------------------------------------------
agpl-3.0
-1,730,218,190,851,964,200
38.861538
235
0.677345
false
4.421502
false
false
false
ganga-devs/ganga
ganga/GangaDirac/Lib/Server/DiracCommands.py
1
18300
# Dirac commands #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/ @diracCommand def getJobGroupJobs(jg): ''' Return jobs in a group''' return dirac.selectJobs(jobGroup=jg) @diracCommand def kill(id): ''' Kill a given DIRAC Job ID within DIRAC ''' return dirac.deleteJob(id) @diracCommand def peek(id): ''' Peek at the DIRAC Job id and return what we saw ''' return dirac.peekJob(id) @diracCommand def getJobCPUTime(id): ''' Get the amount of CPU time taken by the DIRAC Job id''' return dirac.getJobCPUTime(id) @diracCommand def reschedule(id): ''' Reschedule within DIRAC a given DIRAC Job id''' return dirac.reschedule(id) @diracCommand def submit(djob, mode='wms'): ''' Submit a DIRAC job given by the jdl:djob with a given mode ''' return dirac.submitJob(djob, mode=mode) @diracCommand def ping(system, service): ''' Ping a given service on a given system running DIRAC ''' return dirac.ping(system, service) @diracCommand def removeFile(lfn): ''' Remove a given LFN from the DFC''' ret = {} if type(lfn) is list: for l in lfn: ret.update(dirac.removeFile(l)) else: ret.update(dirac.removeFile(lfn)) return ret @diracCommand def getMetadata(lfn): ''' Return the metadata associated with a given :DN''' return dirac.getLfnMetadata(lfn) @diracCommand def getReplicas(lfns): ''' Return the locations of the replicas of a given LFN in a dict format, SE: location ''' return dirac.getReplicas(lfns, active=True, preferDisk = True) @diracCommand def getReplicasForJobs(lfns): ''' Return the locations of the replicas of a given LFN in a dict format, SE: location. This is for use in the splitter to negate copies at SEs that are not to be used for user jobs ''' return dirac.getReplicasForJobs(lfns) @diracCommand def getAccessURL(lfn, SE, protocol=False): ''' Return the access URL for the given LFN, storage element and protocol. The protocol should be in the form of a list ''' return dirac.getAccessURL(lfn, SE, False, protocol) @diracCommand def getFile(lfns, destDir=''): ''' Put the physical file behind the LFN in the destDir path''' return dirac.getFile(lfns, destDir=destDir) @diracCommand def replicateFile(lfn, destSE, srcSE='', locCache=''): ''' Replicate a given LFN from a srcSE to a destSE''' res = dirac.replicateFile(lfn, destSE, srcSE, locCache) return res @diracCommand def removeReplica(lfn, sE): ''' Remove the physical files and LFN from the DFC''' return dirac.removeReplica(lfn, sE) @diracCommand def getOutputData(id, outputFiles='', destinationDir=''): ''' Return output data of a requeted DIRAC Job id, place outputFiles in a given destinationDir') ''' return dirac.getJobOutputData(id, outputFiles, destinationDir) @diracCommand def splitInputData(files, files_per_job): ''' Split list of files ito a list of list of smaller files (below files_per_job in length) and return the list of lists''' return dirac.splitInputData(files, files_per_job) @diracCommand def getInputDataCatalog(lfns, site, xml_file): ''' Get the XML describing the given LFNs at a given site''' return dirac.getInputDataCatalog(lfns, site, xml_file) @diracCommand def uploadFile(lfn, file, diracSEs, guid=None): ''' Upload a given file to an lfn with 1 replica places at each element in diracSEs. Use a given guid if given''' outerr = {} for se in diracSEs: result = dirac.addFile(lfn, file, se, guid) if result.get('OK', False) and lfn in result.get('Value', {'Successful': {}})['Successful']: result['Value']['Successful'][lfn].update({'DiracSE': se}) md = dirac.getLfnMetadata(lfn) if md.get('OK', False) and lfn in md.get('Value', {'Successful': {}})['Successful']: guid = md['Value']['Successful'][lfn]['GUID'] result['Value']['Successful'][lfn].update({'GUID': guid}) return result outerr.update({se: result}) return outerr @diracCommand def addFile(lfn, file, diracSE, guid): ''' Upload a given file to an lfn with 1 replica places at each element in diracSEs. Use a given guid if given''' return dirac.addFile(lfn, file, diracSE, guid) @diracCommand def getOutputSandbox(id, outputDir=os.getcwd(), unpack=True, oversized=True, noJobDir=True, pipe_out=True): ''' Get the outputsandbox and return the output from Dirac to the calling function id: the DIRAC jobid of interest outputDir: output directory locall on disk to use oversized: is this output sandbox oversized this will be modified noJobDir: should we create a folder with the DIRAC job ID? output: should I output the Dirac output or should I return a python object (False) unpack: should the sandbox be untarred when downloaded''' result = dirac.getOutputSandbox(id, outputDir, oversized, noJobDir, unpack) if result is not None and result.get('OK', False): if not noJobDir: tmpdir = os.path.join(outputDir, str(id)) os.system('mv -f %s/* %s/. ; rm -rf %s' % (tmpdir, outputDir, tmpdir)) os.system('for file in $(ls %s/*Ganga_*.log); do ln -s ${file} %s/stdout; break; done' % (outputDir, outputDir)) #So the download failed. Maybe the sandbox was oversized and stored on the grid. Check in the job parameters and download it else: parameters = dirac.getJobParameters(id) if parameters is not None and parameters.get('OK', False): parameters = parameters['Value'] if 'OutputSandboxLFN' in parameters: result = dirac.getFile(parameters['OutputSandboxLFN'], destDir=outputDir) dirac.removeFile(parameters['OutputSandboxLFN']) return result @diracCommand def getOutputDataInfo(id, pipe_out=True): ''' Get information on the output data generated by a job of ID and pipe it out or return it''' ret = {} result = getOutputDataLFNs(id, pipe_out=False) if result.get('OK', False) and 'Value' in result: for lfn in result.get('Value', []): file_name = os.path.basename(lfn) ret[file_name] = {} ret[file_name]['LFN'] = lfn md = dirac.getLfnMetadata(lfn) if md.get('OK', False) and lfn in md.get('Value', {'Successful': {}})['Successful']: ret[file_name]['GUID'] = md['Value']['Successful'][lfn]['GUID'] # this catches if fail upload, note lfn still exists in list as # dirac tried it elif md.get('OK', False) and lfn in md.get('Value', {'Failed': {}})['Failed']: ret[file_name]['LFN'] = '###FAILED###' ret[file_name]['LOCATIONS'] = md['Value']['Failed'][lfn] ret[file_name]['GUID'] = 'NotAvailable' continue rp = dirac.getReplicas(lfn) if rp.get('OK', False) and lfn in rp.get('Value', {'Successful': {}})['Successful']: ret[file_name]['LOCATIONS'] = rp['Value']['Successful'][lfn].keys() return ret # could shrink this with dirac.getJobOutputLFNs from ##dirac @diracCommand def getOutputDataLFNs(id, pipe_out=True): ''' Get the outputDataLFN which have been generated by a Dirac job of ID and pipe it out or return it''' parameters = dirac.getJobParameters(id) lfns = [] ok = False message = 'The outputdata LFNs could not be found.' if parameters is not None and parameters.get('OK', False): parameters = parameters['Value'] # remove the sandbox if it has been uploaded sandbox = None if 'OutputSandboxLFN' in parameters: sandbox = parameters['OutputSandboxLFN'] # now find out about the outputdata if 'UploadedOutputData' in parameters: lfn_list = parameters['UploadedOutputData'] import re lfns = re.split(',\s*', lfn_list) if sandbox is not None and sandbox in lfns: lfns.remove(sandbox) ok = True elif parameters is not None and 'Message' in parameters: message = parameters['Message'] result = {'OK': ok} if ok: result['Value'] = lfns else: result['Message'] = message return result @diracCommand def normCPUTime(id, pipe_out=True): ''' Get the normalied CPU time that has been used by a DIRAC job of ID and pipe it out or return it''' parameters = dirac.getJobParameters(id) ncput = None if parameters is not None and parameters.get('OK', False): parameters = parameters['Value'] if 'NormCPUTime(s)' in parameters: ncput = parameters['NormCPUTime(s)'] return ncput @diracCommand def finished_job(id, outputDir=os.getcwd(), unpack=True, oversized=True, noJobDir=True, downloadSandbox = True): ''' Nesting function to reduce number of calls made against DIRAC when finalising a job, takes arguments such as getOutputSandbox Returns the CPU time of the job as a dict, the output sandbox information in another dict and a dict of the LFN of any uploaded data''' out_cpuTime = normCPUTime(id, pipe_out=False) if downloadSandbox: out_sandbox = getOutputSandbox(id, outputDir, unpack, oversized, noJobDir, pipe_out=False) else: out_sandbox = None out_dataInfo = getOutputDataInfo(id, pipe_out=False) outStateTime = {'completed' : getStateTime(id, 'completed', pipe_out=False)} return (out_cpuTime, out_sandbox, out_dataInfo, outStateTime) @diracCommand def finaliseJobs(inputDict, statusmapping, downloadSandbox=True, oversized=True, noJobDir=True): ''' A function to get the necessaries to finalise a whole bunch of jobs. Returns a dict of job information and a dict of stati.''' returnDict = {} statusList = dirac.getJobStatus(list(inputDict)) for diracID in inputDict: returnDict[diracID] = {} returnDict[diracID]['cpuTime'] = normCPUTime(diracID, pipe_out=False) if downloadSandbox: returnDict[diracID]['outSandbox'] = getOutputSandbox(diracID, inputDict[diracID], oversized, noJobDir, pipe_out=False) else: returnDict[diracID]['outSandbox'] = None returnDict[diracID]['outDataInfo'] = getOutputDataInfo(diracID, pipe_out=False) returnDict[diracID]['outStateTime'] = {'completed' : getStateTime(diracID, 'completed', pipe_out=False)} return returnDict, statusList @diracCommand def status(job_ids, statusmapping, pipe_out=True): '''Function to check the statuses and return the Ganga status of a job after looking it's DIRAC status against a Ganga one''' # Translate between the many statuses in DIRAC and the few in Ganga #return {'OK':True, 'Value':[['WIP', 'WIP', 'WIP', 'WIP', 'WIP']]} result = dirac.getJobStatus(job_ids) if not result['OK']: return result status_list = [] bulk_status = result['Value'] for _id in job_ids: job_status = bulk_status.get(_id, {}) minor_status = job_status.get('MinorStatus', None) dirac_status = job_status.get('Status', None) dirac_site = job_status.get('Site', None) ganga_status = statusmapping.get(dirac_status, None) if ganga_status is None: ganga_status = 'failed' dirac_status = 'Unknown: No status for Job' #if dirac_status == 'Completed' and (minor_status not in ['Pending Requests']): # ganga_status = 'running' if minor_status in ['Uploading Output Data']: ganga_status = 'running' try: from DIRAC.Core.DISET.RPCClient import RPCClient monitoring = RPCClient('WorkloadManagement/JobMonitoring') app_status = monitoring.getJobAttributes(_id)['Value']['ApplicationStatus'] except: app_status = "unknown ApplicationStatus" status_list.append([minor_status, dirac_status, dirac_site, ganga_status, app_status]) return status_list @diracCommand def getStateTime(id, status, pipe_out=True): ''' Return the state time from DIRAC corresponding to DIRACJob tranasitions''' log = dirac.getJobLoggingInfo(id) if 'Value' not in log: return None L = log['Value'] checkstr = '' if status == 'running': checkstr = 'Running' elif status == 'completed': checkstr = 'Done' elif status == 'completing': checkstr = 'Completed' elif status == 'failed': checkstr = 'Failed' else: checkstr = '' if checkstr == '': print("%s" % None) return for l in L: if checkstr in l[0]: T = datetime.datetime(*(time.strptime(l[3], "%Y-%m-%d %H:%M:%S")[0:6])) return T return None @diracCommand def getBulkStateTime(job_ids, status, pipe_out=True): ''' Function to repeatedly call getStateTime for multiple Dirac Job id and return the result in a dictionary ''' result = {} for this_id in job_ids: result[this_id] = getStateTime(this_id, status, pipe_out=False) return result @diracCommand def monitorJobs(job_ids, status_mapping, pipe_out=True): ''' This combines 'status' and 'getBulkStateTime' into 1 function call for monitoring ''' status_info = status(job_ids, status_mapping, pipe_out=False) state_job_status = {} for job_id, this_stat_info in zip(job_ids, status_info): if this_stat_info: update_status = this_stat_info[3] if update_status not in state_job_status: state_job_status[update_status] = [] state_job_status[update_status].append(job_id) state_info = {} for this_status, these_jobs in state_job_status.items(): state_info[this_status] = getBulkStateTime(these_jobs, this_status, pipe_out=False) return (status_info, state_info) @diracCommand def timedetails(id): ''' Function to return the getJobLoggingInfo for a DIRAC Job of id''' log = dirac.getJobLoggingInfo(id) d = {} for i in range(0, len(log['Value'])): d[i] = log['Value'][i] return d # DiracAdmin commands #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/ @diracCommand def getJobPilotOutput(id, dir): ''' Get the output of the DIRAC pilot that this job was running on and place it in dir''' pwd = os.getcwd() try: os.chdir(dir) os.system('rm -f pilot_%d/std.out && rmdir pilot_%d ' % (id, id)) result = DiracAdmin().getJobPilotOutput(id) finally: os.chdir(pwd) return result @diracCommand def getServicePorts(): ''' Get the service ports from the DiracAdmin based upon the Dirac config''' return DiracAdmin().getServicePorts() @diracCommand def isSEArchive(se): ''' Ask if the specified SE is for archive ''' from DIRAC.DataManagementSystem.Utilities.DMSHelpers import DMSHelpers return DMSHelpers().isSEArchive(se) @diracCommand def getSitesForSE(se): ''' Get the Sites associated with this SE''' from DIRAC.Core.Utilities.SiteSEMapping import getSitesForSE result = getSitesForSE(storageElement=se) return result @diracCommand def getSEsForSite(site): ''' Get the list of SE associated with this site''' from DIRAC.Core.Utilities.SiteSEMapping import getSEsForSite result = getSEsForSite(site) return result @diracCommand def getSESiteMapping(): '''Get the mapping of SEs and sites''' from DIRAC.Core.Utilities.SiteSEMapping import getSESiteMapping result = getSESiteMapping() return result @diracCommand def checkSEStatus(se, access = 'Write'): ''' returns the value of a certain SE status flag (access or other) param se: Storage Element name type se: string param access: type of access type access: string in ('Read', 'Write', 'Remove', 'Check') returns: True or False ''' result = dirac.checkSEAccess(se, access) return result @diracCommand def listFiles(baseDir, minAge = None): ''' Return a list of LFNs for files stored on the grid in the argument directory and its subdirectories param baseDir: Top directory to begin search type baseDir: string param minAge: minimum age of files to be returned type minAge: string format: "W:D:H" ''' from DIRAC.Resources.Catalog.FileCatalog import FileCatalog fc = FileCatalog() from datetime import datetime, timedelta withMetaData = False cutoffTime = datetime.utcnow() import re r = re.compile('\d:\d:\d') if r.match(minAge): withMetaData = True timeList = minAge.split(':') timeLimit = timedelta(weeks = int(timeList[0]), days = int(timeList[1]), hours = int(timeList[2])) cutoffTime = datetime.utcnow() - timeLimit baseDir = baseDir.rstrip('/') activeDirs = [baseDir] allFiles = [] emptyDirs = [] while len(activeDirs) > 0: currentDir = activeDirs.pop() res = fc.listDirectory(currentDir, withMetaData, timeout = 360) if not res['OK']: return "Error retrieving directory contents", "%s %s" % ( currentDir, res['Message'] ) elif currentDir in res['Value']['Failed']: return "Error retrieving directory contents", "%s %s" % ( currentDir, res['Value']['Failed'][currentDir] ) else: dirContents = res['Value']['Successful'][currentDir] subdirs = dirContents['SubDirs'] files = dirContents['Files'] if not subdirs and not files: emptyDirs.append( currentDir ) else: for subdir in sorted( subdirs, reverse=True): if (not withMetaData) or subdirs[subdir]['CreationDate'] < cutoffTime: activeDirs.append(subdir) for filename in sorted(files): fileOK = False if (not withMetaData) or files[filename]['MetaData']['CreationDate'] < cutoffTime: fileOK = True if not fileOK: files.pop(filename) allFiles += sorted(files) return allFiles
gpl-2.0
-7,655,071,968,776,760,000
35.094675
139
0.640109
false
3.670277
false
false
false
rafaelvieiras/script.pseudotv.live
resources/lib/ChannelListThread.py
1
9795
# Copyright (C) 2011 Jason Anderson # # # This file is part of PseudoTV. # # PseudoTV is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PseudoTV is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PseudoTV. If not, see <http://www.gnu.org/licenses/>. import xbmc, xbmcgui, xbmcaddon import subprocess, os import time, threading import datetime import sys, re import random, traceback from ChannelList import ChannelList from Channel import Channel from Globals import * from Artdownloader import * class ChannelListThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.myOverlay = None sys.setcheckinterval(25) self.chanlist = ChannelList() self.paused = False self.fullUpdating = True self.Artdownloader = Artdownloader() def log(self, msg, level = xbmc.LOGDEBUG): log('ChannelListThread: ' + msg, level) def run(self): self.log("Starting") self.chanlist.exitThread = False self.chanlist.readConfig() self.chanlist.sleepTime = 0.1 if self.myOverlay == None: self.log("Overlay not defined. Exiting.") return self.chanlist.myOverlay = self.myOverlay self.fullUpdating = (self.myOverlay.backgroundUpdating == 0) validchannels = 0 for i in range(self.myOverlay.maxChannels): self.chanlist.channels.append(Channel()) if self.myOverlay.channels[i].isValid: validchannels += 1 # Don't load invalid channels if minimum threading mode is on if self.fullUpdating and self.myOverlay.isMaster: if validchannels < self.chanlist.enteredChannelCount: title = 'PseudoTV Live, Background Loading...' xbmc.executebuiltin('XBMC.Notification(%s, %s, %s)' % (title, 4000 , THUMB)) for i in range(self.myOverlay.maxChannels): if self.myOverlay.channels[i].isValid == False: while True: if self.myOverlay.isExiting: self.log("Closing thread") return time.sleep(1) if self.paused == False: break self.chanlist.channels[i].setAccessTime(self.myOverlay.channels[i].lastAccessTime) try: if self.chanlist.setupChannel(i + 1, True, True, False) == True: while self.paused: if self.myOverlay.isExiting: self.log("IsExiting") return time.sleep(1) self.myOverlay.channels[i] = self.chanlist.channels[i] if self.myOverlay.channels[i].isValid == True: title = "PseudoTV Live, Channel " + str(i + 1) + " Added" xbmc.executebuiltin('XBMC.Notification(%s, %s, %s)' % (title, 4000, THUMB)) except Exception,e: self.log("Unknown Channel Creation Exception", xbmc.LOGERROR) self.log(traceback.format_exc(), xbmc.LOGERROR) return REAL_SETTINGS.setSetting('ForceChannelReset', 'false') self.chanlist.sleepTime = 0.3 if REAL_SETTINGS.getSetting("ArtService_Enabled") == "true": InfoTimer = INFOBAR_TIMER[int(REAL_SETTINGS.getSetting('InfoTimer'))] self.ArtServiceThread = threading.Timer(float(InfoTimer), self.Artdownloader.ArtService) self.ArtServiceThread.name = "ArtServiceThread" self.ArtServiceThread.start() while True: for i in range(self.myOverlay.maxChannels): modified = True while modified == True and self.myOverlay.channels[i].getTotalDuration() < PREP_CHANNEL_TIME and self.myOverlay.channels[i].Playlist.size() < 16288: # If minimum updating is on, don't attempt to load invalid channels if self.fullUpdating == False and self.myOverlay.channels[i].isValid == False and self.myOverlay.isMaster: break modified = False if self.myOverlay.isExiting: self.log("Closing thread") return time.sleep(2) curtotal = self.myOverlay.channels[i].getTotalDuration() if self.myOverlay.isMaster: if curtotal > 0: # When appending, many of the channel variables aren't set, so copy them over. # This needs to be done before setup since a rule may use one of the values. # It also needs to be done after since one of them may have changed while being setup. self.chanlist.channels[i].playlistPosition = self.myOverlay.channels[i].playlistPosition self.chanlist.channels[i].showTimeOffset = self.myOverlay.channels[i].showTimeOffset self.chanlist.channels[i].lastAccessTime = self.myOverlay.channels[i].lastAccessTime self.chanlist.channels[i].totalTimePlayed = self.myOverlay.channels[i].totalTimePlayed self.chanlist.channels[i].isPaused = self.myOverlay.channels[i].isPaused self.chanlist.channels[i].mode = self.myOverlay.channels[i].mode # Only allow appending valid channels, don't allow erasing them try: self.chanlist.setupChannel(i + 1, True, False, True) except Exception,e: self.log("Unknown Channel Appending Exception", xbmc.LOGERROR) self.log(traceback.format_exc(), xbmc.LOGERROR) return self.chanlist.channels[i].playlistPosition = self.myOverlay.channels[i].playlistPosition self.chanlist.channels[i].showTimeOffset = self.myOverlay.channels[i].showTimeOffset self.chanlist.channels[i].lastAccessTime = self.myOverlay.channels[i].lastAccessTime self.chanlist.channels[i].totalTimePlayed = self.myOverlay.channels[i].totalTimePlayed self.chanlist.channels[i].isPaused = self.myOverlay.channels[i].isPaused self.chanlist.channels[i].mode = self.myOverlay.channels[i].mode else: try: self.chanlist.setupChannel(i + 1, True, True, False) except Exception,e: self.log("Unknown Channel Modification Exception", xbmc.LOGERROR) self.log(traceback.format_exc(), xbmc.LOGERROR) return else: try: # We're not master, so no modifications...just try and load the channel self.chanlist.setupChannel(i + 1, True, False, False) except Exception,e: self.log("Unknown Channel Loading Exception", xbmc.LOGERROR) self.log(traceback.format_exc(), xbmc.LOGERROR) return self.myOverlay.channels[i] = self.chanlist.channels[i] if self.myOverlay.isMaster: ADDON_SETTINGS.setSetting('Channel_' + str(i + 1) + '_time', str(self.myOverlay.channels[i].totalTimePlayed)) if self.myOverlay.channels[i].getTotalDuration() > curtotal and self.myOverlay.isMaster: modified = True # A do-while loop for the paused state while True: if self.myOverlay.isExiting: self.log("Closing thread") return time.sleep(2) if self.paused == False: break timeslept = 0 if self.fullUpdating == False and self.myOverlay.isMaster: return # If we're master, wait 30 minutes in between checks. If not, wait 5 minutes. while (timeslept < 1800 and self.myOverlay.isMaster == True) or (timeslept < 300 and self.myOverlay.isMaster == False): if self.myOverlay.isExiting: self.log("IsExiting") return time.sleep(2) timeslept += 2 self.log("All channels up to date. Exiting thread.") def pause(self): self.paused = True self.chanlist.threadPaused = True def unpause(self): self.paused = False self.chanlist.threadPaused = False
gpl-3.0
-5,893,234,249,640,738,000
44.347222
164
0.54099
false
4.709135
false
false
false
AnoopAlias/nDeploy
scripts/update_cluster_ipmap.py
1
1898
#!/usr/bin/env python import yaml import argparse import os __author__ = "Anoop P Alias" __copyright__ = "Copyright 2014, PiServe Technologies Pvt Ltd , India" __license__ = "GPL" __email__ = "[email protected]" installation_path = "/opt/nDeploy" # Absolute Installation Path cluster_config_file = installation_path+"/conf/ndeploy_cluster.yaml" # Function defs def update_ip_map(server, iphere, ipthere): cluster_data_yaml = open(cluster_config_file, 'r') cluster_data_yaml_parsed = yaml.safe_load(cluster_data_yaml) cluster_data_yaml.close() if cluster_data_yaml_parsed: if server in cluster_data_yaml_parsed.keys(): connect_server_dict = cluster_data_yaml_parsed.get(server) ipmap_dict = connect_server_dict.get("ipmap") ipmap_dict[iphere] = ipthere with open(cluster_config_file, 'w') as yaml_file: yaml_file.write(yaml.dump(cluster_data_yaml_parsed, default_flow_style=False)) else: mydict = {server: {'ipmap': {iphere: ipthere}}} cluster_data_yaml_parsed.update(mydict) with open(cluster_config_file, 'w') as yaml_file: yaml_file.write(yaml.dump(cluster_data_yaml_parsed, default_flow_style=False)) else: print("Invalid cluster data") parser = argparse.ArgumentParser(description="create/update nDeploy-cluster ipmap") parser.add_argument("slave_hostname") parser.add_argument("ip_here") parser.add_argument("remote_ip") args = parser.parse_args() server_key = args.slave_hostname ip_here = args.ip_here remote_ip = args.remote_ip if os.path.isfile(cluster_config_file): update_ip_map(server_key, ip_here, remote_ip) else: mydict = {server_key: {'ipmap': {ip_here: remote_ip}}} with open(cluster_config_file, 'w') as cluster_conf: cluster_conf.write(yaml.dump(mydict, default_flow_style=False))
gpl-3.0
6,655,193,397,231,080,000
34.148148
94
0.674921
false
3.278066
true
false
false
letouriste001/SmartForest_2.0
python3.4Smartforest/lib/python3.4/site-packages/django/db/migrations/recorder.py
1
2868
from __future__ import unicode_literals from django.apps.registry import Apps from django.db import models from django.db.utils import DatabaseError from django.utils.encoding import python_2_unicode_compatible from django.utils.timezone import now from .exceptions import MigrationSchemaMissing class MigrationRecorder(object): """ Deals with storing migration records in the database. Because this table is actually itself used for dealing with model creation, it's the one thing we can't do normally via migrations. We manually handle table creation/schema updating (using schema backend) and then have a floating model to do queries with. If a migration is unapplied its row is removed from the table. Having a row in the table always means a migration is applied. """ @python_2_unicode_compatible class Migration(models.Model): app = models.CharField(max_length=255) name = models.CharField(max_length=255) applied = models.DateTimeField(default=now) class Meta: apps = Apps() app_label = "migrations" db_table = "django_migrations" def __str__(self): return "Migration %s for %s" % (self.name, self.app) def __init__(self, connection): self.connection = connection @property def migration_qs(self): return self.Migration.objects.using(self.connection.alias) def ensure_schema(self): """ Ensures the table exists and has the correct schema. """ # If the table's there, that's fine - we've never changed its schema # in the codebase. if self.Migration._meta.db_table in self.connection.introspection.table_names(self.connection.cursor()): return # Make the table try: with self.connection.schema_editor() as editor: editor.create_model(self.Migration) except DatabaseError as exc: raise MigrationSchemaMissing("Unable to create the django_migrations table (%s)" % exc) def applied_migrations(self): """ Returns a set of (app, name) of applied migrations. """ self.ensure_schema() return set(tuple(x) for x in self.migration_qs.values_list("app", "name")) def record_applied(self, app, name): """ Records that a migration was applied. """ self.ensure_schema() self.migration_qs.create(app=app, name=name) def record_unapplied(self, app, name): """ Records that a migration was unapplied. """ self.ensure_schema() self.migration_qs.filter(app=app, name=name).delete() def flush(self): """ Deletes all migration records. Useful if you're testing migrations. """ self.migration_qs.all().delete()
mit
213,370,591,806,448,500
32.348837
112
0.642957
false
3.907357
false
false
false
staffanm/layeredconfig
layeredconfig/dictsource.py
1
1625
# this should possibly be a abstract class as well from . import ConfigSource class DictSource(ConfigSource): def __init__(self, **kwargs): """If your backend data is exposable as a python dict, you can subclass from this class to avoid implementing :py:meth:`has`, :py:meth:`get`, :py:meth:`keys`, :py:meth:`subsection` and :py:meth:`subsections`. You only need to write :py:meth:`__init__` (which should set ``self.source`` to that exposed dict), and possibly :py:meth:`typed` and :py:meth:`save`. """ super(DictSource, self).__init__(**kwargs) self.source = {} def subsections(self): for (k, v) in self.source.items(): if isinstance(v, dict): yield k def keys(self): for (k, v) in self.source.items(): if not isinstance(v, dict) and not isinstance(v, type): yield k def subsection(self, key): # Make an object of the correct type return self.__class__(defaults=self.source[key], parent=self, identifier=self.identifier) def typed(self, key): # if we have it, we can type it return key in self.source and self.source[key] is not None def has(self, key): # should return true for real values only, not type placeholders or sub-dicts return key in self.source and not isinstance(self.source[key], (type, dict)) def get(self, key): return self.source[key] def set(self, key, value): self.source[key] = value
bsd-3-clause
8,381,840,833,951,817,000
33.574468
85
0.580923
false
4.0625
false
false
false
samervin/arctic-scavengers-randomizer
arctic_cards/leaders.py
1
3619
# Fields NAME = 'name' SET = 'set' USES_REFUGEES = 'uses-refugees' TEXT = 'text' # Set values HQ_EXP = 'hq' RECON_EXP = 'recon' # Information not strictly contained on the card COMMENT = 'comment' class Leaders: ALL_LEADERS = [ { NAME: 'The Peacemaker', SET: HQ_EXP, USES_REFUGEES: True, TEXT: 'Each round you may play 1 Refugee to increase the power of another tribe member\s hunt or dig actions by +2.' }, { NAME: 'The Gangster', SET: HQ_EXP, USES_REFUGEES: True, TEXT: 'Your Refugees have a fight of 0 and they count as 2 people for the purpose of breaking tied skirmishes.' }, { NAME: 'The Butcher', SET: HQ_EXP, TEXT: 'Each round you may kill 1 of your tribe members (remove the card permanently from play) and sell his/her internal organs for 1 food and 1 med.' }, { NAME: 'The Fanatic', SET: HQ_EXP, USES_REFUGEES: True, TEXT: 'Each round you may use 1 Refugee from your hand as a suicide bomber against an opponent. ' 'Discard 1 of your opponent\'s revealed cards (your choice), the Refugee dies in the process (remove card from play).' }, { NAME: 'The Organizer', SET: HQ_EXP, USES_REFUGEES: True, TEXT: 'Each round you may play 1 Refugee to perform a draw of 2, but only keep 1. ' 'No other cards may be played to modify this draw and you may not perform another draw this round.' }, { NAME: 'The Cannibal', SET: HQ_EXP, TEXT: 'Each round you may cannibalize 1 tribe member for 3 food (and subsequently remove that card from play). ' 'You may not combine food from hunting or a garden when hiring with cannibalized food.' }, { NAME: 'The Sergent at Arms', SET: HQ_EXP, TEXT: 'You are immune to the disarm action, preventing saboteurs from discarding your tools. ' 'When hiring saboteurs, you pay no food (cost for you is 1 med).', COMMENT: 'This card is misspelled as printed: the correct spelling is Sergeant.' }, { NAME: 'The Mentor', SET: HQ_EXP, USES_REFUGEES: True, TEXT: 'Each round you may play 1 Refugee card to grant another tribe member a +1 to any action.' }, { NAME: 'The Excavator', SET: HQ_EXP, USES_REFUGEES: True, TEXT: 'All of your Refugees have a dig of 1. ' 'If a Refugee uses a digging tool (i.e. shovel or a pick axe), ignore the tool\'s normal bonus and add +1 to the score.' }, { NAME: 'The Ranger', SET: HQ_EXP, USES_REFUGEES: True, TEXT: 'All of your Refugees and Tribe Families have a hunt of 1.' }, { NAME: 'The Swindler', SET: RECON_EXP, USES_REFUGEES: True, TEXT: 'Once per turn, you may discard 1 Refugee to persuade a mercenary into joining your tribe for 1 less food ' 'or discard two Refugees to reduce the price by 1 med.' }, { NAME: 'The Yardmaster', SET: RECON_EXP, TEXT: 'Once per turn, you may peek at the top 2 cards of the Junkyard. ' 'Return both of them to the top or bottom of the Junkyard.' } ]
mit
6,301,782,325,497,952,000
37.913978
162
0.546284
false
3.604582
false
false
false
Samuel789/MediPi
MedManagementWeb/env/lib/python3.5/site-packages/Crypto/Cipher/DES.py
1
7100
# -*- coding: utf-8 -*- # # Cipher/DES.py : DES # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== """DES symmetric cipher DES `(Data Encryption Standard)`__ is a symmetric block cipher standardized by NIST_ . It has a fixed data block size of 8 bytes. Its keys are 64 bits long, even though 8 bits were used for integrity (now they are ignored) and do not contribute to securty. The effective key length is therefore 56 bits only. DES is cryptographically secure, but its key length is too short by nowadays standards and it could be brute forced with some effort. **Use AES, not DES. This module is provided only for legacy purposes.** As an example, encryption can be done as follows: >>> from Crypto.Cipher import DES >>> >>> key = b'-8B key-' >>> cipher = DES.new(key, DES.MODE_OFB) >>> plaintext = b'sona si latine loqueris ' >>> msg = cipher.iv + cipher.encrypt(plaintext) .. __: http://en.wikipedia.org/wiki/Data_Encryption_Standard .. _NIST: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf :undocumented: __package__ """ import sys from Crypto.Cipher import _create_cipher from Crypto.Util.py3compat import byte_string from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer, SmartPointer, c_size_t, expect_byte_string) _raw_des_lib = load_pycryptodome_raw_lib( "Crypto.Cipher._raw_des", """ int DES_start_operation(const uint8_t key[], size_t key_len, void **pResult); int DES_encrypt(const void *state, const uint8_t *in, uint8_t *out, size_t data_len); int DES_decrypt(const void *state, const uint8_t *in, uint8_t *out, size_t data_len); int DES_stop_operation(void *state); """) def _create_base_cipher(dict_parameters): """This method instantiates and returns a handle to a low-level base cipher. It will absorb named parameters in the process.""" try: key = dict_parameters.pop("key") except KeyError: raise TypeError("Missing 'key' parameter") expect_byte_string(key) if len(key) != key_size: raise ValueError("Incorrect DES key length (%d bytes)" % len(key)) start_operation = _raw_des_lib.DES_start_operation stop_operation = _raw_des_lib.DES_stop_operation cipher = VoidPointer() result = start_operation(key, c_size_t(len(key)), cipher.address_of()) if result: raise ValueError("Error %X while instantiating the DES cipher" % result) return SmartPointer(cipher.get(), stop_operation) def new(key, mode, *args, **kwargs): """Create a new DES cipher :Parameters: key : byte string The secret key to use in the symmetric cipher. It must be 8 byte long. The parity bits will be ignored. :Keywords: mode : a *MODE_** constant The chaining mode to use for encryption or decryption. iv : byte string (*Only* `MODE_CBC`, `MODE_CFB`, `MODE_OFB`, `MODE_OPENPGP`). The initialization vector to use for encryption or decryption. For `MODE_OPENPGP`, IV must be 8 bytes long for encryption and 10 bytes for decryption (in the latter case, it is actually the *encrypted* IV which was prefixed to the ciphertext). For all other modes, it must be 8 bytes long. If not provided, a random byte string is generated (you can read it back via the ``iv`` attribute). nonce : byte string (*Only* `MODE_EAX` and `MODE_CTR`). A mandatory value that must never be reused for any other encryption. For `MODE_CTR`, its length must be in the range ``[0..7]``. For `MODE_EAX`, there are no restrictions, but it is recommended to use at least 16 bytes. If not provided for `MODE_EAX`, a random byte string is generated (you can read it back via the ``nonce`` attribute). mac_len : integer (*Only* `MODE_EAX`). Length of the authentication tag, in bytes. It must be no larger than 8 (which is the default). segment_size : integer (*Only* `MODE_CFB`).The number of **bits** the plaintext and ciphertext are segmented in. It must be a multiple of 8. If not specified, it will be assumed to be 8. initial_value : integer (*Only* `MODE_CTR`). The initial value for the counter within the counter block. By default it is 0. :Return: a DES cipher, of the applicable mode: - CBC_ mode - CFB_ mode - CTR_ mode - EAX_ mode - ECB_ mode - OFB_ mode - OpenPgp_ mode .. _CBC: Crypto.Cipher._mode_cbc.CbcMode-class.html .. _CFB: Crypto.Cipher._mode_cfb.CfbMode-class.html .. _CTR: Crypto.Cipher._mode_ctr.CtrMode-class.html .. _EAX: Crypto.Cipher._mode_eax.EaxMode-class.html .. _ECB: Crypto.Cipher._mode_ecb.EcbMode-class.html .. _OFB: Crypto.Cipher._mode_ofb.OfbMode-class.html .. _OpenPgp: Crypto.Cipher._mode_openpgp.OpenPgpMode-class.html """ return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs) #: Electronic Code Book (ECB). See `Crypto.Cipher._mode_ecb.EcbMode`. MODE_ECB = 1 #: Cipher-Block Chaining (CBC). See `Crypto.Cipher._mode_cbc.CbcMode`. MODE_CBC = 2 #: Cipher FeedBack (CFB). See `Crypto.Cipher._mode_cfb.CfbMode`. MODE_CFB = 3 #: Output FeedBack (OFB). See `Crypto.Cipher._mode_ofb.OfbMode`. MODE_OFB = 5 #: CounTer Mode (CTR). See `Crypto.Cipher._mode_ctr.CtrMode`. MODE_CTR = 6 #: OpenPGP Mode. See `Crypto.Cipher._mode_openpgp.OpenPgpMode`. MODE_OPENPGP = 7 #: EAX Mode. See `Crypto.Cipher._mode_eax.EaxMode`. MODE_EAX = 9 #: Size of a data block (in bytes) block_size = 8 #: Size of a key (in bytes) key_size = 8
apache-2.0
-5,694,647,605,484,890,000
35.787565
79
0.613521
false
3.815153
false
false
false
harikishen/addons-server
src/olympia/amo/tasks.py
1
2584
import datetime from django.core.mail import EmailMessage, EmailMultiAlternatives import olympia.core.logger from olympia import amo from olympia.activity.models import ActivityLog from olympia.amo.celery import task from olympia.amo.utils import get_email_backend from olympia.bandwagon.models import Collection from olympia.stats.models import Contribution log = olympia.core.logger.getLogger('z.task') @task def send_email(recipient, subject, message, from_email=None, html_message=None, attachments=None, real_email=False, cc=None, headers=None, fail_silently=False, async=False, max_retries=None, reply_to=None, **kwargs): backend = EmailMultiAlternatives if html_message else EmailMessage connection = get_email_backend(real_email) result = backend(subject, message, from_email, to=recipient, cc=cc, connection=connection, headers=headers, attachments=attachments, reply_to=reply_to) if html_message: result.attach_alternative(html_message, 'text/html') try: result.send(fail_silently=False) return True except Exception as e: log.error('send_mail failed with error: %s' % e) if async: return send_email.retry(exc=e, max_retries=max_retries) elif not fail_silently: raise else: return False @task def set_modified_on_object(obj, **kw): """Sets modified on one object at a time.""" try: log.info('Setting modified on object: %s, %s' % (obj.__class__.__name__, obj.pk)) obj.update(modified=datetime.datetime.now()) except Exception, e: log.error('Failed to set modified on: %s, %s - %s' % (obj.__class__.__name__, obj.pk, e)) @task def delete_logs(items, **kw): log.info('[%s@%s] Deleting logs' % (len(items), delete_logs.rate_limit)) ActivityLog.objects.filter(pk__in=items).exclude( action__in=amo.LOG_KEEP).delete() @task def delete_stale_contributions(items, **kw): log.info('[%s@%s] Deleting stale contributions' % (len(items), delete_stale_contributions.rate_limit)) Contribution.objects.filter( transaction_id__isnull=True, pk__in=items).delete() @task def delete_anonymous_collections(items, **kw): log.info('[%s@%s] Deleting anonymous collections' % (len(items), delete_anonymous_collections.rate_limit)) Collection.objects.filter(type=amo.COLLECTION_ANONYMOUS, pk__in=items).delete()
bsd-3-clause
7,679,414,389,111,565,000
33
76
0.64822
false
3.64457
false
false
false
sctjkc01/ofCourse
ofcourse/participants.py
1
3800
import os from datetime import datetime, date, timedelta from urlparse import urlparse import yaml from flask import Blueprint, redirect from flask.ext.mako import render_template import ofcourse from ofcourse.util import app_path, get_hw_keys participants_bp = Blueprint('participants_bp', __name__, template_folder=app_path('templates')) currentYear = str(date.today().year) currentTerm = "fall" if date.today().month > 7 else "spring" @participants_bp.route('/') def participants_blank(): """ This is the default landing for the participants listing page. It will list all of the participants in the current term for HFOSS """ return participants_year_term(currentYear, currentTerm) @participants_bp.route('/<year_or_nick>') def participants_year(year_or_nick): """ This will get all the participants within a given year """ p_url = find_participant(year_or_nick) if p_url is not None: # render individual page return redirect(p_url) # otherwise render as a year return participants(year_or_nick + '/') @participants_bp.route('/<year>/<term>') def participants_year_term(year, term): """ This will get all the participants within a given year and term """ return participants(year + '/' + term + '/') @participants_bp.route('/all') def participants_all(): return participants('') """ This will get all the participants who have taken HFOSS """ def participants(root_dir): """ Render the participants page, which shows a directory of all the students with their forge links, blog posts, assignment links, and etc. """ yaml_dir = app_path('people', root_dir) student_data = [] for dirpath, dirnames, files in os.walk(yaml_dir): dirpath = dirpath.rstrip("/") for fname in sorted(files): if fname.endswith('.yaml'): with open(dirpath + '/' + fname) as students: contents = yaml.safe_load(students) contents['yaml'] = dirpath + '/' + fname year_term_data = dirpath.split('/') contents['participant_page'] = "{y}/{t}/{u}".format( y=year_term_data[-2], t=year_term_data[-1], u=os.path.splitext(fname)[0] ) for forge in contents['forges']: url = urlparse(forge) if "github.com" in url.netloc: contents['github'] = url.path[1:] contents['isActive'] = (currentYear in year_term_data and currentTerm in year_term_data) student_data.append(contents) assignments = get_hw_keys() elapsed = (datetime.today() - ofcourse.site.COURSE_START).total_seconds() target_number = int(elapsed / timedelta(weeks=1).total_seconds() + 1 + len(assignments)) return render_template( 'blogs.mak', name='mako', student_data=student_data, gravatar=ofcourse.site.gravatar, target_number=target_number, hw_keys=assignments ) def find_participant(nick): yaml_dir = app_path('people') for dirpath, dirnames, files in os.walk(yaml_dir): for fname in files: if (fname.lower().startswith(nick.lower()) and fname.endswith('.yaml')): participant = os.path.join( dirpath, fname ).replace(yaml_dir, '') participant = participant.replace('.yaml', '') return 'participants' + participant
apache-2.0
3,540,628,806,068,801,000
28.6875
77
0.569737
false
4.231626
false
false
false
smurfix/DaBroker
dabroker/base/transport/__init__.py
1
4226
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, division, unicode_literals ## ## This file is part of DaBroker, a distributed data access manager. ## ## DaBroker is Copyright © 2014 by Matthias Urlichs <[email protected]>, ## it is licensed under the GPLv3. See the file `README.rst` for details, ## including optimistic statements by the author. ## ## This paragraph is auto-generated and may self-destruct at any time, ## courtesy of "make update". The original is in ‘utils/_boilerplate.py’. ## Thus, please do not remove the next line, or insert any blank lines. ##BP from gevent import GreenletExit from dabroker.util.thread import prep_spawned import logging logger = logging.getLogger("dabroker.base.transport") class ConnectionError(RuntimeError): pass class BaseCallbacks(object): def recv(self,msg): """Incoming message from the other side. NOT used for receiving replies!""" raise NotImplementedError("You need to override {}.recv()".format(self.__class__.__name__)) def send(self,msg): """Outgoing message to the other side. NOT used for sending replies!""" raise NotImplementedError("You need to override {}.send()".format(self.__class__.__name__)) def ended(self,err=None): """Called on receiver error. Do not reconnect here!""" pass def reconnect(self,err=None): """Called after a closed connection has been cleaned up""" pass def register_codec(self,codec): raise NotImplementedError("You need to override {}.register_codec()".format(self.__class__.__name__)) class RelayedError(Exception): """An encapsulation for a server error (with traceback)""" def __init__(self,err,tb): self.err = str(err) self.tb = tb def __repr__(self): return "{}({})".format(self.__class__.__name__,self.err) def __str__(self): r = repr(self) if self.tb is None: return r return r+"\n"+self.tb class BaseTransport(object): _job = None defaults = {} connection = None last_msgid = 0 def __init__(self,callbacks, cfg={}): self.cfg = self.defaults.copy() self.cfg.update(cfg) self.callbacks = callbacks self.trace = cfg.get('trace',0) def connect(self, purge=False): """Connect. (Synchronously.) Do not override! Override .connect1() (setup) and .connect2() (initial tasks)""" assert self.callbacks is not None assert self.connection is None self.connect1() if purge: self.purge_all() self.connect2() def connect1(self): """Set up a connection. Call super() before your code.""" if self._job is not None: raise RuntimeError("Already connected") logger.debug("connecting: %r",self) def connect2(self): """Add initial tasks after a connection has been established. Call super() after your code.""" assert self._job is None self._job = self._run_job() self._job.start() def disconnect(self): """Sever the connection; do not auto-reconnect.""" logger.debug("disconnecting: %r",self) j,self._job = self._job,None if j: j.stop() def disconnected(self, err=None): """Clear connection objects. This will be called by the reader task as it exits. Do not reconnect from here; do that in your .reconnect""" logger.debug("disconnected: %r",self) def purge_all(self): """ Clear this transport's message queue. This should only be called when client and server are known to be idle AND when you suspect an unprocessable message might clog the queue. """ pass def send(self,msg): raise NotImplementedError("You need to override {}.send()".format(self.__class__.__name__)) def run(self): raise NotImplementedError("You need to override {}.run()".format(self.__class__.__name__)) @prep_spawned def _run_job(self): try: logger.debug("Running receiver loop: %r",self) self.run() except GreenletExit: err=None logger.debug("Receiver loop ends: %r",self) self.callbacks.ended(None) except BaseException as e: err = e logger.exception("Receiver loop error: %r",self) self.callbacks.ended(e) else: err=None logger.debug("Receiver loop ends: %r",self) self.callbacks.ended(None) finally: self.disconnected() if self._job is not None: self._job = None self.callbacks.reconnect(err)
gpl-3.0
-528,446,127,231,001,700
26.769737
103
0.689647
false
3.352661
false
false
false
MattFaus/CrowdTube-Connector
youtube.py
1
6824
import os import urlparse from lib import gdata import lib.gdata.youtube.client import secrets GDATA_API_CLIENT_ID = 'CrowdTube-Connector' class YouTubeCaptionEditor(object): def __init__(self, google_email, google_password, youtube_username): self.youtube_username = youtube_username self.youtube_client = lib.gdata.youtube.client.YouTubeClient() # We shouldn't need this auth_token, but we'll keep it around self.auth_token = self.youtube_client.client_login( google_email, google_password, GDATA_API_CLIENT_ID) # A dictionary of youtube_id and YouTubeVideo objects self.videos = {} def get_videos(self): # Format copied from lib.gdata.youtube.client.py feed_uri = '%s%s/%s' % (lib.gdata.youtube.client.YOUTUBE_USER_FEED_URI, self.youtube_username, 'uploads') all_videos = self.youtube_client.get_videos(uri=feed_uri) for video in all_videos.entry: new_video = YouTubeVideo(video, self.youtube_client) self.videos[new_video.video_id] = new_video def get_video(self, video_id): video_entry = self.youtube_client.get_video_entry(video_id=video_id) return YouTubeVideo(video_entry, self.youtube_client) def delete_track(self, video_id, track_id): """Deletes an existing track.""" # TODO(mattfaus): Take google_developer_key as a constructor arg? response = self.youtube_client.delete_track(video_id, track_id, client_id=GDATA_API_CLIENT_ID, developer_key=secrets.google_developer_key) # http://docs.python.org/release/2.2.3/lib/httpresponse-objects.html if response.status != 200: print response.status, response.msg return False return True def add_track(self, video_id, title, language, track_content): """Adds a caption track. If a track with the same title already exists, this will silently fail. """ # TODO(mattfaus): Take google_developer_key as a constructor arg? track_content = track_content.encode('utf-8') response = self.youtube_client.create_track(video_id, title, language, track_content, client_id=GDATA_API_CLIENT_ID, developer_key=secrets.google_developer_key, fmt='sub') # Returns a TrackEntry object return response def update_track(self, video_id, track_id, track_content): """Adds a caption track.""" # TODO(mattfaus): Take google_developer_key as a constructor arg? track_content = track_content.encode('utf-8') response = self.youtube_client.update_track(video_id, track_id, track_content, client_id=GDATA_API_CLIENT_ID, developer_key=secrets.google_developer_key, fmt='sub') # Returns a TrackEntry object return response # TODO(mattfaus): Suck these two classes into the YouTubeCaptionEditor, above # make the YouTubeCaptionEditor behave more like a full-fledged youtube client # Shouldn't have to pass the youtube_client object around to the sub-classes # No need to have dictionaries where an array would do just fine (YouTubeVideo.caption_tracks) class YouTubeVideo(object): def __init__(self, video_entry, youtube_client=None): self.youtube_client = youtube_client # tag:youtube.com,2008:video:SNrEiiJwD4Y id_parts = video_entry.GetId().split(':') self.video_id = id_parts[id_parts.index('video') + 1] self.title = video_entry.title.text caption_link = video_entry.get_link( 'http://gdata.youtube.com/schemas/2007#video.captionTracks') self.caption_feed = caption_link.href # TODO(mattfaus): Make this less ugly has_entries = [ a.value for a in caption_link.GetAttributes() if '{http://gdata.youtube.com/schemas/2007}hasEntries' == a._qname] has_entries = has_entries[0] == 'true' self.has_entries = has_entries self.caption_tracks = {} def get_caption_tracks(self, download=False): # Don't check self.has_entries. It may be False when only a # machine-generated caption track exists. if not self.youtube_client: raise ValueError('No youtube client available!') # STOPSHIP(mattfaus): get_caption_feed() only returns the first 24 caption tracks # so we must iterate to read more # TODO(mattfaus): Filter this by language with the 'lr' attribute all_captions = self.youtube_client.get_caption_feed(self.caption_feed) for caption_entry in all_captions.entry: new_track = YouTubeCaptionTrack(caption_entry, self.youtube_client) self.caption_tracks[new_track.track_source] = new_track if download: new_track.download_track() def get_machine_generated_track(self): self.get_caption_tracks() for src, caption_track in self.caption_tracks.iteritems(): print src, caption_track if caption_track.machine_generated: caption_track.download_track() return caption_track class YouTubeCaptionTrack(object): def __init__(self, caption_entry, youtube_client): self.youtube_client = youtube_client self.language = caption_entry.content.lang self.track_source = caption_entry.content.src self.machine_generated = YouTubeCaptionTrack._is_machine_generated( caption_entry) # Parse the video_id and caption_id out of a url like this: # https://gdata.youtube.com/feeds/api/videos/Jom6EtXzRMg/captiondata/Ch4LEO3ZhwUaFQjIic2vrcLuxCYSAmVuGgAiA2Fzcgw o = urlparse.urlparse(self.track_source) path_parts = o.path.split('/') self.video_id = path_parts[path_parts.index('videos') + 1] self.track_id = path_parts[path_parts.index('captiondata') + 1] self.track_content = None @staticmethod def _is_machine_generated(caption_entry): """Looks for the derived element, and returns True if it is equal to speechRecognition. """ # TODO(mattfaus): Move this to TrackEntry within youtube/data.py? derived = caption_entry.GetElements( tag='derived', namespace='http://gdata.youtube.com/schemas/2007') if not derived: return False else: derived = derived[0] return derived.text == 'speechRecognition' def download_track(self): response = self.youtube_client.get_caption_track( track_url=self.track_source, client_id=GDATA_API_CLIENT_ID, developer_key=secrets.google_developer_key) self.track_content = response.read(2 ** 31) return self.track_content
mit
-7,013,494,189,144,412,000
38.445087
120
0.651231
false
3.822969
false
false
false
rockfruit/bika.lims
bika/lims/browser/analysisrequest/results_not_requested.py
1
2747
# This file is part of Bika LIMS # # Copyright 2011-2016 by it's authors. # Some rights reserved. See LICENSE.txt, AUTHORS.txt. from AccessControl import getSecurityManager from bika.lims import bikaMessageFactory as _ from bika.lims.utils import t from bika.lims.permissions import * from bika.lims.browser.analysisrequest import AnalysisRequestManageResultsView from bika.lims.content.analysisrequest import schema as AnalysisRequestSchema from bika.lims.utils import to_utf8 from bika.lims.workflow import doActionFor from plone.app.layout.globals.interfaces import IViewView from DateTime import DateTime from Products.Archetypes import PloneMessageFactory as PMF from Products.CMFCore.utils import getToolByName from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from zope.interface import implements import plone class AnalysisRequestResultsNotRequestedView(AnalysisRequestManageResultsView): implements(IViewView) template = ViewPageTemplateFile("templates/analysisrequest_analyses_not_requested.pt") def __call__(self): ar = self.context workflow = getToolByName(ar, 'portal_workflow') # If is a retracted AR, show the link to child AR and show a warn msg if workflow.getInfoFor(ar, 'review_state') == 'invalid': childar = hasattr(ar, 'getChildAnalysisRequest') \ and ar.getChildAnalysisRequest() or None childid = childar and childar.getRequestID() or None message = _('This Analysis Request has been withdrawn and is shown ' 'for trace-ability purposes only. Retest: ${retest_child_id}.', mapping={"retest_child_id":childid if childid else ''}) self.context.plone_utils.addPortalMessage(message, 'warning') # If is an AR automatically generated due to a Retraction, show it's # parent AR information if hasattr(ar, 'getParentAnalysisRequest') \ and ar.getParentAnalysisRequest(): par = ar.getParentAnalysisRequest() message = _( 'This Analysis Request has been generated automatically due to ' 'the retraction of the Analysis Request ${retracted_request_id}.', mapping={"retracted_request_id": par.getRequestID()}) self.context.plone_utils.addPortalMessage(message, 'info') can_do = getSecurityManager().checkPermission(ResultsNotRequested, ar) if workflow.getInfoFor(ar, 'cancellation_state') == "cancelled": self.request.response.redirect(ar.absolute_url()) elif not(can_do): self.request.response.redirect(ar.absolute_url()) else: return self.template()
agpl-3.0
3,269,595,701,656,959,500
46.362069
90
0.699672
false
4.174772
false
false
false
LongSeanSilvr/DC_Metro_Tracker
development_version/src/general_intents.py
1
1923
import build_response as br # ====================================================================================================================== # Skill Behavior: Welcome Response # ====================================================================================================================== class Welcome(object): def __init__(self): self.card_title = "Welcome" self.reprompt_text = "What station would you like train times for?" self.flag = "welcome" def build_response(self): output = br.build_response(self.card_title, self.flag, reprompt_text=self.reprompt_text) return output # ====================================================================================================================== # Skill Intent: Help # ====================================================================================================================== class Help(object): def __init__(self, intent, session): # Parameters are here so handler can treat this like the other intent classes self.card_title = "Help" self.reprompt_text = "What station would you like train times for?" self.flag = "help" def build_response(self): output = br.build_response(self.card_title, self.flag, reprompt_text=self.reprompt_text) return output # ====================================================================================================================== # Skill Intent: Quit # ====================================================================================================================== class Exit(object): def __init__(self, intent, session): # Parameters are here so handler can treat this like the other intent classes self.card_title = "Exiting" self.flag = "exit" def build_response(self): output = br.build_response(self.card_title, self.flag) return output
gpl-3.0
3,137,623,135,016,649,700
44.785714
120
0.411856
false
5.494286
false
false
false
dakrauth/picker
picker/forms.py
1
6144
from django import forms from django.utils import timezone from django.utils.module_loading import import_string from . import models as picker from . import utils _picker_widget = None encoded_game_key = 'game_{}'.format TIE_KEY = '__TIE__' def decoded_game_key(value): return int(value.replace('game_', '')) def encoded_game_item(game): return ( encoded_game_key(game.id), str(game.winner.id) if game.winner else (TIE_KEY if game.is_tie else '') ) def get_picker_widget(league): global _picker_widget if not _picker_widget: widget_path = league.config('TEAM_PICKER_WIDGET') if widget_path: _picker_widget = import_string(widget_path) _picker_widget = _picker_widget or forms.RadioSelect return _picker_widget class GameField(forms.ChoiceField): def __init__(self, game, manage=False, widget=None): choices = [(str(game.away.id), game.away), (str(game.home.id), game.home)] if manage: choices.insert(1, (TIE_KEY, '')) self.game = game self.manage = manage self.game_id = game.id self.is_game = True super(GameField, self).__init__( choices=choices, label=game.start_time.strftime('%a, %b %d %I:%M %p'), required=False, help_text=game.tv, disabled=not self.manage and (self.game.start_time <= timezone.now()), widget=widget or get_picker_widget(game.gameset.league) ) class FieldIter: def __init__(self, form): self.fields = [] self.form = form def append(self, name): self.fields.append(name) def __iter__(self): for name in self.fields: yield self.form[name] class BasePickForm(forms.Form): management = False def __init__(self, gameset, *args, **kws): super(BasePickForm, self).__init__(*args, **kws) self.gameset = gameset self.game_fields = FieldIter(self) games = list(gameset.games.select_related('home__league', 'away__league')) if games: for gm in games: key = encoded_game_key(gm.id) self.fields[key] = GameField(gm, self.management) self.game_fields.append(key) self.fields['points'] = forms.IntegerField( label='{}:'.format(games[-1].vs_description), required=False ) class ManagementPickForm(BasePickForm): management = True def __init__(self, gameset, *args, **kws): kws.setdefault('initial', {}).update(**self.get_initial_picks(gameset)) super(ManagementPickForm, self).__init__(gameset, *args, **kws) def save(self): gameset = self.gameset data = self.cleaned_data.copy() gameset.points = data.pop('points', 0) or 0 gameset.save() for key, winner in data.items(): if winner: pk = decoded_game_key(key) game = gameset.games.get(pk=pk) game.winner = None if winner == TIE_KEY else int(winner) gameset.update_pick_status() @staticmethod def get_initial_picks(gameset): return dict({ encoded_game_key(game.id): str(game.winner.id) for game in gameset.games.played() if game.winner }, points=gameset.points) class UserPickForm(BasePickForm): def __init__(self, user, gameset, *args, **kws): initial = self.get_initial_user_picks(gameset, user) kws.setdefault('initial', {}).update(initial) self.user = user super(UserPickForm, self).__init__(gameset, *args, **kws) def save(self): data = self.cleaned_data.copy() picks = picker.PickSet.objects.for_gameset_user(self.gameset, self.user) points = data.pop('points', None) games = {decoded_game_key(k): v for k, v in data.items() if v} picks.update_picks(games=games, points=points) return picks @staticmethod def get_initial_user_picks(gameset, user): ps = gameset.pick_for_user(user) initial = dict({ encoded_game_key(g_id): str(w_id) for g_id, w_id in ps.gamepicks.picked_winner_ids() }, points=ps.points) if ps else {} return initial class GameForm(forms.ModelForm): class Meta: model = picker.Game fields = ('start_time', 'location') class PreferenceForm(forms.ModelForm): class Meta: model = picker.Preference fields = ('autopick',) def __init__(self, instance, *args, **kws): kws['instance'] = instance self.current_email = instance.user.email.lower() kws.setdefault('initial', {})['email'] = self.current_email super(PreferenceForm, self).__init__(*args, **kws) for league in picker.League.objects.all(): field_name = '{}_favorite'.format(league.slug) current = None if instance: try: current = picker.PickerFavorite.objects.get(user=instance.user, league=league) except picker.PickerFavorite.DoesNotExist: pass self.fields[field_name] = forms.ModelChoiceField( picker.Team.objects.filter(league=league), label='{} Favorite'.format(league.abbr.upper()), empty_label='-- Select --', required=False, initial=current.team if current else None ) def save(self, commit=True): super(PreferenceForm, self).save(commit) if commit: picker.PickerFavorite.objects.filter(user=self.instance.user).delete() for key in self.cleaned_data: if not key.endswith('_favorite'): continue slug = key.rsplit('_')[0] league = picker.League.objects.get(slug=slug) picker.PickerFavorite.objects.create( league=league, user=self.instance.user, team=self.cleaned_data[key] )
mit
-7,155,869,303,144,028,000
30.187817
98
0.57487
false
3.719128
false
false
false
amerlyq/piony
piony/config/argparser.py
1
2747
from argparse import ArgumentParser, RawDescriptionHelpFormatter import piony from piony.common.exceptions import InputError class ArgParser(object): def __init__(self): self.ps = ArgumentParser(prog=piony.__appname__, formatter_class=RawDescriptionHelpFormatter, description=piony.__doc__, epilog="Enjoy!!!") self._setup_options() def parse(self, argv): if not argv: argv = [] elif isinstance(argv, str): argv = argv.split() elif not isinstance(argv, list): raise InputError("Wrong argv type: {}".format(type(argv))) return self.ps.parse_args(argv) def apply(self, args): from operator import xor res = (False, False) dbg = {'a': (True, True), 'v': (True, False), 'k': (False, True)} if args.verbose: for entry in args.verbose: res = map(xor, res, dbg[entry]) piony.G_DEBUG_VISUALS, piony.G_DEBUG_ACTIONS = res def _setup_options(self): ## Configuration farg = self.ps.add_argument farg('buds', metavar='bud', nargs='*', type=str, default=None, help="Setup profile layout in json directly on cmdline. " "Can be specified several times -- one for each slice. " "Or use pathes to files with slices inside.") farg('-v', '--version', action='version', default=None, version="%(prog)s {0}".format(piony.__version__), help="Version of program.") gr_window = self.ps.add_argument_group('Window') warg = gr_window.add_argument warg('-c', '--config', default=None, help="Config file with default settings.") warg('-p', '--print', default=None, help="Toggle action print/execute to use as frontend only.") ## Appearance warg('-s', '--size', type=int, default=None, help="Sets window size WxH=NxN to derive all rings sizes from it.") warg('-F', '--fullscreen', action='store_true', default=None, help="Overlay fullscreen/local") warg('-T', '--no-tooltip', action='store_true', default=None, help="Disable pop-up items, for those who is irritated.") ## Process gr_general = self.ps.add_argument_group('General') garg = gr_general.add_argument garg('-k', '--kill', action='store_true', default=None, help="Kill running daemonized program.") garg('-V', '--verbose', nargs='?', type=str, const='a', choices=['a', 'v', 'k'], default=None, help="Verbose (debug): [a]ll (default), [v]isuals, [k]eys.")
gpl-3.0
114,584,023,838,943,360
41.261538
80
0.560612
false
4.004373
false
false
false
strahlc/exaile
xlgui/main.py
1
43837
# Copyright (C) 2008-2010 Adam Olsen # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # # The developers of the Exaile media player hereby grant permission # for non-GPL compatible GStreamer and Exaile plugins to be used and # distributed together with GStreamer and Exaile. This permission is # above and beyond the permissions granted by the GPL license by which # Exaile is covered. If you modify this code, you may extend this # exception to your version of the code, but you are not obligated to # do so. If you do not wish to do so, delete this exception statement # from your version. import datetime import logging import os import re import threading import cairo from gi.repository import Gdk from gi.repository import GLib from gi.repository import GObject from gi.repository import Gtk from gi.repository import Pango from xl.nls import gettext as _ from xl import ( common, covers, event, formatter, player, playlist, providers, settings, trax, xdg ) from xlgui.accelerators import AcceleratorManager from xlgui.playlist_container import PlaylistContainer from xlgui.widgets import ( dialogs, info, menu, playback ) from xlgui.widgets.playlist import ( PlaylistPage, PlaylistView ) from xlgui import ( guiutil, tray, menu as mainmenu ) logger = logging.getLogger(__name__) # Length of playback step when user presses seek key (sec) SEEK_STEP_DEFAULT = 10 # Length of volume steps when user presses up/down key VOLUME_STEP_DEFAULT = 0.1 class MainWindow(GObject.GObject): """ Main Exaile Window """ __gproperties__ = { 'is-fullscreen': (bool, 'Fullscreen', 'Whether the window is fullscreen.', False, # Default GObject.PARAM_READWRITE), } __gsignals__ = {'main-visible-toggle': (GObject.SignalFlags.RUN_LAST, bool, ())} _mainwindow = None def __init__(self, controller, builder, collection): """ Initializes the main window @param controller: the main gui controller """ GObject.GObject.__init__(self) self.controller = controller self.collection = collection self.playlist_manager = controller.exaile.playlists self.current_page = -1 self._fullscreen = False self.resuming = False self.window_state = 0 self.minimized = False self.builder = builder self.window = self.builder.get_object('ExaileWindow') self.window.set_title('Exaile') self.title_formatter = formatter.TrackFormatter(settings.get_option( 'gui/main_window_title_format', _('$title (by $artist)') + ' - Exaile')) self.accelgroup = Gtk.AccelGroup() self.window.add_accel_group(self.accelgroup) self.accel_manager = AcceleratorManager('mainwindow-accelerators', self.accelgroup) self.menubar = self.builder.get_object("mainmenu") fileitem = self.builder.get_object("file_menu_item") filemenu = menu.ProviderMenu('menubar-file-menu', self) fileitem.set_submenu(filemenu) edititem = self.builder.get_object("edit_menu_item") editmenu = menu.ProviderMenu('menubar-edit-menu', self) edititem.set_submenu(editmenu) viewitem = self.builder.get_object("view_menu_item") viewmenu = menu.ProviderMenu('menubar-view-menu', self) viewitem.set_submenu(viewmenu) toolsitem = self.builder.get_object("tools_menu_item") toolsmenu = menu.ProviderMenu('menubar-tools-menu', self) toolsitem.set_submenu(toolsmenu) helpitem = self.builder.get_object("help_menu_item") helpmenu = menu.ProviderMenu('menubar-help-menu', self) helpitem.set_submenu(helpmenu) self._setup_widgets() self._setup_position() self._setup_hotkeys() logger.info("Connecting main window events...") self._connect_events() MainWindow._mainwindow = self mainmenu._create_menus() def _setup_hotkeys(self): """ Sets up accelerators that haven't been set up in UI designer """ hotkeys = ( ('<Control>S', lambda *e: self.on_save_playlist()), ('<Shift><Control>S', lambda *e: self.on_save_playlist_as()), ('<Control>F', lambda *e: self.on_panel_filter_focus()), ('<Control>G', lambda *e: self.on_search_playlist_focus()), # FIXME ('<Control><Alt>l', lambda *e: player.QUEUE.clear()), # FIXME ('<Control>P', self._on_playpause_button), ('<Control>Right', lambda *e: self._on_seek_key(True)), ('<Control>Left', lambda *e: self._on_seek_key(False)), ('<Control>plus', lambda *e: self._on_volume_key(True)), ('<Control>minus', lambda *e: self._on_volume_key(False)), ('<Control>Page_Up', self._on_prev_tab_key), ('<Control>Page_Down', self._on_next_tab_key), ('<Alt>N', self._on_focus_playlist_container), # These 4 are subject to change.. probably should do this # via a different mechanism too... ('<Alt>I', lambda *e: self.controller.focus_panel('files')), #('<Alt>C', lambda *e: self.controller.focus_panel('collection')), ('<Alt>R', lambda *e: self.controller.focus_panel('radio')), ('<Alt>L', lambda *e: self.controller.focus_panel('playlists')), ('<Alt>1', lambda *e: self._on_focus_playlist_tab(0)), ('<Alt>2', lambda *e: self._on_focus_playlist_tab(1)), ('<Alt>3', lambda *e: self._on_focus_playlist_tab(2)), ('<Alt>4', lambda *e: self._on_focus_playlist_tab(3)), ('<Alt>5', lambda *e: self._on_focus_playlist_tab(4)), ('<Alt>6', lambda *e: self._on_focus_playlist_tab(5)), ('<Alt>7', lambda *e: self._on_focus_playlist_tab(6)), ('<Alt>8', lambda *e: self._on_focus_playlist_tab(7)), ('<Alt>9', lambda *e: self._on_focus_playlist_tab(8)), ('<Alt>0', lambda *e: self._on_focus_playlist_tab(9)), ) self.accel_group = Gtk.AccelGroup() for key, function in hotkeys: key, mod = Gtk.accelerator_parse(key) self.accel_group.connect(key, mod, Gtk.AccelFlags.VISIBLE, function) self.window.add_accel_group(self.accel_group) def _setup_widgets(self): """ Sets up the various widgets """ # TODO: Maybe make this stackable self.message = dialogs.MessageBar( parent=self.builder.get_object('player_box'), buttons=Gtk.ButtonsType.CLOSE ) self.message.connect('response', self.on_messagebar_response) self.info_area = MainWindowTrackInfoPane(player.PLAYER) self.info_area.set_auto_update(True) self.info_area.set_padding(3, 3, 3, 3) self.info_area.hide() self.info_area.set_no_show_all(True) guiutil.gtk_widget_replace(self.builder.get_object('info_area'), self.info_area) self.volume_control = playback.VolumeControl(player.PLAYER) self.info_area.get_action_area().pack_end(self.volume_control, False, False, 0) self.alpha_style = None if settings.get_option('gui/use_alpha', False): screen = self.window.get_screen() visual = screen.get_rgba_visual() self.window.set_visual(visual) self.window.connect('screen-changed', self.on_screen_changed) self.alpha_style = Gtk.CssProvider.new() self.window.get_style_context().add_provider(self.alpha_style, Gtk.STYLE_PROVIDER_PRIORITY_APPLICATION) self._update_alpha() playlist_area = self.builder.get_object('playlist_area') self.playlist_container = PlaylistContainer('saved_tabs', player.PLAYER) for notebook in self.playlist_container.notebooks: notebook.connect_after('switch-page', self.on_playlist_container_switch_page) page = notebook.get_current_tab() if page is not None: selection = page.view.get_selection() selection.connect('changed', self.on_playlist_view_selection_changed) playlist_area.pack_start(self.playlist_container, True, True, 3) self.splitter = self.builder.get_object('splitter') # In most (all?) RTL locales, the playback controls should still be LTR. # Just in case that's not always the case, we provide a hidden option to # force RTL layout instead. This can be removed once we're more certain # that the default behavior (always LTR) is correct. controls_direction = Gtk.TextDirection.RTL \ if settings.get_option('gui/rtl_playback_controls') \ else Gtk.TextDirection.LTR self.play_image = Gtk.Image.new_from_icon_name('media-playback-start', Gtk.IconSize.SMALL_TOOLBAR) self.play_image.set_direction(controls_direction) self.pause_image = Gtk.Image.new_from_icon_name('media-playback-pause', Gtk.IconSize.SMALL_TOOLBAR) self.pause_image.set_direction(controls_direction) play_toolbar = self.builder.get_object('play_toolbar') play_toolbar.set_direction(controls_direction) for button in ('playpause', 'next', 'prev', 'stop'): widget = self.builder.get_object('%s_button' % button) setattr(self, '%s_button' % button, widget) widget.get_child().set_direction(controls_direction) self.progress_bar = playback.SeekProgressBar(player.PLAYER) self.progress_bar.get_child().set_direction(controls_direction) # Don't expand vertically; looks awful on Adwaita. self.progress_bar.set_valign(Gtk.Align.CENTER) guiutil.gtk_widget_replace( self.builder.get_object('playback_progressbar_dummy'), self.progress_bar ) self.stop_button.toggle_spat = False self.stop_button.add_events(Gdk.EventMask.POINTER_MOTION_MASK) self.stop_button.connect('motion-notify-event', self.on_stop_button_motion_notify_event) self.stop_button.connect('leave-notify-event', self.on_stop_button_leave_notify_event) self.stop_button.connect('key-press-event', self.on_stop_button_key_press_event) self.stop_button.connect('key-release-event', self.on_stop_button_key_release_event) self.stop_button.connect('focus-out-event', self.on_stop_button_focus_out_event) self.stop_button.connect('button-press-event', self.on_stop_button_press_event) self.stop_button.connect('button-release-event', self.on_stop_button_release_event) self.stop_button.drag_dest_set(Gtk.DestDefaults.ALL, [Gtk.TargetEntry.new("exaile-index-list", Gtk.TargetFlags.SAME_APP, 0)], Gdk.DragAction.COPY) self.stop_button.connect('drag-motion', self.on_stop_button_drag_motion) self.stop_button.connect('drag-leave', self.on_stop_button_drag_leave) self.stop_button.connect('drag-data-received', self.on_stop_button_drag_data_received) self.statusbar = info.Statusbar(self.builder.get_object('status_bar')) event.add_ui_callback(self.on_exaile_loaded, 'exaile_loaded') def _connect_events(self): """ Connects the various events to their handlers """ self.builder.connect_signals({ 'on_configure_event': self.configure_event, 'on_window_state_event': self.window_state_change_event, 'on_delete_event': self.on_delete_event, 'on_playpause_button_clicked': self._on_playpause_button, 'on_next_button_clicked': lambda *e: player.QUEUE.next(), 'on_prev_button_clicked': lambda *e: player.QUEUE.prev(), 'on_about_item_activate': self.on_about_item_activate, # Controller # 'on_scan_collection_item_activate': self.controller.on_rescan_collection, # 'on_device_manager_item_activate': lambda *e: self.controller.show_devices(), # 'on_track_properties_activate':self.controller.on_track_properties, }) event.add_ui_callback(self.on_playback_resume, 'playback_player_resume', player.PLAYER) event.add_ui_callback(self.on_playback_end, 'playback_player_end', player.PLAYER) event.add_ui_callback(self.on_playback_end, 'playback_error', player.PLAYER) event.add_ui_callback(self.on_playback_start, 'playback_track_start', player.PLAYER) event.add_ui_callback(self.on_toggle_pause, 'playback_toggle_pause', player.PLAYER) event.add_ui_callback(self.on_track_tags_changed, 'track_tags_changed') event.add_ui_callback(self.on_buffering, 'playback_buffering', player.PLAYER) event.add_ui_callback(self.on_playback_error, 'playback_error', player.PLAYER) event.add_ui_callback(self.on_playlist_tracks_added, 'playlist_tracks_added') event.add_ui_callback(self.on_playlist_tracks_removed, 'playlist_tracks_removed') # Settings self._on_option_set('gui_option_set', settings, 'gui/show_info_area') self._on_option_set('gui_option_set', settings, 'gui/show_info_area_covers') event.add_ui_callback(self._on_option_set, 'option_set') def _connect_panel_events(self): """ Sets up panel events """ # When there's nothing in the notebook, hide it self.controller.panel_notebook.connect('page-added', self.on_panel_notebook_add_page) self.controller.panel_notebook.connect('page-removed', self.on_panel_notebook_remove_page) # panels panels = self.controller.panel_notebook.panels for panel_name in ('playlists', 'radio', 'files', 'collection'): panel = panels[panel_name].panel sort = False if panel_name in ('files', 'collection'): sort = True panel.connect('append-items', lambda panel, items, force_play, sort=sort: self.on_append_items(items, force_play, sort=sort)) panel.connect('queue-items', lambda panel, items, sort=sort: self.on_append_items(items, queue=True, sort=sort)) panel.connect('replace-items', lambda panel, items, sort=sort: self.on_append_items(items, replace=True, sort=sort)) ## Collection Panel panel = panels['collection'].panel panel.connect('collection-tree-loaded', self.on_collection_tree_loaded) ## Playlist Panel panel = panels['playlists'].panel panel.connect('playlist-selected', lambda panel, playlist: self.playlist_container.create_tab_from_playlist(playlist)) ## Radio Panel panel = panels['radio'].panel panel.connect('playlist-selected', lambda panel, playlist: self.playlist_container.create_tab_from_playlist(playlist)) ## Files Panel #panel = panels['files'] def _update_alpha(self): if self.alpha_style is None: return opac = 1.0 - float(settings.get_option('gui/transparency')) self.alpha_style.load_from_data( '.background { ' + ('background-color: alpha(@theme_bg_color, %s);' % opac) + '}' ) def do_get_property(self, prop): if prop.name == 'is-fullscreen': return self._fullscreen else: return GObject.GObject.do_get_property(self, prop) def do_set_property(self, prop, value): if prop.name == 'is-fullscreen': if value: self.window.fullscreen() else: self.window.unfullscreen() else: GObject.GObject.do_set_property(self, prop, value) def on_screen_changed(self, widget, event): """ Updates the colormap on screen change """ screen = widget.get_screen() visual = screen.get_rgba_visual() or screen.get_rgb_visual() self.window.set_visual(visual) def on_messagebar_response(self, widget, response): """ Hides the messagebar if requested """ if response == Gtk.ResponseType.CLOSE: widget.hide() def on_panel_notebook_add_page(self, notebook, page, page_num): if self.splitter.get_child1() is None: self.splitter.pack1(self.controller.panel_notebook) self.controller.panel_notebook.get_parent() \ .child_set_property(self.controller.panel_notebook, 'shrink', False) def on_panel_notebook_remove_page(self, notebook, page, page_num): if notebook.get_n_pages() == 0: self.splitter.remove(self.controller.panel_notebook) def on_stop_button_motion_notify_event(self, widget, event): """ Sets the hover state and shows SPAT icon """ widget.__hovered = True if event.get_state() & Gdk.ModifierType.SHIFT_MASK: widget.set_image(Gtk.Image.new_from_icon_name( 'process-stop', Gtk.IconSize.BUTTON)) else: widget.set_image(Gtk.Image.new_from_icon_name( 'media-playback-stop', Gtk.IconSize.BUTTON)) def on_stop_button_leave_notify_event(self, widget, event): """ Unsets the hover state and resets the button icon """ widget.__hovered = False if not widget.is_focus() and \ ~(event.get_state() & Gdk.ModifierType.SHIFT_MASK): widget.set_image(Gtk.Image.new_from_icon_name( 'media-playback-stop', Gtk.IconSize.BUTTON)) def on_stop_button_key_press_event(self, widget, event): """ Shows SPAT icon on Shift key press """ if event.keyval in (Gdk.KEY_Shift_L, Gdk.KEY_Shift_R): widget.set_image(Gtk.Image.new_from_icon_name( 'process-stop', Gtk.IconSize.BUTTON)) widget.toggle_spat = True if event.keyval in (Gdk.KEY_space, Gdk.KEY_Return): if widget.toggle_spat: self.on_spat_clicked() else: player.PLAYER.stop() def on_stop_button_key_release_event(self, widget, event): """ Resets the button icon """ if event.keyval in (Gdk.KEY_Shift_L, Gdk.KEY_Shift_R): widget.set_image(Gtk.Image.new_from_icon_name( 'media-playback-stop', Gtk.IconSize.BUTTON)) widget.toggle_spat = False def on_stop_button_focus_out_event(self, widget, event): """ Resets the button icon unless the button is still hovered """ if not getattr(widget, '__hovered', False): widget.set_image(Gtk.Image.new_from_icon_name( 'media-playback-stop', Gtk.IconSize.BUTTON)) def on_stop_button_press_event(self, widget, event): """ Called when the user clicks on the stop button """ if event.button == 1: if event.get_state() & Gdk.ModifierType.SHIFT_MASK: self.on_spat_clicked() elif event.button == 3: menu = guiutil.Menu() menu.append(_("Toggle: Stop after Selected Track"), self.on_spat_clicked, 'process-stop') menu.popup(None, None, None, None, event.button, event.time) def on_stop_button_release_event(self, widget, event): """ Called when the user releases the mouse from the stop button """ rect = widget.get_allocation() if 0 <= event.x < rect.width and 0 <= event.y < rect.height: player.PLAYER.stop() def on_stop_button_drag_motion(self, widget, context, x, y, time): """ Indicates possible SPAT during drag motion of tracks """ target = widget.drag_dest_find_target(context, widget.drag_dest_get_target_list()).name() if target == 'exaile-index-list': widget.set_image(Gtk.Image.new_from_icon_name( 'process-stop', Gtk.IconSize.BUTTON)) def on_stop_button_drag_leave(self, widget, context, time): """ Resets the stop button """ widget.set_image(Gtk.Image.new_from_icon_name( 'media-playback-stop', Gtk.IconSize.BUTTON)) def on_stop_button_drag_data_received(self, widget, context, x, y, selection, info, time): """ Allows for triggering the SPAT feature by dropping tracks on the stop button """ source_widget = Gtk.drag_get_source_widget(context) if selection.target.name() == 'exaile-index-list' and isinstance(source_widget, PlaylistView): position = int(selection.data.split(',')[0]) if position == source_widget.playlist.spat_position: position = -1 source_widget.playlist.spat_position = position source_widget.queue_draw() def on_spat_clicked(self, *e): """ Called when the user clicks on the SPAT item """ trs = self.get_selected_page().view.get_selected_items() if not trs: return # TODO: this works, but implement this some other way in the future if player.QUEUE.current_playlist.spat_position == -1: player.QUEUE.current_playlist.spat_position = trs[0][0] else: player.QUEUE.current_playlist.spat_position = -1 self.get_selected_page().view.queue_draw() def on_append_items(self, tracks, force_play=False, queue=False, sort=False, replace=False): """ Called when a panel (or other component) has tracks to append and possibly queue :param tracks: The tracks to append :param force_play: Force playing the first track if there is no track currently playing. Otherwise check a setting to determine whether the track should be played :param queue: Additionally queue tracks :param sort: Sort before adding :param replace: Clear playlist before adding """ if len(tracks) == 0: return page = self.get_selected_page() if sort: tracks = trax.sort_tracks( ('artist', 'date', 'album', 'discnumber', 'tracknumber'), tracks) if replace: page.playlist.clear() offset = len(page.playlist) page.playlist.extend(tracks) # extending the queue automatically starts playback if queue: if player.QUEUE is not page.playlist: player.QUEUE.extend(tracks) elif (force_play or settings.get_option( 'playlist/append_menu_starts_playback', False )) and \ not player.PLAYER.current: page.view.play_track_at(offset, tracks[0]) def on_playback_error(self, type, player, message): """ Called when there has been a playback error """ self.message.show_error(_('Playback error encountered!'), message) def on_buffering(self, type, player, percent): """ Called when a stream is buffering """ percent = min(percent, 100) self.statusbar.set_status(_("Buffering: %d%%...") % percent, 1) def on_track_tags_changed(self, type, track, tag): """ Called when tags are changed """ if track is player.PLAYER.current: self._update_track_information() def on_collection_tree_loaded(self, tree): """ Updates information on collection tree load """ self.statusbar.update_info() def on_exaile_loaded(self, event_type, exaile, nothing): """ Updates information on exaile load """ self.statusbar.update_info() event.remove_callback(self.on_exaile_loaded, 'exaile_loaded') def on_playlist_tracks_added(self, type, playlist, tracks): """ Updates information on track add """ self.statusbar.update_info() def on_playlist_tracks_removed(self, type, playlist, tracks): """ Updates information on track removal """ self.statusbar.update_info() def on_toggle_pause(self, type, player, object): """ Called when the user clicks the play button after playback has already begun """ if player.is_paused(): image = self.play_image tooltip = _('Continue Playback') else: image = self.pause_image tooltip = _('Pause Playback') self.playpause_button.set_image(image) self.playpause_button.set_tooltip_text(tooltip) self._update_track_information() def on_playlist_container_switch_page(self, notebook, page, page_num): """ Updates info after notebook page switch """ page = notebook.get_nth_page(page_num) selection = page.view.get_selection() selection.connect('changed', self.on_playlist_view_selection_changed) self.statusbar.update_info() def on_playlist_view_selection_changed(self, selection): """ Updates info after playlist page selection change """ self.statusbar.update_info() def on_panel_filter_focus(self, *e): """ Gives focus to the filter field of the current panel """ try: self.controller.get_active_panel().filter.grab_focus() except (AttributeError, KeyError): pass def on_search_playlist_focus(self, *e): """ Gives focus to the playlist search bar """ plpage = get_selected_playlist() if plpage: plpage.get_search_entry().grab_focus() def on_save_playlist(self, *e): """ Called when the user presses Ctrl+S Spawns the save dialog of the currently selected playlist tab if not custom, saves changes directly if custom """ tab = self.get_selected_tab() if not tab: return if tab.page.playlist.get_is_custom(): tab.do_save_changes_to_custom() else: tab.do_save_custom() def on_save_playlist_as(self, *e): """ Called when the user presses Ctrl+S Spawns the save as dialog of the current playlist tab """ tab = self.get_selected_tab() if not tab: return tab.do_save_custom() def on_clear_playlist(self, *e): """ Clears the current playlist tab """ page = self.get_selected_page() if page: page.playlist.clear() def on_open_item_activate(self, menuitem): """ Shows a dialog to open media """ def on_uris_selected(dialog, uris): uris.reverse() if len(uris) > 0: self.controller.open_uri(uris.pop(), play=True) for uri in uris: self.controller.open_uri(uri, play=False) dialog = dialogs.MediaOpenDialog(self.window) dialog.connect('uris-selected', on_uris_selected) dialog.show() def on_open_url_item_activate(self, menuitem): """ Shows a dialog to open an URI """ def on_uri_selected(dialog, uri): self.controller.open_uri(uri, play=False) dialog = dialogs.URIOpenDialog(self.window) dialog.connect('uri-selected', on_uri_selected) dialog.show() def on_open_directories_item_activate(self, menuitem): """ Shows a dialog to open directories """ def on_uris_selected(dialog, uris): uris.reverse() if len(uris) > 0: self.controller.open_uri(uris.pop(), play=True) for uri in uris: self.controller.open_uri(uri, play=False) dialog = dialogs.DirectoryOpenDialog(self.window) # Selecting empty folders is useless dialog.props.create_folders = False dialog.connect('uris-selected', on_uris_selected) dialog.show() def on_export_current_playlist_activate(self, menuitem): """ Shows a dialog to export the current playlist """ page = self.get_selected_page() if not page or not isinstance(page, PlaylistPage): return def on_message(dialog, message_type, message): """ Show messages in the main window message area """ if message_type == Gtk.MessageType.INFO: self.message.show_info(markup=message) elif message_type == Gtk.MessageType.ERROR: self.message.show_error(_('Playlist export failed!'), message) return True dialog = dialogs.PlaylistExportDialog(page.playlist, self.window) dialog.connect('message', on_message) dialog.show() def on_playlist_utilities_bar_visible_toggled(self, checkmenuitem): """ Shows or hides the playlist utilities bar """ settings.set_option('gui/playlist_utilities_bar_visible', checkmenuitem.get_active()) def on_show_playing_track_item_activate(self, menuitem): """ Tries to show the currently playing track """ self.playlist_container.show_current_track() def on_about_item_activate(self, menuitem): """ Shows the about dialog """ dialog = dialogs.AboutDialog(self.window) dialog.show() def on_playback_resume(self, type, player, data): self.resuming = True def on_playback_start(self, type, player, object): """ Called when playback starts Sets the currently playing track visible in the currently selected playlist if the user has chosen this setting """ if self.resuming: self.resuming = False return self._update_track_information() self.playpause_button.set_image(self.pause_image) self.playpause_button.set_tooltip_text(_('Pause Playback')) def on_playback_end(self, type, player, object): """ Called when playback ends """ self.window.set_title('Exaile') self.playpause_button.set_image(self.play_image) self.playpause_button.set_tooltip_text(_('Start Playback')) def _on_option_set(self, name, object, option): """ Handles changes of settings """ if option == 'gui/main_window_title_format': self.title_formatter.props.format = settings.get_option( option, self.title_formatter.props.format) elif option == 'gui/use_tray': usetray = settings.get_option(option, False) if self.controller.tray_icon and not usetray: self.controller.tray_icon.destroy() self.controller.tray_icon = None elif not self.controller.tray_icon and usetray: self.controller.tray_icon = tray.TrayIcon(self) elif option == 'gui/show_info_area': self.info_area.set_no_show_all(False) if settings.get_option(option, True): self.info_area.show_all() else: self.info_area.hide() self.info_area.set_no_show_all(True) elif option == 'gui/show_info_area_covers': cover = self.info_area.cover cover.set_no_show_all(False) if settings.get_option(option, True): cover.show_all() else: cover.hide() cover.set_no_show_all(True) elif option == 'gui/transparency': self._update_alpha() def _on_volume_key(self, is_up): diff = int(100 * settings.get_option('gui/volue_key_step_size', VOLUME_STEP_DEFAULT)) if not is_up: diff = -diff player.PLAYER.modify_volume(diff) return True def _on_seek_key(self, is_forward): diff = settings.get_option('gui/seek_key_step_size', SEEK_STEP_DEFAULT) if not is_forward: diff = -diff if player.PLAYER.current: player.PLAYER.modify_time(diff) self.progress_bar.update_progress() return True def _on_prev_tab_key(self, *e): self.playlist_container.get_current_notebook().select_prev_tab() return True def _on_next_tab_key(self, *e): self.playlist_container.get_current_notebook().select_next_tab() return True def _on_playpause_button(self, *e): self.playpause() return True def _on_focus_playlist_tab(self, tab_nr): self.playlist_container.get_current_notebook().focus_tab(tab_nr) return True def _on_focus_playlist_container(self, *_e): self.playlist_container.focus() return True def _update_track_information(self): """ Sets track information """ track = player.PLAYER.current if not track: return self.window.set_title(self.title_formatter.format(track)) def playpause(self): """ Pauses the playlist if it is playing, starts playing if it is paused. If stopped, try to start playing the next suitable track. """ if player.PLAYER.is_paused() or player.PLAYER.is_playing(): player.PLAYER.toggle_pause() else: pl = self.get_selected_page() player.QUEUE.set_current_playlist(pl.playlist) try: trackpath = pl.view.get_selected_paths()[0] pl.playlist.current_position = trackpath[0] except IndexError: pass player.QUEUE.play(track=pl.playlist.current) def _setup_position(self): """ Sets up the position and sized based on the size the window was when it was last moved or resized """ if settings.get_option('gui/mainw_maximized', False): self.window.maximize() width = settings.get_option('gui/mainw_width', 500) height = settings.get_option('gui/mainw_height', 475) x = settings.get_option('gui/mainw_x', 10) y = settings.get_option('gui/mainw_y', 10) self.window.move(x, y) self.window.resize(width, height) pos = settings.get_option('gui/mainw_sash_pos', 200) self.splitter.set_position(pos) def on_delete_event(self, *e): """ Called when the user attempts to close the window """ sash_pos = self.splitter.get_position() if sash_pos > 10: settings.set_option('gui/mainw_sash_pos', sash_pos) if settings.get_option('gui/use_tray', False) and \ settings.get_option('gui/close_to_tray', False): self.window.hide() else: self.quit() return True def quit(self, *e): """ Quits Exaile """ self.window.hide() GLib.idle_add(self.controller.exaile.quit) return True def on_restart_item_activate(self, menuitem): """ Restarts Exaile """ self.window.hide() GLib.idle_add(self.controller.exaile.quit, True) def toggle_visible(self, bringtofront=False): """ Toggles visibility of the main window """ toggle_handled = self.emit('main-visible-toggle') if not toggle_handled: if bringtofront and self.window.is_active() or \ not bringtofront and self.window.get_property('visible'): self.window.hide() else: # the ordering for deiconify/show matters -- if this gets # switched, then the minimization detection breaks self.window.deiconify() self.window.show() def configure_event(self, *e): """ Called when the window is resized or moved """ # Don't save window size if it is maximized or fullscreen. if settings.get_option('gui/mainw_maximized', False) or \ self._fullscreen: return False (width, height) = self.window.get_size() if [width, height] != [ settings.get_option("gui/mainw_"+key, -1) for \ key in ["width", "height"] ]: settings.set_option('gui/mainw_height', height, save=False) settings.set_option('gui/mainw_width', width, save=False) (x, y) = self.window.get_position() if [x, y] != [ settings.get_option("gui/mainw_"+key, -1) for \ key in ["x", "y"] ]: settings.set_option('gui/mainw_x', x, save=False) settings.set_option('gui/mainw_y', y, save=False) return False def window_state_change_event(self, window, event): """ Saves the current maximized and fullscreen states and minimizes to tray if requested """ if event.changed_mask & Gdk.WindowState.MAXIMIZED: settings.set_option('gui/mainw_maximized', bool(event.new_window_state & Gdk.WindowState.MAXIMIZED)) if event.changed_mask & Gdk.WindowState.FULLSCREEN: self._fullscreen = bool(event.new_window_state & Gdk.WindowState.FULLSCREEN) self.notify('is-fullscreen') # detect minimization state changes prev_minimized = self.minimized if not self.minimized: if event.changed_mask & Gdk.WindowState.ICONIFIED and \ not event.changed_mask & Gdk.WindowState.WITHDRAWN and \ event.new_window_state & Gdk.WindowState.ICONIFIED and \ not event.new_window_state & Gdk.WindowState.WITHDRAWN and \ not self.window_state & Gdk.WindowState.ICONIFIED: self.minimized = True else: if event.changed_mask & Gdk.WindowState.WITHDRAWN and \ not event.new_window_state & (Gdk.WindowState.WITHDRAWN): #and \ self.minimized = False # track this self.window_state = event.new_window_state if settings.get_option('gui/minimize_to_tray', False): # old code to detect minimization # -> it must have worked at some point, perhaps this is a GTK version # specific set of behaviors? Current code works now on 2.24.17 #if wm_state is not None: # if '_NET_WM_STATE_HIDDEN' in wm_state[2]: # show tray # window.hide #else # destroy tray if self.minimized != prev_minimized and self.minimized == True: if not settings.get_option('gui/use_tray', False) and \ self.controller.tray_icon is None: self.controller.tray_icon = tray.TrayIcon(self) window.hide() elif not settings.get_option('gui/use_tray', False) and \ self.controller.tray_icon is not None: self.controller.tray_icon.destroy() self.controller.tray_icon = None return False def get_selected_page(self): """ Returns the currentry displayed playlist notebook page """ return self.playlist_container.get_current_tab() def get_selected_playlist(self): try: page = self.get_selected_page() except AttributeError: return None if not isinstance(page, PlaylistPage): return None return page class MainWindowTrackInfoPane(info.TrackInfoPane, providers.ProviderHandler): """ Extends the regular track info pane by an area for custom widgets The mainwindow-info-area-widget provider is used to show widgets on the right of the info area. They should be small. The registered provider should provide a method 'create_widget' that takes the info area instance as a parameter, and that returns a Gtk.Widget to be inserted into the widget_area of the info area, and an attribute 'name' that will be used when removing the provider. """ def __init__(self, player): info.TrackInfoPane.__init__(self, player) self.__player = player self.widget_area = Gtk.Box() self.get_child().pack_start(self.widget_area, False, False, 0) self.__widget_area_widgets = {} # call this last if we're using simple_init=True providers.ProviderHandler.__init__(self, 'mainwindow-info-area-widget', target=player, simple_init=True) def get_player(self): ''' Retrieves the player object that this info area is associated with ''' return self._TrackInfoPane__player def on_provider_added(self, provider): name = provider.name widget = provider.create_widget(self) old_widget = self.__widget_area_widgets.get(name) if old_widget is not None: self.widget_area.remove(old_widget) old_widget.destroy() self.__widget_area_widgets[name] = widget self.widget_area.pack_start(widget, False, False, 0) widget.show_all() def on_provider_removed(self, provider): widget = self.__widget_area_widgets.pop(provider.name, None) if widget is not None: self.widget_area.remove(widget) widget.destroy() def get_playlist_container(): return MainWindow._mainwindow.playlist_container def get_playlist_notebook(): '''Retrieves the primary playlist notebook''' return MainWindow._mainwindow.playlist_container.notebooks[0] def get_selected_page(): return MainWindow._mainwindow.get_selected_page() def get_selected_playlist(): return MainWindow._mainwindow.get_selected_playlist() def mainwindow(): return MainWindow._mainwindow # vim: et sts=4 sw=4
gpl-2.0
-6,720,579,076,938,104,000
35.930918
105
0.589593
false
3.948212
false
false
false
amw2104/fireplace
fireplace/cards/classic/paladin.py
1
2853
from ..utils import * ## # Hero Powers # Reinforce (Uther Lightbringer) class CS2_101: activate = Summon(CONTROLLER, "CS2_101t") # Reinforce (Uther Skin 1) class CS2_101_H1: activate = CS2_101.activate ## # Minions # Guardian of Kings class CS2_088: play = Heal(FRIENDLY_HERO, 6) # Argent Protector class EX1_362: play = GiveDivineShield(TARGET) # Aldor Peacekeeper class EX1_382: play = Buff(TARGET, "EX1_382e") class EX1_382e: atk = SET(1) # Tirion Fordring class EX1_383: deathrattle = Summon(CONTROLLER, "EX1_383t") ## # Spells # Blessing of Might class CS2_087: play = Buff(TARGET, "CS2_087e") CS2_087e = buff(atk=3) # Holy Light class CS2_089: play = Heal(TARGET, 6) # Blessing of Kings class CS2_092: play = Buff(TARGET, "CS2_092e") CS2_092e = buff(+4, +4) # Consecration class CS2_093: play = Hit(ENEMY_CHARACTERS, 2) # Hammer of Wrath class CS2_094: play = Hit(TARGET, 3), Draw(CONTROLLER) # Divine Favor class EX1_349: play = DrawUntil(CONTROLLER, Count(ENEMY_HAND)) # Lay on Hands class EX1_354: play = Heal(TARGET, 8), Draw(CONTROLLER) * 3 # Blessed Champion class EX1_355: play = Buff(TARGET, "EX1_355e") class EX1_355e: atk = lambda self, i: i * 2 # Humility class EX1_360: play = Buff(TARGET, "EX1_360e") class EX1_360e: atk = SET(1) # Blessing of Wisdom class EX1_363: play = Buff(TARGET, "EX1_363e") class EX1_363e: events = Attack(OWNER).on(Draw(CONTROLLER)) # Blessing of Wisdom (Unused) class EX1_363e2: events = Attack(OWNER).on(Draw(OWNER_OPPONENT)) # Holy Wrath class EX1_365: play = Draw(CONTROLLER).then(Hit(TARGET, COST(Draw.CARD))) # Hand of Protection class EX1_371: play = GiveDivineShield(TARGET) # Avenging Wrath class EX1_384: def play(self): count = self.controller.get_spell_damage(8) yield Hit(RANDOM_ENEMY_CHARACTER, 1) * count # Equality class EX1_619: play = Buff(ALL_MINIONS, "EX1_619e") class EX1_619e: max_health = SET(1) ## # Secrets # Noble Sacrifice class EX1_130: secret = Attack(ENEMY_MINIONS).on(FULL_BOARD | ( Reveal(SELF), Retarget(Attack.ATTACKER, Summon(CONTROLLER, "EX1_130a")) )) # Eye for an Eye class EX1_132: secret = Damage(FRIENDLY_HERO).on( Reveal(SELF), Hit(ENEMY_HERO, Damage.AMOUNT) ) # Redemption class EX1_136: secret = Death(FRIENDLY + MINION).on(FULL_BOARD | ( Reveal(SELF), Summon(CONTROLLER, Copy(Death.ENTITY)).then(SetCurrentHealth(Summon.CARD, 1)) )) # Repentance class EX1_379: secret = Play(OPPONENT, MINION | HERO).after( Reveal(SELF), Buff(Play.CARD, "EX1_379e") ) class EX1_379e: max_health = SET(1) ## # Weapons # Truesilver Champion class CS2_097: events = Attack(FRIENDLY_HERO).on(Heal(FRIENDLY_HERO, 2)) # Sword of Justice class EX1_366: events = Summon(CONTROLLER, MINION).after( Buff(Summon.CARD, "EX1_366e"), Hit(SELF, 1) ) EX1_366e = buff(+1, +1)
agpl-3.0
-3,566,954,898,071,706,600
14.256684
79
0.685594
false
2.196305
false
false
false
renyi533/tensorflow
tensorflow/python/keras/mixed_precision/experimental/policy.py
1
25763
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the Policy class for mixed precision training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import six from tensorflow.python.framework import dtypes from tensorflow.python.keras import backend from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.keras.mixed_precision.experimental import device_compatibility_check from tensorflow.python.keras.mixed_precision.experimental import loss_scale as keras_loss_scale_module from tensorflow.python.keras.utils import generic_utils from tensorflow.python.platform import tf_logging from tensorflow.python.training.experimental import mixed_precision_global_state from tensorflow.python.util.tf_export import keras_export # Default value of certain arguments, indicating the default behavior for # that argument should be used. USE_DEFAULT = 'USE_DEFAULT' @keras_export('keras.mixed_precision.experimental.Policy') class Policy(object): """A dtype policy for a Keras layer. A dtype policy determines dtype-related aspects of a layer, such as its computation and variable dtypes. Each layer has a policy. Policies can be passed to the `dtype` argument of layer constructors, or a global policy can be set with `tf.keras.mixed_precision.experimental.set_policy`. A layer will default to the global policy if no policy is passed to it's constructor. For many models, each layer's policy will have the same compute dtype and variable dtype, which will typically be float32. In this case, we refer to the singular dtype as the layer's dtype, which can be queried by the property `tf.keras.layers.Layer.dtype`. When mixed precision training is used, most layers will instead have a float16 or bfloat16 compute dtype and a float32 variable dtype, and so the layer does not have a single dtype. When the variable dtype does not match the compute dtype, variables will be automatically casted to the compute dtype to avoid type errors. In this case, `tf.keras.layers.Layer.dtype` refers to the variable dtype, not the compute dtype. See [the mixed precision guide](https://www.tensorflow.org/guide/keras/mixed_precision) for more information on how to use mixed precision. Certain policies also have a `tf.mixed_precision.experimental.LossScale` instance, which is used by `tf.keras.Model`s to performance loss scaling. Loss scaling is a technique used with mixed precision to avoid numerical underflow in float16 gradients. Loss scaling is only done by Models in `Model.fit`, `Model.train_on_batch`, and similar methods. Layers which are not Models ignore the loss scale. Policies are constructed by passing a string to the constructor, e.g. `tf.keras.mixed_precision.experimental.Policy('float32')`. The string determines the compute and variable dtypes. It can be one of the following: * Any dtype name, such as 'float32' or 'float64'. Both the variable and compute dtypes will be that dtype. No loss scaling is done by default. * 'mixed_float16' or 'mixed_bfloat16': The compute dtype is float16 or bfloat16, while the variable dtype is float32. These policies are used for mixed precision training. With 'mixed_float16', a dynamic loss scale is used by default. 'mixed_bfloat16' does no loss scaling by default, as loss scaling is unnecessary with bfloat16. ### How to use mixed precision in a Keras model To use mixed precision in a Keras model, the `'mixed_float16'` or `'mixed_bfloat16'` policy can be used. `tf.keras.mixed_precision.experimental.set_policy` can be used to set the default policy for layers if no policy is passed to them. For example: >>> tf.keras.mixed_precision.experimental.set_policy('mixed_float16') >>> model = tf.keras.models.Sequential([ ... tf.keras.layers.Input((100,)), ... # Dense layers use global policy of 'mixed_float16', which does ... # computations in float16 while keeping variables in float32. ... tf.keras.layers.Dense(10), ... tf.keras.layers.Dense(10), ... # Softmax should be done in float32 for numeric stability. We pass ... # dtype='float32' to use float32 instead of the global policy. ... tf.keras.layers.Activation('softmax', dtype='float32') ... ]) Alternatively, the policy can be passed to individual layers instead of setting the global policy with `set_policy`: >>> policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16') >>> model = tf.keras.models.Sequential([ ... tf.keras.layers.Input((100,)), ... tf.keras.layers.Dense(10, dtype=policy), ... tf.keras.layers.Dense(10, dtype=policy), ... # Softmax should be done in float32 for numeric stability. ... tf.keras.layers.Activation('softmax', dtype='float32') ... ]) Note the `'mixed_float16'` policy will apply loss scaling by default in `Model.fit`, `Model.train_on_batch`, and other training methods. If no such method is used (e.g., a custom training loop is used) and `'mixed_float16'` is used, the loss scale must be manually applied. See `tf.keras.mixed_precision.experimental.LossScaleOptimizer` for details. For `'mixed_bfloat16'`, no loss scaling is done and loss scaling never needs to be manually applied. See [the mixed precision guide](https://www.tensorflow.org/guide/keras/mixed_precision) for more information on using mixed precision ### How to use float64 in a Keras model Using float64 is similar to mixed precision. Either the global policy can be set to float64, or `dtype='float64'` can be passed to individual layers. For example, to set the global policy: >>> tf.keras.mixed_precision.experimental.set_policy('float64') >>> model = tf.keras.models.Sequential([ ... tf.keras.layers.Input((100,)), ... # All layers use global policy of 'float64', which does computations ... # and creates variables in float64. ... tf.keras.layers.Dense(10), ... tf.keras.layers.Dense(10), ... tf.keras.layers.Activation('softmax') ... ]) >>> # Optionaly set policy back to float32 if any other models use float32 >>> tf.keras.mixed_precision.experimental.set_policy('float32') ### How a layer uses its policy's compute dtype A layer will cast its inputs to its compute dtype in TensorFlow 2. For example: >>> x = tf.ones((4, 4, 4, 4), dtype='float64') >>> # `layer`'s policy defaults to float32. >>> layer = tf.keras.layers.Conv2D(filters=4, kernel_size=2) >>> # `layer` casts it's inputs to its compute dtype, which is float32, and >>> # does computations in float32. >>> y = layer(x) >>> y.dtype tf.float32 Note that the base `tf.keras.layers.Layer` class inserts the casts. If subclassing your own layer, you do not have to insert any casts. Currently, only tensors in the first argument to the layer's `call` method are casted. For example: >>> class MyLayer(tf.keras.layers.Layer): ... # Bug! `b` will not be casted. ... def call(self, a, b): ... return a + 1., b + 1. >>> a = tf.constant(1., dtype="float32") >>> b = tf.constant(1., dtype="float32") >>> layer = MyLayer(dtype="float64") >>> x, y = layer(a, b) >>> x.dtype tf.float64 >>> y.dtype tf.float32 If writing your own layer, it is recommended to accept tensors only in the first argument. This way, all tensors are casted to the layer's compute dtype. `MyLayer` should therefore be written as: >>> class MyLayer(tf.keras.layers.Layer): ... # Now, all tensor inputs will be casted. ... def call(self, inputs): ... a, b = inputs ... return a + 1., b + 1. >>> a = tf.constant(1., dtype="float32") >>> b = tf.constant(1., dtype="float32") >>> layer = MyLayer(dtype="float64") >>> x, y = layer((a, b)) >>> x.dtype tf.float64 >>> y.dtype tf.float64 Other arguments are not automatically casted for technical reasons, but this may change in a future minor release. A layer subclass can prevent its inputs from being autocasted by passing `autocast=False` to the layer constructor. For example: >>> class NonAutoCastingLayer(tf.keras.layers.Layer): ... def __init__(self, **kwargs): ... kwargs['autocast'] = False ... super(NonAutoCastingLayer, self).__init__(**kwargs) ... def call(self, inp): ... return inp >>> x = tf.ones((4, 4, 4, 4), dtype='float32') >>> layer = NonAutoCastingLayer(dtype='float64') >>> y = layer(x) # Will not cast inputs to it's compute dtype of float64 >>> y.dtype tf.float32 ### How a layer uses its policy's variable dtype The default dtype of variables created by `tf.keras.layers.Layer.add_weight` is the layer's policy's variable dtype. If a layer's compute and variable dtypes differ, `add_weight` will wrap floating-point variables with a special wrapper called an `AutoCastVariable`. This wrapper is identical to the original variable except it casts itself to the layer's compute dtype when used within `Layer.call`. Outside `Layer.call`, the variable is not casted. A layer author can prevent a variable from being wrapped with an `AutoCastVariable` by passing `experimental_autocast=False` to `add_weight`: >>> class MyLayer(tf.keras.layers.Layer): ... def build(self, input_shape): ... self.x = self.add_weight('x') ... self.y = self.add_weight('y', experimental_autocast=False) >>> policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16') >>> layer = MyLayer(dtype=policy) >>> layer.build((2, 2)) >>> layer.x <AutoCastVariable 'x:0' shape=() dtype=float32 true_dtype=float32, numpy=...> >>> layer.y <tf.Variable 'y:0' shape=() dtype=float32, numpy=...> Passing `experimental_autocast=False` is useful for layers which may internally do some math in the variable dtype instead of the compute dtype. For example, you may wish to compute variable statistics, such as mean and variance, in the variable dtype. ### How to write a layer that supports mixed precision and float64. For the most part, layers will automatically support mixed precision and float64 without any additional work, due to the fact the base layer automatically casts inputs, creates variables of the correct type, and in the case of mixed precision, wraps variables with `AutoCastVariables`. For example, this simple dense layer does not require any additional work to support mixed precision or float64. Keras automatically casts the inputs and variable to the appropriate dtype. >>> class MyDense(tf.keras.layers.Layer): ... def build(self, input_shape): ... self.kernel = self.add_weight('kernel', (input_shape[-1], 10)) ... def call(self, inputs): ... return tf.matmul(inputs, self.kernel) >>> policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16') >>> layer = MyDense(dtype=policy) >>> x = np.random.rand(10, 10) >>> y = layer(x) >>> y.dtype tf.float16 The primary case where you need extra work to support mixed precision or float64 is when you create a new tensor, such as with `tf.ones` or `tf.constant`. In such cases, you must create the tensor of the correct dtype. For example, suppose you modify the `MyDense` layer to add a random number to the output using `tf.random.normal`. You must pass the input dtype to `tf.random.normal` to ensure the dtypes match. >>> class MyDense(tf.keras.layers.Layer): ... def build(self, input_shape): ... self.kernel = self.add_weight('kernel', (input_shape[-1], 10)) ... def call(self, inputs): ... rand = tf.random.normal(shape=inputs.shape, dtype=inputs.dtype) ... return tf.matmul(inputs, self.kernel) + rand >>> >>> layer = MyDense(dtype=policy) >>> y = layer(x) >>> y.dtype tf.float16 If you did not pass `dtype=inputs.dtype` to `tf.random.normal`, a `TypeError` would have occurred. This is because the dtype defaults to `"float32"`, so the layer would only work if the inputs were float32. ### The deprecated "infer" policy In addition to the above mentioned policies, a policy can also be "infer". This Policy is deprecated, and it is not recommended. When a layer has an infer policy, it will infer the computation and variable dtype from the first input the first time the layer is called. Once the layer is called for the first time, the layer's policy will change to the dtype of the first input. In TensorFlow 1, only the "infer" policy is available. """ def __init__(self, name, loss_scale=USE_DEFAULT): """Constructs the policy. The `name` argument determines the compute and variable dtype, the default loss scale, and has no additional effect on the Policy. The compute and variable dtypes can only be specified through `name`, and cannot be specified directly. Args: name: A string. Can be one of the following values: * Any dtype name, such as 'float32' or 'float64'. Both the variable and compute dtypes will be that dtype. * 'mixed_float16' or 'mixed_bfloat16': The compute dtype is float16 or bfloat16, while the variable dtype is float32. With 'mixed_float16', a dynamic loss scale is used. These policies are used for mixed precision training. * 'infer' (deprecated): Infer the compute and variable dtype from the input dtype. loss_scale: A `tf.mixed_precision.experimental.LossScale`, an int (which uses a `FixedLossScale`), or the string "dynamic" (which uses a `DynamicLossScale`). Defaults to using no loss scaling unless `name` is "mixed_float16", in which case this defaults to "dynamic". Only `tf.keras.Model`s, not layers, use the loss scale, and it is only used during `Model.fit`, `Model.train_on_batch`, and other similar methods. """ if isinstance(name, dtypes.DType): raise TypeError("'name' must be a string, not a DType. " "Instead, pass DType.name. Got: %s" % (name.name,)) elif not isinstance(name, six.string_types): raise TypeError("'name' must be a string, but got: %s" % (name,)) self._name = name self._compute_dtype, self._variable_dtype = self._parse_name(name) if loss_scale == USE_DEFAULT: loss_scale = 'dynamic' if name == 'mixed_float16' else None self._using_default_loss_scale = True else: self._using_default_loss_scale = False if loss_scale and self._compute_dtype not in (None, 'float16'): tf_logging.warn('Creating a Policy with a loss scale is only useful for ' 'float16 policies. You passed loss_scale=%r for policy ' '%s. Consider not passing any loss_scale instead.' % (loss_scale, name)) self._loss_scale = keras_loss_scale_module.get(loss_scale) if name in ('mixed_float16', 'mixed_bloat16'): device_compatibility_check.log_device_compatibility_check(name) def _parse_name(self, name): """Parses a Policy name into a compute and variable dtype. Args: name: The name of the policy: Returns: The (compute_dtype, variable_dtype) pair. """ if name.endswith('_float32_vars'): error_msg = ('Policies ending in \'_float32_vars\' have been removed ' 'from TensorFlow.') if name in ('infer_float32_vars', 'infer_with_float32_vars'): error_msg += (' Please use the \'mixed_float16\' or \'mixed_bfloat16\' ' 'policy instead.') elif name == 'float16_with_float32_vars': error_msg += (' Please use the \'mixed_float16\' policy instead.') elif name == 'bfloat16_with_float32_vars': error_msg += (' Please use the \'mixed_bfloat16\' policy instead.') error_msg += ' Got policy name: \'%s\'' % name raise ValueError(error_msg) if name == 'mixed_float16': return 'float16', 'float32' elif name == 'mixed_bfloat16': return 'bfloat16', 'float32' elif name == 'infer': return None, None try: dtype = dtypes.as_dtype(name).name except TypeError: error = ("Cannot convert value %s to a mixed precision Policy. " "Valid policies include include 'mixed_float16', " "'mixed_bfloat16', and the name of any dtype such as " "'float32'." % (name,)) # six.raise_from suppresses the original TypeError from being raised six.raise_from(ValueError(error), None) return dtype, dtype @property def variable_dtype(self): """The variable dtype of this policy. This is the dtype layers will create their variables in, unless a layer explicitly chooses a different dtype. If this is different than `Policy.compute_dtype`, Layers will cast variables to the compute dtype to avoid type errors. Returns: The variable dtype of this policy, or None if the variable dtype should be inferred from the inputs. """ return self._variable_dtype @property def compute_dtype(self): """The compute dtype of this policy. This is the dtype layers will do their computations in. Note that even if the compute dtype is float16 or bfloat16, hardware devices may not do individual adds, multiplies, and other fundamental operations in [b]float16, but instead may do some of them in float32 for numeric stability. The compute dtype is the dtype of the inputs and outputs of the TensorFlow ops that the layer executes. Internally, many TensorFlow ops will do certain internal calculations in float32, or some other device-internal intermediate format with higher precision than [b]float16, to increase numeric stability. For example, a `tf.keras.layers.Dense` layer, when run on a GPU with a float16 compute dtype, will pass float16 inputs to tf.matmul. But, tf.matmul will do use float32 intermediate math. The performance benefit of float16 is still apparent, due to increased memory bandwidth and the fact modern GPUs have specialized hardware for computing matmuls on float16 while still keeping intermediate computations in float32. Returns: The compute dtype of this policy, or None if the compute dtype should be inferred from the inputs. """ return self._compute_dtype @property def should_cast_variables(self): """Returns True if variables should be casted. This is true if the variable dtype is not the same as the compute dtype. Returns: True, if variables should be casted. """ return self.variable_dtype != self.compute_dtype @property def loss_scale(self): """Returns the loss scale of this Policy. Returns: A `tf.mixed_precision.experimental.LossScale`, or None. """ return self._loss_scale @property def name(self): """Returns the name of this policy.""" return self._name def __repr__(self): return '<Policy "%s", loss_scale=%s>' % (self._name, self.loss_scale) def get_config(self): config = { 'name': self.name } if not self._using_default_loss_scale: # We only include the loss scale if the default loss scale is not used. # This allows us to change the loss scale config format without breaking # users who use the default loss scale. config['loss_scale'] = keras_loss_scale_module.serialize(self.loss_scale) return config @classmethod def from_config(cls, config, custom_objects=None): if 'loss_scale' in config and isinstance(config['loss_scale'], dict): config = config.copy() config['loss_scale'] = keras_loss_scale_module.deserialize( config['loss_scale'], custom_objects=custom_objects) return cls(**config) # The current global policy in effect. If None, it means the current value of # floatx should be used as the policy if the V2 dtype behavior is enabled, # or "infer" otherwise. # TODO(reedwm): Make this thread local? _global_policy = None @keras_export('keras.mixed_precision.experimental.global_policy') def global_policy(): """Returns the global Policy. The global policy is the default policy used for layers, if no policy is passed to the layer constructor. If no policy has been set with `keras.mixed_precision.experimental.set_policy`, this will return a policy constructed from `tf.keras.backend.floatx()` in TensorFlow 2 (floatx defaults to float32), or an "infer" policy in TensorFlow 1. See `keras.mixed_precision.experimental.Policy` for more information. Returns: The global Policy. """ if _global_policy is None: if base_layer_utils.v2_dtype_behavior_enabled(): return Policy(backend.floatx()) else: return Policy('infer') return _global_policy def policy_defaults_to_floatx(): """Returns True if `global_policy()` will use the current value of floatx.""" return _global_policy is None and base_layer_utils.v2_dtype_behavior_enabled() def _check_if_mixed_precision_graph_rewrite_is_enabled(): # TODO(reedwm): Update this comment once the Keras API is complete. if mixed_precision_global_state.mixed_precision_graph_rewrite_is_enabled: raise ValueError( 'The mixed precision policy cannot be set, because the mixed ' 'precision graph rewrite has already been enabled.\n' 'At most, one of the following functions can be called:\n\n' ' 1. tf.train.experimental.enable_mixed_precision_graph_rewrite() ' '(You called this first)\n' ' 2. tf.keras.mixed_precision.experimental.set_policy() (You called ' 'this second)\n\n' 'You called both functions, which is an error, because both functions ' 'enable you to use mixed precision. If in doubt which function to use, ' 'use the second, as it supports Eager execution and is more ' 'customizable.') @keras_export('keras.mixed_precision.experimental.set_policy') def set_policy(policy): """Sets the global Policy. The global policy is the default policy used for layers, if no policy is passed to the layer constructor. If no global policy is set, layers will instead default to a Policy constructed from `tf.keras.backend.floatx()` in TensorFlow 2. In TensorFlow 1, layers default to an "infer" policy. See `keras.mixed_precision.experimental.Policy` for more information. Args: policy: A Policy, or a string that will be converted to a Policy.. """ global _global_policy _check_if_mixed_precision_graph_rewrite_is_enabled() if policy is not None and not isinstance(policy, Policy): policy = Policy(policy) if (policy and not base_layer_utils.v2_dtype_behavior_enabled() and policy.compute_dtype): raise ValueError( 'The global policy can only be set to a non-infer policy in TensorFlow ' '2') _global_policy = policy mixed_precision_global_state.using_default_mixed_precision_policy = ( _global_policy is None) # TODO(reedwm): Make this thread local @contextlib.contextmanager def policy_scope(policy): """A context manager that sets the global Policy under it. Args: policy: A Policy, or a string that will be converted to a Policy.. Yields: Nothing. """ old_policy = _global_policy try: set_policy(policy) yield finally: set_policy(old_policy) def _is_convertible_to_dtype(dtype): try: dtypes.as_dtype(dtype) return True except TypeError: return False def _policy_equivalent_to_dtype(policy): """Returns True if the Policy is equivalent to a single dtype. A policy is equivalent to a single dtype if the policy's compute and variable dtypes are the same and the policy does not cause the layer/model to have additional behavior, such as loss scaling. The "infer" policy is considered equivalent to a single dtype. Args: policy: A Policy. Returns: True, if the policy is equivalent to a single dtype. """ # We use type() instead of isinstance because a sublcass of Policy is never # equivalent to a dtype. return (type(policy) == Policy and # pylint: disable=unidiomatic-typecheck list(policy.get_config().keys()) == ['name'] and (policy.name == 'infer' or _is_convertible_to_dtype(policy.name))) def serialize(policy): if _policy_equivalent_to_dtype(policy): # We return either None or the policy name for compatibility with older # versions of Keras. If the policy name is returned, it is a dtype string # such as 'float32'. return None if policy.name == 'infer' else policy.name return generic_utils.serialize_keras_object(policy) def deserialize(config, custom_objects=None): if isinstance(config, str) and _is_convertible_to_dtype(config): return Policy(config) if config is None: return Policy('infer') module_objects = {'Policy': Policy} return generic_utils.deserialize_keras_object( config, module_objects=module_objects, custom_objects=custom_objects, printable_module_name='dtype policy')
apache-2.0
4,548,425,901,872,756,700
39.958665
102
0.695843
false
3.929083
true
false
false
googleapis/googleapis-gen
google/cloud/networkmanagement/v1/networkmanagement-v1-py/google/cloud/network_management_v1/services/reachability_service/transports/grpc.py
1
21150
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers # type: ignore from google.api_core import operations_v1 # type: ignore from google.api_core import gapic_v1 # type: ignore import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.network_management_v1.types import connectivity_test from google.cloud.network_management_v1.types import reachability from google.longrunning import operations_pb2 # type: ignore from .base import ReachabilityServiceTransport, DEFAULT_CLIENT_INFO class ReachabilityServiceGrpcTransport(ReachabilityServiceTransport): """gRPC backend transport for ReachabilityService. The Reachability service in the Google Cloud Network Management API provides services that analyze the reachability within a single Google Virtual Private Cloud (VPC) network, between peered VPC networks, between VPC and on-premises networks, or between VPC networks and internet hosts. A reachability analysis is based on Google Cloud network configurations. You can use the analysis results to verify these configurations and to troubleshoot connectivity issues. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__(self, *, host: str = 'networkmanagement.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel(cls, host: str = 'networkmanagement.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def list_connectivity_tests(self) -> Callable[ [reachability.ListConnectivityTestsRequest], reachability.ListConnectivityTestsResponse]: r"""Return a callable for the list connectivity tests method over gRPC. Lists all Connectivity Tests owned by a project. Returns: Callable[[~.ListConnectivityTestsRequest], ~.ListConnectivityTestsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'list_connectivity_tests' not in self._stubs: self._stubs['list_connectivity_tests'] = self.grpc_channel.unary_unary( '/google.cloud.networkmanagement.v1.ReachabilityService/ListConnectivityTests', request_serializer=reachability.ListConnectivityTestsRequest.serialize, response_deserializer=reachability.ListConnectivityTestsResponse.deserialize, ) return self._stubs['list_connectivity_tests'] @property def get_connectivity_test(self) -> Callable[ [reachability.GetConnectivityTestRequest], connectivity_test.ConnectivityTest]: r"""Return a callable for the get connectivity test method over gRPC. Gets the details of a specific Connectivity Test. Returns: Callable[[~.GetConnectivityTestRequest], ~.ConnectivityTest]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'get_connectivity_test' not in self._stubs: self._stubs['get_connectivity_test'] = self.grpc_channel.unary_unary( '/google.cloud.networkmanagement.v1.ReachabilityService/GetConnectivityTest', request_serializer=reachability.GetConnectivityTestRequest.serialize, response_deserializer=connectivity_test.ConnectivityTest.deserialize, ) return self._stubs['get_connectivity_test'] @property def create_connectivity_test(self) -> Callable[ [reachability.CreateConnectivityTestRequest], operations_pb2.Operation]: r"""Return a callable for the create connectivity test method over gRPC. Creates a new Connectivity Test. After you create a test, the reachability analysis is performed as part of the long running operation, which completes when the analysis completes. If the endpoint specifications in ``ConnectivityTest`` are invalid (for example, containing non-existent resources in the network, or you don't have read permissions to the network configurations of listed projects), then the reachability result returns a value of ``UNKNOWN``. If the endpoint specifications in ``ConnectivityTest`` are incomplete, the reachability result returns a value of AMBIGUOUS. For more information, see the Connectivity Test documentation. Returns: Callable[[~.CreateConnectivityTestRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'create_connectivity_test' not in self._stubs: self._stubs['create_connectivity_test'] = self.grpc_channel.unary_unary( '/google.cloud.networkmanagement.v1.ReachabilityService/CreateConnectivityTest', request_serializer=reachability.CreateConnectivityTestRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['create_connectivity_test'] @property def update_connectivity_test(self) -> Callable[ [reachability.UpdateConnectivityTestRequest], operations_pb2.Operation]: r"""Return a callable for the update connectivity test method over gRPC. Updates the configuration of an existing ``ConnectivityTest``. After you update a test, the reachability analysis is performed as part of the long running operation, which completes when the analysis completes. The Reachability state in the test resource is updated with the new result. If the endpoint specifications in ``ConnectivityTest`` are invalid (for example, they contain non-existent resources in the network, or the user does not have read permissions to the network configurations of listed projects), then the reachability result returns a value of UNKNOWN. If the endpoint specifications in ``ConnectivityTest`` are incomplete, the reachability result returns a value of ``AMBIGUOUS``. See the documentation in ``ConnectivityTest`` for for more details. Returns: Callable[[~.UpdateConnectivityTestRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'update_connectivity_test' not in self._stubs: self._stubs['update_connectivity_test'] = self.grpc_channel.unary_unary( '/google.cloud.networkmanagement.v1.ReachabilityService/UpdateConnectivityTest', request_serializer=reachability.UpdateConnectivityTestRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['update_connectivity_test'] @property def rerun_connectivity_test(self) -> Callable[ [reachability.RerunConnectivityTestRequest], operations_pb2.Operation]: r"""Return a callable for the rerun connectivity test method over gRPC. Rerun an existing ``ConnectivityTest``. After the user triggers the rerun, the reachability analysis is performed as part of the long running operation, which completes when the analysis completes. Even though the test configuration remains the same, the reachability result may change due to underlying network configuration changes. If the endpoint specifications in ``ConnectivityTest`` become invalid (for example, specified resources are deleted in the network, or you lost read permissions to the network configurations of listed projects), then the reachability result returns a value of ``UNKNOWN``. Returns: Callable[[~.RerunConnectivityTestRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'rerun_connectivity_test' not in self._stubs: self._stubs['rerun_connectivity_test'] = self.grpc_channel.unary_unary( '/google.cloud.networkmanagement.v1.ReachabilityService/RerunConnectivityTest', request_serializer=reachability.RerunConnectivityTestRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['rerun_connectivity_test'] @property def delete_connectivity_test(self) -> Callable[ [reachability.DeleteConnectivityTestRequest], operations_pb2.Operation]: r"""Return a callable for the delete connectivity test method over gRPC. Deletes a specific ``ConnectivityTest``. Returns: Callable[[~.DeleteConnectivityTestRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'delete_connectivity_test' not in self._stubs: self._stubs['delete_connectivity_test'] = self.grpc_channel.unary_unary( '/google.cloud.networkmanagement.v1.ReachabilityService/DeleteConnectivityTest', request_serializer=reachability.DeleteConnectivityTestRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['delete_connectivity_test'] __all__ = ( 'ReachabilityServiceGrpcTransport', )
apache-2.0
3,437,077,281,151,357,400
45.792035
96
0.636359
false
4.8947
true
false
false
VlachosGroup/VlachosGroupAdditivity
pgradd/DrawMol.py
1
2230
""" ========================================= Defenition to draw RDKIT mol object (:mod:`pgradd.DrawMol`) ========================================= Coverts a rdkit mol object to a svg image and display. """ from rdkit import Chem from rdkit.Chem import rdDepictor from rdkit.Chem.Draw import rdMolDraw2D from IPython.display import SVG, display # http://rdkit.blogspot.com/2015/02/new-drawing-code.html def moltosvg(mol, highlight=[], molSize=(400, 400), kekulize=True): mc = Chem.Mol(mol.ToBinary()) if kekulize: try: Chem.Kekulize(mc) except Exception: mc = Chem.Mol(mol.ToBinary()) if not mc.GetNumConformers(): rdDepictor.Compute2DCoords(mc) drawer = rdMolDraw2D.MolDraw2DSVG(molSize[0], molSize[1]) # Atom Label opts = drawer.drawOptions() # Atom name and index for i in range(mol.GetNumAtoms()): opts.atomLabels[i] = mol.GetAtomWithIdx(i).GetSymbol()+str(i) # radicals and charges for atom in mol.GetAtoms(): nr = atom.GetNumRadicalElectrons() nc = atom.GetFormalCharge() if nr > 0: string = atom.GetSymbol() + ':'*divmod(nr, 2)[0] +\ '.'*divmod(nr, 2)[1] opts.atomLabels[atom.GetIdx()] += string elif nc == 1: string = atom.GetSymbol() + '+' opts.atomLabels[atom.GetIdx()] += string elif nc > 1: string = atom.GetSymbol() + '+' + str(nc) opts.atomLabels[atom.GetIdx()] += string elif nc == -1: string = atom.GetSymbol() + '-' opts.atomLabels[atom.GetIdx()] += string elif nc < -1: string = atom.GetSymbol() + '-' + str(nc) opts.atomLabels[atom.GetIdx()] += string # highlight if highlight: drawer.DrawMolecule(mc, highlightAtoms=highlight) else: drawer.DrawMolecule(mc) drawer.FinishDrawing() svg = drawer.GetDrawingText() # It seems that the svg renderer used doesn't quite hit the spec. # Here are some fixes to make it work in the notebook, although I think # the underlying issue needs to be resolved at the generation step svg.replace('svg:', '') display(SVG(svg))
mit
5,404,241,152,769,177,000
32.283582
75
0.58296
false
3.506289
false
false
false
aldebaran/qibuild
python/qitest/parsers.py
1
7334
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012-2021 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license (see the COPYING file). """ Collection of parser fonctions for qitests actions """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import os import qisys.parsers import qitest.project import qibuild.parsers class EmptyTestListException(Exception): """ No test to run exception """ pass def test_parser(parser, with_num_jobs=True): """ Test Parser """ qisys.parsers.worktree_parser(parser) group = parser.add_argument_group("test options") group.add_argument("--perf", dest="perf", action="store_true", help="run perfs tests instead of pure tests.") group.add_argument("-k", "--pattern", dest="patterns", action="append", help="Filter tests matching these patterns") group.add_argument("-x", "--exclude", dest="excludes", action="append", help="Exclude test matching these patterns") group.add_argument("-V", dest="verbose_tests", action="store_true", help="display tests output") group.add_argument("--valgrind", dest="valgrind", action="store_true", help="run tests under valgrind") group.add_argument("--nightmare", dest="nightmare", action="store_true", help="run tests in shuffle and 20 times (apply only to gtest)") group.add_argument("--coverage", dest="coverage", action="store_true", help="run coverage") group.add_argument("--ncpu", dest="num_cpus", default=-1, type=int, help="set number of CPU each test is allowed to use (linux)") group.add_argument("--nightly", action="store_true", dest="nightly") group.add_argument("--break-on-failure", action="store_true", dest="break_on_failure", help="Break on failure (for gtest only)") group.add_argument("--repeat-until-fail", default=0, type=int, metavar="N", help="Repeat tests until they fail (at most N times)") group.add_argument("--qitest-json", dest="qitest_jsons", action="append") group.add_argument("--test-output-dir", type=os.path.abspath, dest="test_output_dir", help="Generate XML test reports in the given directory " "(instead of build-<platform>/sdk/test-results)") group.add_argument("--coverage-output-dir", dest="coverage_output_dir", help="Generate XML and HTML coverage reports in the given " "directory (instead of build-<platform>/sdk/coverage-results)") group.add_argument("--root-output-dir", dest="test_output_dir", metavar="ROOT_OUTPUT_DIR", help="same as --test-output-dir (deprecated)") group.add_argument("--no-capture", dest="capture", action="store_false") group.add_argument("--ignore-timeouts", dest="ignore_timeouts", action="store_true", help="Ignore timeouts when running tests") group.add_argument("--lf", "--last-failed", dest="last_failed", action="store_true", help="Run the failing test from previous run") group.add_argument("--allow-no-test", dest="allow_no_test", action="store_true", help="Don't fail if no tests to run") parser.set_defaults(nightly=False, capture=True, last_failed=False, ignore_timeouts=False) if with_num_jobs: qisys.parsers.parallel_parser(group, default=1) return group def get_test_runner(args, build_project=None, qitest_json=None): """ Get Test Runner """ test_project = None if not qitest_json: qitest_json = vars(args).get("qitest_json") if not qitest_json: candidate = os.path.join(os.getcwd(), "qitest.json") if os.path.exists(candidate): qitest_json = candidate if qitest_json: test_project = qitest.project.TestProject(qitest_json) if not test_project: if build_project: test_project = build_project.to_test_project() else: return None test_runner = qibuild.test_runner.ProjectTestRunner(test_project) if build_project: test_runner.cwd = build_project.sdk_directory test_runner.env = build_project.build_worktree.get_env() else: test_runner.cwd = qisys.sh.to_native_path(os.path.dirname(qitest_json)) test_runner.patterns = args.patterns test_runner.excludes = args.excludes test_runner.perf = args.perf test_runner.coverage = args.coverage test_runner.break_on_failure = args.break_on_failure test_runner.valgrind = args.valgrind test_runner.verbose = args.verbose_tests test_runner.num_cpus = args.num_cpus test_runner.num_jobs = args.num_jobs test_runner.repeat_until_fail = args.repeat_until_fail test_runner.nightly = args.nightly test_runner.nightmare = args.nightmare test_runner.test_output_dir = args.test_output_dir test_runner.capture = args.capture test_runner.last_failed = args.last_failed test_runner.ignore_timeouts = args.ignore_timeouts return test_runner def parse_build_projects(args): """ Parse Build Projects """ res = list() try: build_worktree = qibuild.parsers.get_build_worktree(args) solve_deps = False if args.use_deps: solve_deps = True build_projects = qibuild.parsers.get_build_projects( build_worktree, args, solve_deps=solve_deps) for build_project in build_projects: test_runner = None try: test_runner = get_test_runner(args, build_project=build_project) except qibuild.project.NoQiTestJson: pass if test_runner: res.append(test_runner) except (qisys.worktree.NotInWorkTree, qibuild.parsers.CouldNotGuessProjectName): pass return res def get_test_runners(args): """ Get Test Runners """ res = list() qitest_jsons = args.qitest_jsons or list() # first case: qitest.json in current working directory test_runner = get_test_runner(args) if test_runner: res.append(test_runner) # second case: qitest.json specified with --qitest-json for qitest_json in qitest_jsons: test_runner = get_test_runner(args, qitest_json=qitest_json) res.append(test_runner) # third case: parsing build projects build_projects_runners = parse_build_projects(args) # avoid appending a test_runner guessed from a build project # when res already contains a test runner computed from a # --qitest-json argument known_cwds = [x.cwd for x in res] for test_runner in build_projects_runners: if test_runner.cwd not in known_cwds: res.append(test_runner) if args.coverage and not build_projects_runners: raise Exception("""--coverage can only be used from a qibuild CMake project\n""") elif args.coverage: return build_projects_runners if not res: raise EmptyTestListException("Nothing found to test") return res
bsd-3-clause
6,434,639,803,409,143,000
43.993865
94
0.637715
false
3.890716
true
false
false
fake-name/ReadableWebProxy
WebMirror/management/rss_parser_funcs/feed_parse_extractCurrentlyTLingBuniMi.py
1
1148
def extractCurrentlyTLingBuniMi(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None if item['title'].startswith('[BNM]'): return buildReleaseMessageWithType(item, 'Bu ni Mi wo Sasagete Hyaku to Yonen. Elf de Yarinaosu Musha Shugyou', vol, chp, frag=frag, postfix=postfix) if item['title'].startswith('[DD]'): return buildReleaseMessageWithType(item, 'Doll Dungeon', vol, chp, frag=frag, postfix=postfix) if item['title'].startswith('[HCLS]'): return buildReleaseMessageWithType(item, 'High Comprehension Low Strength', vol, chp, frag=frag, postfix=postfix) tagmap = [ ('Abyss Domination', 'Abyss Domination', 'translated'), ('Nine Yang Sword Saint', 'Nine Yang Sword Saint', 'translated'), ('Mysterious World Beast God', 'Mysterious World Beast God', 'translated'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
bsd-3-clause
-392,690,096,227,605,250
44.96
151
0.690767
false
3.045093
false
false
false
Froff/TFY4115-Simulering
python/Simulation.py
1
1185
from math import sqrt import Slope class Simulation: SIM_STEP_SIZE = 0.0001 const_g = -981 def __init__ (self, slope, **kwargs): self.slope = slope self.t = [0] self.x = [Simulation.SIM_STEP_SIZE] self.mom_inertia_coefficient = 0 for name, value in kwargs.items(): if name == "startingposition": self.x = [value] if name == "momentofintertiacoefficient": self.mom_inertia_coefficient = value def runSimulation(self): while not self.isFinished(): self.step() def step (self): x = self.x[-1] dydx = self.slope.dydx(x) y = self.slope.f(x) - self.slope.f(0) I = self.mom_inertia_coefficient g = Simulation.const_g step_size = Simulation.SIM_STEP_SIZE try: self.x.append(x + step_size * sqrt( (2*g*y) / ( (1 + I) * (1 + dydx**2) ) )) self.t.append(self.t[-1] + Simulation.SIM_STEP_SIZE) except ValueError: print("Math domain error. x={}, y={}".format(x, y)) exit(2) def isFinished (self): return self.x[-1] >= self.slope.end
mit
6,737,321,104,293,273,000
30.184211
88
0.533333
false
3.395415
false
false
false
erccarls/vectorsearch
vectorsearch/word2vec.py
1
4242
from __future__ import division # py3 "true division" import logging import sys import os import heapq from timeit import default_timer from copy import deepcopy from collections import defaultdict import threading import itertools import gensim from gensim.utils import keep_vocab_item try: from queue import Queue, Empty except ImportError: from Queue import Queue, Empty from numpy import exp, log, dot, zeros, outer, random, dtype, float32 as REAL,\ uint32, seterr, array, uint8, vstack, fromstring, sqrt, newaxis,\ ndarray, empty, sum as np_sum, prod, ones, ascontiguousarray from gensim import utils, matutils # utility fnc for pickling, common scipy operations etc from six import iteritems, itervalues, string_types from six.moves import xrange from types import GeneratorType logger = logging.getLogger(__name__) try: from gensim.models.word2vec_inner import train_batch_sg, train_batch_cbow from gensim.models.word2vec_inner import score_sentence_sg, score_sentence_cbow from gensim.models.word2vec_inner import FAST_VERSION, MAX_WORDS_IN_BATCH except ImportError: # failed... fall back to plain numpy (20-80x slower training than the above) FAST_VERSION = -1 MAX_WORDS_IN_BATCH = 10000 class Word2Vec(gensim.models.Word2Vec): def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self._stem_memory = defaultdict(set) def most_similar(self, words={}, topn=10, restrict_vocab=None): """ Find the top-N most similar words. words : a dict where the words are the keys and the weights are the values. This method computes cosine similarity between a simple mean of the projection weight vectors of the given words and the vectors for each word in the model. The method corresponds to the `word-analogy` and `distance` scripts in the original word2vec implementation. If topn is False, most_similar returns the vector of similarity scores. `restrict_vocab` is an optional integer which limits the range of vectors which are searched for most-similar values. For example, restrict_vocab=10000 would only check the first 10000 word vectors in the vocabulary order. (This may be meaningful if you've sorted the vocabulary by descending frequency.) Example:: >>> trained_model.most_similar(positive=['woman', 'king'], negative=['man']) [('queen', 0.50882536), ...] """ self.init_sims() # if isinstance(positive, string_types) and not negative: # # allow calls like most_similar('dog'), as a shorthand for most_similar(['dog']) # positive = [positive] # add weights for each word, if not already present; default to 1.0 for positive and -1.0 for negative words # positive = [ # (word, 1.0) if isinstance(word, string_types + (ndarray,)) else word # for word in positive # ] # negative = [ # (word, -1.0) if isinstance(word, string_types + (ndarray,)) else word # for word in negative # ] # compute the weighted average of all words all_words, mean = set(), [] for word, weight in words.items(): if isinstance(word, ndarray): mean.append(weight * word) elif word in self.vocab: mean.append(weight * self.syn0norm[self.vocab[word].index]) all_words.add(self.vocab[word].index) else: Warning("word '%s' not in vocabulary" % word) if not mean: raise ValueError("cannot compute similarity with no input") mean = matutils.unitvec(array(mean).mean(axis=0)).astype(REAL) limited = self.syn0norm if restrict_vocab is None else self.syn0norm[:restrict_vocab] dists = dot(limited, mean) if not topn: return dists best = matutils.argsort(dists, topn=topn + len(all_words), reverse=True) # ignore (don't return) words from the input result = [(self.index2word[sim], float(dists[sim])) for sim in best if sim not in all_words] return result[:topn]
apache-2.0
-2,757,497,388,881,234,400
38.654206
116
0.656294
false
4.055449
false
false
false
CloudBreadPaPa/azure-ml-python-seminar
code/python/ml-Iris.py
1
1412
import urllib2 # If you are using Python 3+, import urllib instead of urllib2 import json data = { "Inputs": { "input1": { "ColumnNames": ["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"], "Values": [ [ "1", "1", "1", "1", "" ], ] }, }, "GlobalParameters": { } } body = str.encode(json.dumps(data)) url = 'https://asiasoutheast.services.azureml.net/workspaces/46d0e60b05b34558827abd41f11d204f/services/acac88a083ce443789028306375ddf56/execute?api-version=2.0&details=true' api_key = '<change here>' # Replace this with the API key for the web service headers = {'Content-Type':'application/json', 'Authorization':('Bearer '+ api_key)} req = urllib2.Request(url, body, headers) try: response = urllib2.urlopen(req) # If you are using Python 3+, replace urllib2 with urllib.request in the above code: # req = urllib.request.Request(url, body, headers) # response = urllib.request.urlopen(req) result = response.read() print(result) except urllib2.HTTPError, error: print("The request failed with status code: " + str(error.code)) # Print the headers - they include the requert ID and the timestamp, which are useful for debugging the failure print(error.info()) print(json.loads(error.read()))
mit
-7,397,852,236,911,984,000
30.377778
173
0.626771
false
3.49505
false
false
false
wisechengyi/pants
src/python/pants/util/collections.py
1
3201
# Copyright 2017 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import collections import collections.abc from typing import Any, Callable, DefaultDict, Iterable, List, MutableMapping, Type, TypeVar, Union _K = TypeVar("_K") _V = TypeVar("_V") def factory_dict(value_factory: Callable[[_K], _V], *args, **kwargs) -> DefaultDict: """A dict whose values are computed by `value_factory` when a `__getitem__` key is missing. Note that values retrieved by any other method will not be lazily computed; eg: via `get`. :param value_factory: :param *args: Any positional args to pass through to `dict`. :param **kwrags: Any kwargs to pass through to `dict`. """ class FactoryDict(collections.defaultdict): @staticmethod def __never_called(): raise AssertionError( "The default factory should never be called since we override " "__missing__." ) def __init__(self): super().__init__(self.__never_called, *args, **kwargs) def __missing__(self, key): value = value_factory(key) self[key] = value return value return FactoryDict() def recursively_update(d: MutableMapping, d2: MutableMapping) -> None: """dict.update but which merges child dicts (dict2 takes precedence where there's conflict).""" for k, v in d2.items(): if k in d: if isinstance(v, dict): recursively_update(d[k], v) continue d[k] = v _T = TypeVar("_T") def assert_single_element(iterable: Iterable[_T]) -> _T: """Get the single element of `iterable`, or raise an error. :raise: :class:`StopIteration` if there is no element. :raise: :class:`ValueError` if there is more than one element. """ it = iter(iterable) first_item = next(it) try: next(it) except StopIteration: return first_item raise ValueError(f"iterable {iterable!r} has more than one element.") def ensure_list(val: Union[Any, Iterable[Any]], *, expected_type: Type[_T]) -> List[_T]: """Given either a single value or an iterable of values, always return a list. This performs runtime type checking to ensure that every element of the list is the expected type. """ if isinstance(val, expected_type): return [val] if not isinstance(val, collections.abc.Iterable): raise ValueError( f"The value {val} (type {type(val)}) did not have the expected type {expected_type} " "nor was it an iterable." ) result: List[_T] = [] for i, x in enumerate(val): if not isinstance(x, expected_type): raise ValueError( f"Not all elements of the iterable have type {expected_type}. Encountered the " f"element {x} of type {type(x)} at index {i}." ) result.append(x) return result def ensure_str_list(val: Union[str, Iterable[str]]) -> List[str]: """Given either a single string or an iterable of strings, always return a list.""" return ensure_list(val, expected_type=str)
apache-2.0
1,141,446,506,871,677,600
32.34375
99
0.621993
false
4.046776
false
false
false
devdelay/home-assistant
homeassistant/util/__init__.py
1
13534
"""Helper methods for various modules.""" from collections.abc import MutableSet from itertools import chain import threading import queue from datetime import datetime import re import enum import socket import random import string from functools import wraps from types import MappingProxyType from typing import Any, Sequence from .dt import as_local, utcnow RE_SANITIZE_FILENAME = re.compile(r'(~|\.\.|/|\\)') RE_SANITIZE_PATH = re.compile(r'(~|\.(\.)+)') RE_SLUGIFY = re.compile(r'[^a-z0-9_]+') def sanitize_filename(filename): r"""Sanitize a filename by removing .. / and \\.""" return RE_SANITIZE_FILENAME.sub("", filename) def sanitize_path(path): """Sanitize a path by removing ~ and ..""" return RE_SANITIZE_PATH.sub("", path) def slugify(text: str) -> str: """Slugify a given text.""" text = text.lower().replace(" ", "_") return RE_SLUGIFY.sub("", text) def repr_helper(inp: Any) -> str: """Help creating a more readable string representation of objects.""" if isinstance(inp, (dict, MappingProxyType)): return ", ".join( repr_helper(key)+"="+repr_helper(item) for key, item in inp.items()) elif isinstance(inp, datetime): return as_local(inp).isoformat() else: return str(inp) def convert(value, to_type, default=None): """Convert value to to_type, returns default if fails.""" try: return default if value is None else to_type(value) except (ValueError, TypeError): # If value could not be converted return default def ensure_unique_string(preferred_string: str, current_strings: Sequence[str]) -> str: """Return a string that is not present in current_strings. If preferred string exists will append _2, _3, .. """ test_string = preferred_string current_strings_set = set(current_strings) tries = 1 while test_string in current_strings_set: tries += 1 test_string = "{}_{}".format(preferred_string, tries) return test_string # Taken from: http://stackoverflow.com/a/11735897 def get_local_ip(): """Try to determine the local IP address of the machine.""" try: sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Use Google Public DNS server to determine own IP sock.connect(('8.8.8.8', 80)) return sock.getsockname()[0] except socket.error: return socket.gethostbyname(socket.gethostname()) finally: sock.close() # Taken from http://stackoverflow.com/a/23728630 def get_random_string(length=10): """Return a random string with letters and digits.""" generator = random.SystemRandom() source_chars = string.ascii_letters + string.digits return ''.join(generator.choice(source_chars) for _ in range(length)) class OrderedEnum(enum.Enum): """Taken from Python 3.4.0 docs.""" # pylint: disable=no-init, too-few-public-methods def __ge__(self, other): """Return the greater than element.""" if self.__class__ is other.__class__: return self.value >= other.value return NotImplemented def __gt__(self, other): """Return the greater element.""" if self.__class__ is other.__class__: return self.value > other.value return NotImplemented def __le__(self, other): """Return the lower than element.""" if self.__class__ is other.__class__: return self.value <= other.value return NotImplemented def __lt__(self, other): """Return the lower element.""" if self.__class__ is other.__class__: return self.value < other.value return NotImplemented class OrderedSet(MutableSet): """Ordered set taken from http://code.activestate.com/recipes/576694/.""" def __init__(self, iterable=None): """Initialize the set.""" self.end = end = [] end += [None, end, end] # sentinel node for doubly linked list self.map = {} # key --> [key, prev, next] if iterable is not None: self |= iterable def __len__(self): """Return the length of the set.""" return len(self.map) def __contains__(self, key): """Check if key is in set.""" return key in self.map def add(self, key): """Add an element to the end of the set.""" if key not in self.map: end = self.end curr = end[1] curr[2] = end[1] = self.map[key] = [key, curr, end] def promote(self, key): """Promote element to beginning of the set, add if not there.""" if key in self.map: self.discard(key) begin = self.end[2] curr = begin[1] curr[2] = begin[1] = self.map[key] = [key, curr, begin] def discard(self, key): """Discard an element from the set.""" if key in self.map: key, prev_item, next_item = self.map.pop(key) prev_item[2] = next_item next_item[1] = prev_item def __iter__(self): """Iteration of the set.""" end = self.end curr = end[2] while curr is not end: yield curr[0] curr = curr[2] def __reversed__(self): """Reverse the ordering.""" end = self.end curr = end[1] while curr is not end: yield curr[0] curr = curr[1] def pop(self, last=True): # pylint: disable=arguments-differ """Pop element of the end of the set. Set last=False to pop from the beginning. """ if not self: raise KeyError('set is empty') key = self.end[1][0] if last else self.end[2][0] self.discard(key) return key def update(self, *args): """Add elements from args to the set.""" for item in chain(*args): self.add(item) def __repr__(self): """Return the representation.""" if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self)) def __eq__(self, other): """Return the comparision.""" if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) return set(self) == set(other) class Throttle(object): """A class for throttling the execution of tasks. This method decorator adds a cooldown to a method to prevent it from being called more then 1 time within the timedelta interval `min_time` after it returned its result. Calling a method a second time during the interval will return None. Pass keyword argument `no_throttle=True` to the wrapped method to make the call not throttled. Decorator takes in an optional second timedelta interval to throttle the 'no_throttle' calls. Adds a datetime attribute `last_call` to the method. """ # pylint: disable=too-few-public-methods def __init__(self, min_time, limit_no_throttle=None): """Initialize the throttle.""" self.min_time = min_time self.limit_no_throttle = limit_no_throttle def __call__(self, method): """Caller for the throttle.""" if self.limit_no_throttle is not None: method = Throttle(self.limit_no_throttle)(method) # Different methods that can be passed in: # - a function # - an unbound function on a class # - a method (bound function on a class) # We want to be able to differentiate between function and unbound # methods (which are considered functions). # All methods have the classname in their qualname seperated by a '.' # Functions have a '.' in their qualname if defined inline, but will # be prefixed by '.<locals>.' so we strip that out. is_func = (not hasattr(method, '__self__') and '.' not in method.__qualname__.split('.<locals>.')[-1]) @wraps(method) def wrapper(*args, **kwargs): """Wrapper that allows wrapped to be called only once per min_time. If we cannot acquire the lock, it is running so return None. """ # pylint: disable=protected-access if hasattr(method, '__self__'): host = method.__self__ elif is_func: host = wrapper else: host = args[0] if args else wrapper if not hasattr(host, '_throttle'): host._throttle = {} if id(self) not in host._throttle: host._throttle[id(self)] = [threading.Lock(), None] throttle = host._throttle[id(self)] if not throttle[0].acquire(False): return None # Check if method is never called or no_throttle is given force = not throttle[1] or kwargs.pop('no_throttle', False) try: if force or utcnow() - throttle[1] > self.min_time: result = method(*args, **kwargs) throttle[1] = utcnow() return result else: return None finally: throttle[0].release() return wrapper class ThreadPool(object): """A priority queue-based thread pool.""" # pylint: disable=too-many-instance-attributes def __init__(self, job_handler, worker_count=0, busy_callback=None): """Initialize the pool. job_handler: method to be called from worker thread to handle job worker_count: number of threads to run that handle jobs busy_callback: method to be called when queue gets too big. Parameters: worker_count, list of current_jobs, pending_jobs_count """ self._job_handler = job_handler self._busy_callback = busy_callback self.worker_count = 0 self.busy_warning_limit = 0 self._work_queue = queue.PriorityQueue() self.current_jobs = [] self._lock = threading.RLock() self._quit_task = object() self.running = True for _ in range(worker_count): self.add_worker() def add_worker(self): """Add worker to the thread pool and reset warning limit.""" with self._lock: if not self.running: raise RuntimeError("ThreadPool not running") worker = threading.Thread( target=self._worker, name='ThreadPool Worker {}'.format(self.worker_count)) worker.daemon = True worker.start() self.worker_count += 1 self.busy_warning_limit = self.worker_count * 3 def remove_worker(self): """Remove worker from the thread pool and reset warning limit.""" with self._lock: if not self.running: raise RuntimeError("ThreadPool not running") self._work_queue.put(PriorityQueueItem(0, self._quit_task)) self.worker_count -= 1 self.busy_warning_limit = self.worker_count * 3 def add_job(self, priority, job): """Add a job to the queue.""" with self._lock: if not self.running: raise RuntimeError("ThreadPool not running") self._work_queue.put(PriorityQueueItem(priority, job)) # Check if our queue is getting too big. if self._work_queue.qsize() > self.busy_warning_limit \ and self._busy_callback is not None: # Increase limit we will issue next warning. self.busy_warning_limit *= 2 self._busy_callback( self.worker_count, self.current_jobs, self._work_queue.qsize()) def block_till_done(self): """Block till current work is done.""" self._work_queue.join() def stop(self): """Finish all the jobs and stops all the threads.""" self.block_till_done() with self._lock: if not self.running: return # Tell the workers to quit for _ in range(self.worker_count): self.remove_worker() self.running = False # Wait till all workers have quit self.block_till_done() def _worker(self): """Handle jobs for the thread pool.""" while True: # Get new item from work_queue job = self._work_queue.get().item if job is self._quit_task: self._work_queue.task_done() return # Add to current running jobs job_log = (utcnow(), job) self.current_jobs.append(job_log) # Do the job self._job_handler(job) # Remove from current running job self.current_jobs.remove(job_log) # Tell work_queue the task is done self._work_queue.task_done() class PriorityQueueItem(object): """Holds a priority and a value. Used within PriorityQueue.""" # pylint: disable=too-few-public-methods def __init__(self, priority, item): """Initialize the queue.""" self.priority = priority self.item = item def __lt__(self, other): """Return the ordering.""" return self.priority < other.priority
mit
-2,104,050,902,340,730,000
30.328704
79
0.570637
false
4.208333
false
false
false
bxlab/bx-python
lib/bx/align/epo.py
1
11523
"""Classes and utilities for mutliple alignments from the EPO pipeline""" import logging import os import pickle as cPickle import re from collections import namedtuple from ._epo import ( # noqa: F401 bed_union, cummulative_intervals, fastLoadChain, rem_dash ) log = logging.getLogger(__name__) class Chain(namedtuple('Chain', 'score tName tSize tStrand tStart tEnd qName qSize qStrand qStart qEnd id')): """A Chain header as in http://genome.ucsc.edu/goldenPath/help/chain.html chain coordinates are with respect to the strand, so for example tStart on the + strand is the distance from the leftmost position; tStart on the - strand is the distance from the rightmost position.""" __slots__ = () def __str__(self): return "chain {score} {tName} {tSize} {tStrand} {tStart} {tEnd} {qName} {qSize} {qStrand} {qStart} {qEnd} {id}".format(**self._asdict()) @classmethod def _strfactory(cls, line): """factory class method for Chain :param line: header of a chain (in .chain format) """ assert isinstance(line, str), "this is a factory from string" line = line.rstrip().split()[1:] # the first component is the keyword "chain" tup = [t[0](t[1]) for t in zip([int, str, int, str, int, int, str, int, str, int, int, str], line)] return tuple.__new__(cls, tup) @classmethod def _make_from_epo(cls, trg_comp, qr_comp, trg_chrom_sizes, qr_chrom_sizes): """crate a chain of collinear rings from the given components. The target of the chain will always be on the forward strand. This is done to avoid confusion when mapping psl files. So, if trg_comp.strand=-, qr_comp.strand=- (resp. +) the chain header will have tStrand=+, qStrand=+ (resp. -). No strand changes on the other cases. :param trg_comp: target (i.e, the first) component :type trg_comp: L{EPOitem} :param qr_comp: query (i.e, the second) component :type qr_comp: L{EPOitem} :param trg_chrom_sizes: chromosome sizes of the target :type trg_chrom_sizes: dictionary of the type (chrom) --> size :param qr_chrom_sizes: chromosome sizes of the query :type qr_chrom_sizes: dictionary of the type (chrom) --> size :return: A L{Chain} instance""" # size, target, query arrays S, T, Q = [], [], [] # the target strand of the chain must be on the forward strand trg_intervals = trg_comp.intervals(reverse=trg_comp.strand == '-') qr_intervals = qr_comp.intervals(reverse=trg_comp.strand == '-') if len(trg_intervals) == 0 or len(qr_intervals) == 0: log.warning("deletion/insertion only intervals") return None A, B = rem_dash(trg_intervals, qr_intervals) # correct for when cigar starts/ends with dashes (in number of bases) tr_start_correction = max(B[0][0] - A[0][0], 0) tr_end_correction = max(A[-1][1] - B[-1][1], 0) qr_start_correction = max(A[0][0] - B[0][0], 0) qr_end_correction = max(B[-1][1] - A[-1][1], 0) a, b = A.pop(0), B.pop(0) # intervals are 0-base, halfo-open => lengths = coordinate difference while A or B: if a[1] < b[1]: T.append(0) Q.append(A[0][0] - a[1]) S.append(min(a[1], b[1]) - max(a[0], b[0])) a = A.pop(0) elif b[1] < a[1]: Q.append(0) T.append(B[0][0] - b[1]) S.append(min(a[1], b[1]) - max(a[0], b[0])) b = B.pop(0) elif A and B: assert 1 > 2, "there are dash columns" else: break S.append(min(a[1], b[1]) - max(a[0], b[0])) assert len(T) == len(Q) == len(S) - 1, "(S, T, Q) = (%d, %d, %d)" % tuple(map(len, (S, T, Q))) tSize = trg_chrom_sizes[trg_comp.chrom] qSize = qr_chrom_sizes[qr_comp.chrom] # UCSC coordinates are 0-based, half-open and e! coordinates are 1-base, closed # chain_start = epo_start - 1 and chain_end = epo_end if qr_comp.strand == '+': chain = Chain( 0, trg_comp.chrom, tSize, "+", (trg_comp.start - 1) + tr_start_correction, trg_comp.end - tr_end_correction, qr_comp.chrom, qSize, (qr_comp.strand == trg_comp.strand and '+' or '-'), (qr_comp.start - 1) + qr_start_correction, qr_comp.end - qr_end_correction, qr_comp.gabid) else: chain = Chain( 0, trg_comp.chrom, tSize, "+", (trg_comp.start - 1) + tr_start_correction, trg_comp.end - tr_end_correction, qr_comp.chrom, qSize, (qr_comp.strand == trg_comp.strand and '+' or '-'), (qr_comp.start - 1) + qr_end_correction, qr_comp.end - qr_start_correction, qr_comp.gabid) # strand correction. in UCSC coordinates this is: size - coord if chain.qStrand == '-': chain = chain._replace( qEnd=chain.qSize - chain.qStart, qStart=chain.qSize - chain.qEnd) assert chain.tEnd - chain.tStart == sum(S) + sum(T), "[%s] %d != %d" % ( str(chain), chain.tEnd - chain.tStart, sum(S) + sum(T)) assert chain.qEnd - chain.qStart == sum(S) + sum(Q), "[%s] %d != %d" % ( str(chain), chain.qEnd - chain.qStart, sum(S) + sum(Q)) return chain, S, T, Q def slice(self, who): "return the slice entry (in a bed6 format), AS IS in the chain header" assert who in ('t', 'q'), "who should be 't' or 'q'" if who == 't': return (self.tName, self.tStart, self.tEnd, self.id, self.score, self.tStrand) else: return (self.qName, self.qStart, self.qEnd, self.id, self.score, self.qStrand) def bedInterval(self, who): "return a BED6 entry, thus DOES coordinate conversion for minus strands" if who == 't': st, en = self.tStart, self.tEnd if self.tStrand == '-': st, en = self.tSize-en, self.tSize-st return (self.tName, st, en, self.id, self.score, self.tStrand) else: st, en = self.qStart, self.qEnd if self.qStrand == '-': st, en = self.qSize-en, self.qSize-st assert en-st == self.qEnd - self.qStart return (self.qName, st, en, self.id, self.score, self.qStrand) @classmethod def _parse_file(cls, path, pickle=False): """parse a .chain file into a list of the type [(L{Chain}, arr, arr, arr) ...] :param fname: name of the file""" fname = path if fname.endswith(".gz"): fname = path[:-3] if fname.endswith('.pkl'): # you asked for the pickled file. I'll give it to you log.debug("loading pickled file %s ...", fname) with open(fname, "rb") as f: return cPickle.load(f) elif os.path.isfile("%s.pkl" % fname): # there is a cached version I can give to you log.info("loading pickled file %s.pkl ...", fname) if os.stat(path).st_mtime > os.stat("%s.pkl" % fname).st_mtime: log.critical("*** pickled file %s.pkl is not up to date ***", fname) try: with open("%s.pkl" % fname, "rb") as f: return cPickle.load(f) except Exception: log.warning("Loading pickled file %s.pkl failed", fname) data = fastLoadChain(path, cls._strfactory) if pickle and not os.path.isfile('%s.pkl' % fname): log.info("pickling to %s.pkl", fname) with open('%s.pkl' % fname, 'wb') as f: cPickle.dump(data, f) return data class EPOitem(namedtuple('Epo_item', 'species gabid chrom start end strand cigar')): "this format is how alignments are delivered from e!" __slots__ = () cigar_pattern = re.compile(r"(\d*)([MD])") def __repr__(self): return str(self) def __str__(self): c = self.cigar[:5] + "..." + self.cigar[-5:] return "(%s %s %s %d %d %s %s)" % tuple(self[:6] + (c,)) @classmethod def _strfactory(cls, line): """factory method for an EPOitem :param line: a line of input""" cmp = line.rstrip().split() chrom = cmp[2] if not chrom.startswith("chr"): chrom = "chr%s" % chrom instance = tuple.__new__( cls, (cmp[0], cmp[1], chrom, int(cmp[3]), int(cmp[4]), {'1': '+', '-1': '-'}[cmp[5]], cmp[6])) span = instance.end - instance.start + 1 m_num = sum((t[1] == "M" and [t[0]] or [0])[0] for t in instance.cigar_iter(False)) if span != m_num: log.warning("[{gabid}] {species}.{chrom}:{start}-{end}.".format(**instance._asdict()) + "(span) %d != %d (matches)" % (span, m_num)) return None return instance @classmethod def _parse_epo(cls, fname): """Load an entire file in the EPO format into a dictionary of the type {gab_id => [Epoitem, ...]} :param fname: file name""" data = {} with open(fname) as fd: for el in (cls._strfactory(_) for _ in fd): if el: data.setdefault(el.gabid, []).append(el) log.info("parsed %d elements from %s", len(data), fname) return data def cigar_iter(self, reverse): """self.cigar => [(length, type) ... ] iterate the cigar :param reverse: whether to iterate in the reverse direction (right-to-left) :type reverse: boolean :return a list of pairs of the type [(length, M/D) ..] """ l = 0 P = self.cigar_pattern data = [] cigar = self.cigar parsed_cigar = re.findall(P, cigar) if reverse: parsed_cigar = parsed_cigar[::-1] for _l, t in parsed_cigar: # 1M is encoded as M l = (_l and int(_l) or 1) # int(_l) cannot be 0 data.append((l, t)) return data def intervals(self, reverse, thr=0): """return a list of (0-based half-open) intervals representing the match regions of the cigar for example 4MD4M2DM with reverse=False will produce [(0,4), (5,9), (11,12)] 4MD4M2DM with reverse=True will produce [(0,1), (3,7), (8,12)] (= 12 - previous interval) :param reverse: whether to iterate in the reverse direction (right-to-left) (this is passed as is to self.cigar_iter) :type reverse: boolean :param thr: shift all intervals by this much :type thr: integer :return: list of pairs""" d = [(thr, thr)] dl = 0 for tup in self.cigar_iter(reverse): if tup[1] == "D": dl = tup[0] else: s = d[-1][1] + dl d.append((s, s+tup[0])) assert d[0] == (thr, thr) # assert that nr. of Ms in the interval == sum of produced intervals assert sum(t[0] for t in self.cigar_iter(False) if t[1] == "M") == sum(t[1]-t[0] for t in d) d_sum = sum(t[1]-t[0] for t in d) assert self.end - self.start + 1 == d_sum, "[ (%d, %d) = %d ] != %d" % ( self.start, self.end, self.end-self.start+1, d_sum) return d[1:] # clip the (thr, thr) entry
mit
7,633,953,274,690,669,000
38.462329
144
0.540484
false
3.350683
false
false
false
Arcensoth/cogbot
cogbot/cogs/join_leave/join_leave_server_state.py
1
2346
from discord import Member, Role from discord.ext.commands import Context from cogbot.cogs.abc.base_cog import BaseCogServerState from cogbot.cogs.join_leave.join_leave_options import JoinLeaveOptions class JoinLeaveServerState(BaseCogServerState[JoinLeaveOptions]): async def create_options(self) -> JoinLeaveOptions: return await JoinLeaveOptions().init(self, self.raw_options) async def join_role(self, ctx: Context, author: Member, role_alias: str): try: role_entry = self.options.role_entry_from_alias[role_alias.lower()] role = self.bot.get_role(self.server, role_entry.role_id) await self.bot.add_roles(author, role) await self.bot.say(f"{author.mention} has joined {role}") except: self.log.info(f"{author} failed to join the role: {role_alias}") await self.bot.react_question(ctx) async def leave_role(self, ctx: Context, author: Member, role_alias: str): try: role_entry = self.options.role_entry_from_alias[role_alias] role = self.bot.get_role(self.server, role_entry.role_id) await self.bot.remove_roles(author, role) await self.bot.say(f"{author.mention} has left {role}") except: self.log.info(f"{author} failed to leave the role: {role_alias}") await self.bot.react_question(ctx) async def list_roles(self, ctx: Context, author: Member): role_lines = [] for role_entry in self.options.role_entries: role: Role = self.bot.get_role(self.server, role_entry.role_id) role_lines.append(f"{role}") role_aliases = role_entry.aliases first_role_alias = role_aliases[0] other_role_aliases = role_aliases[1:] role_aliases_line = f" >join {first_role_alias}" if other_role_aliases: other_role_aliases_str = " or ".join( f'"{role_alias}"' for role_alias in other_role_aliases ) role_aliases_line = f"{role_aliases_line} (or {other_role_aliases_str})" role_lines.append(role_aliases_line) roles_str = "\n".join(role_lines) await self.bot.say( f"{author.mention} Available self-assignable roles:\n```\n{roles_str}\n```" )
mit
4,599,399,970,453,194,000
45.92
88
0.6185
false
3.581679
false
false
false
mypinballs/whirlwind
effects.py
1
8263
# Top Rollover Lanes __author__="jim" __date__ ="$Jan 18, 2011 1:36:37 PM$" import procgame import locale from procgame import * base_path = config.value_for_key_path('base_path') game_path = base_path+"games/whirlwind/" class Effects(game.Mode): def __init__(self, game, priority): super(Effects, self).__init__(game, priority) def drive_lamp(self, lamp_name, style='on',time=2): if style == 'slow': self.game.lamps[lamp_name].schedule(schedule=0x00ff00ff, cycle_seconds=0, now=True) elif style == 'medium': self.game.lamps[lamp_name].schedule(schedule=0x0f0f0f0f, cycle_seconds=0, now=True) elif style == 'fast': self.game.lamps[lamp_name].schedule(schedule=0x99999999, cycle_seconds=0, now=True) elif style == 'superfast': self.game.lamps[lamp_name].schedule(schedule=0xaaaaaaaa, cycle_seconds=0, now=True) elif style == 'on': self.game.lamps[lamp_name].enable() elif style == 'off': self.off(lamp_name) elif style == 'smarton': self.game.lamps[lamp_name].schedule(schedule=0xaaaaaaaa, cycle_seconds=0, now=True) self.cancel_delayed(lamp_name+'_on') self.delay(name=lamp_name+'_on', event_type=None, delay=0.6, handler=self.game.lamps[lamp_name].enable) elif style == 'timedon': self.game.lamps[lamp_name].enable() self.cancel_delayed(lamp_name+'_off') self.delay(name=lamp_name+'_off', event_type=None, delay=time, handler=self.off,param=lamp_name) elif style == 'timeout': if time>10: self.cancel_delayed(lamp_name+'_medium') self.delay(name=lamp_name+'_medium', event_type=None, delay=time-10, handler=lambda:self.drive_lamp(lamp_name,'medium')) if time>5: self.cancel_delayed(lamp_name+'_fast') self.delay(name=lamp_name+'_fast', event_type=None, delay=time-5, handler=lambda:self.drive_lamp(lamp_name,'fast')) if time>1: self.cancel_delayed(lamp_name+'_superfast') self.delay(name=lamp_name+'_superfast', event_type=None, delay=time-1, handler=lambda:self.drive_lamp(lamp_name,'superfast')) self.delay(name=lamp_name+'_off', event_type=None, delay=time, handler=self.off,param=lamp_name) def clear_lamp_timers(self,lamp_name): self.cancel_delayed(lamp_name+'_medium') self.cancel_delayed(lamp_name+'_fast') self.cancel_delayed(lamp_name+'_superfast') self.cancel_delayed(lamp_name+'on') self.cancel_delayed(lamp_name+'_off') def off(self,lamp_name): self.clear_lamp_timers(lamp_name) self.game.lamps[lamp_name].disable() # def drive_super_fast(self, lamp_name): # self.game.lamps[lamp_name].schedule(schedule=0x99999999, cycle_seconds=0, now=True) # # def drive_fast(self, lamp_name): # self.game.lamps[lamp_name].schedule(schedule=0x55555555, cycle_seconds=0, now=True) # # def drive_medium(self, lamp_name): # self.game.lamps[lamp_name].schedule(schedule=0x0f0f0f0f, cycle_seconds=0, now=True) def drive_flasher(self, data, style='medium',cycle=0,time=2): if isinstance(data, basestring): flasher_name=data else: flasher_name=data[0] style = data[1] time = data[2] if style == 'slow': self.game.coils[flasher_name].schedule(schedule=0x00003000, cycle_seconds=cycle, now=True) elif style == 'medium': self.game.coils[flasher_name].schedule(schedule=0x30003000, cycle_seconds=cycle, now=True) elif style == 'fast': self.game.coils[flasher_name].schedule(schedule=0x11111111, cycle_seconds=cycle, now=True) elif style == 'super': self.game.coils[flasher_name].schedule(schedule=0x55555555, cycle_seconds=cycle, now=True) elif style == 'super2': self.game.coils[flasher_name].schedule(schedule=0x55055055, cycle_seconds=cycle, now=True) elif style == 'strobe': self.game.coils[flasher_name].schedule(schedule=0xeeeeeeee, cycle_seconds=cycle, now=True) elif style == 'chaos': self.game.coils[flasher_name].schedule(schedule=0x019930AB, cycle_seconds=cycle, now=True) elif style == 'fade': self.game.coils[flasher_name].schedule(schedule=0xAAA99933, cycle_seconds=cycle, now=True) if time>0: self.delay(name=flasher_name+'_off', event_type=None, delay=time, handler=self.game.coils[flasher_name].disable) # def strobe_flasher_set(self,flasher_list,time=0.5): # timer = 0 # for fname in flasher_list: # self.delay(name=fname+'strobe', event_type=None, delay=timer, handler=self.drive_flasher, param=[fname,'fast',time]) # timer+=time def strobe_flasher_set(self,flasher_list,time=1,overlap=0.2,repeats=1,enable=True): timer = 0 for i in range(repeats): for fname in flasher_list: if enable: self.delay(name=fname+'strobe', event_type=None, delay=timer, handler=self.drive_flasher, param=[fname,'fast',time+overlap]) timer+=time else: self.cancel_delayed(fname+'strobe') self.game.coils[fname].disable() def strobe_controlled_flasher_set(self,flasher_list,time=0.1,overlap=0.2,repeats=1,enable=True): timer = 0 #playfield flashers sequence=[] for j in range(repeats): sequence += flasher_list for i in range(len(sequence)): def flash(i,time,delay): self.delay(delay=delay,handler=lambda:self.game.switched_coils.drive(name=sequence[i],style='fast',time=time+0.1)) flash(i,time,timer) timer+=time def drive_led(self,lamp_name,colour): if colour=='red': self.led_colour_data(lamp_name,'on','off','off') elif colour=='pink': self.led_colour_data(lamp_name,'on','off','med') elif colour=='magenta': self.led_colour_data(lamp_name,'on','off','on') elif colour=='purple': self.led_colour_data(lamp_name,'med','off','on') elif colour=='skyblue': self.led_colour_data(lamp_name,'off','med','on') elif colour=='blue': self.led_colour_data(lamp_name,'off','off','on') elif colour=='cyan': self.led_colour_data(lamp_name,'off','on','on') elif colour=='turquoise': self.led_colour_data(lamp_name,'off','on','med') elif colour=='green': self.led_colour_data(lamp_name,'off','on','off') elif colour=='limegreen': self.led_colour_data(lamp_name,'med','on','off') elif colour=='yellow': self.led_colour_data(lamp_name,'on','on','off') elif colour=='orange': self.led_colour_data(lamp_name,'on','med','off') elif colour=='white': self.led_colour_data(lamp_name,'on','on','on') elif colour=='black': self.led_colour_data(lamp_name,'off','off','off') def led_colour_data(self,lamp_name,red,blue,green): data=[red,green,blue] name=['Red','Green','Blue'] for i in range(len(data)): if data[i]=='off': self.game.lamps[lamp_name+name[i]].disable() elif data[i]=='on': self.game.lamps[lamp_name+name[i]].enable() elif data[i]=='med': self.game.lamps[lamp_name+name[i]].schedule(schedule=0x80808080, cycle_seconds=0, now=True) # self.game.lamps[lamp_name+name[i]].patter()
gpl-3.0
1,920,861,269,690,406,000
44.15847
148
0.563839
false
3.418701
false
false
false
Skyeouyang/Text-Analytics-Project
lexicon analysis.py
1
2398
####################################### ##Author Skye Ouyang ##Date 19th Apr. ####################################### import glob import os def IsNotNull(value): return value is not None and len(value) > 0 #create weapon list dict_weapon = [] weapons = open('D:/1. msba/Trimester II Jan.2017-May.2017/text analytics/project/lexicon/weapon_words.txt','r') for weapon in weapons: t = weapon.strip().lower() if (IsNotNull(t)): dict_weapon.append(t) weapons.close() #create bloody words list dict_bloody = [] bloodys = open('D:/1. msba/Trimester II Jan.2017-May.2017/text analytics/project/lexicon/bloody_words.txt','r') for bloody in bloodys: b = bloody.strip().lower() if (IsNotNull(b)): dict_bloody.append(b) #create mysterious words list dict_mysterious = [] mysteriouss = open('D:/1. msba/Trimester II Jan.2017-May.2017/text analytics/project/lexicon/mysterious_words.txt','r') for mysterious in mysteriouss: m = mysterious.strip().lower() if (IsNotNull(m)): dict_mysterious.append(m) #input data path ="D:/1. msba/Trimester II Jan.2017-May.2017/text analytics/project/dataset/low_score_novel" allFiles = glob.glob(path + "/*.txt") #file = open('D:/1. msba/Trimester II Jan.2017-May.2017/text analytics/project/dataset/high_score_novel/01. The Girl with the Dragon Tattoo.txt','r') weapon_cnt = [] bloody_cnt = [] mysterious_cnt = [] for file in allFiles: with open(file) as fle: fiction = fle.read() # set for loop wea_cnt = 0 blo_cnt = 0 mys_cnt = 0 # count of weapon words for word in dict_weapon: if (word in fiction): wea_cnt = wea_cnt + 1 for word in dict_bloody: if (word in fiction): blo_cnt = blo_cnt + 1 for word in dict_mysterious: if (word in fiction): mys_cnt = mys_cnt + 1 print (wea_cnt, blo_cnt , mys_cnt) # write into list weapon_cnt.append(wea_cnt) bloody_cnt.append(blo_cnt) mysterious_cnt.append(mys_cnt) weapon_cnt ''' for file in allFiles: with open (file) as fle: blo_cnt = 0 fiction = fle.read() ''' #file_name = os.path.splitext(path + '/*.txt')[0] #print ('The size of %s is ' % (file_name) + str(len(fiction)))
apache-2.0
-6,619,393,933,516,462,000
27.604938
149
0.582569
false
2.960494
false
false
false
gandalfcode/gandalf
examples/example09.py
1
1749
#============================================================================== # example09.py # Create initial conditions for pure N-body simulation inside the python # script, and then run the simulation to completion while plotting results. #============================================================================== from gandalf.analysis.facade import * import numpy as np import time # Create empty numpy arrays for setting star initial conditions Nstar = 3 x = np.zeros(Nstar) y = np.zeros(Nstar) vx = np.zeros(Nstar) vy = np.zeros(Nstar) m = np.zeros(Nstar) h = 0.000001*np.ones(Nstar) # Set values for each star individually (Note all velocities initially zero) m[0] = 3.0; x[0] = 1.0; y[0] = 3.0 m[1] = 4.0; x[1] = -2.0; y[1] = -1.0 m[2] = 5.0; x[2] = 1.0; y[2] = -1.0 # Create new 1D simulation object and set parameters sim = newsim(ndim=2,sim='nbody') sim.SetParam('ic','python') sim.SetParam('nbody','hermite4ts') sim.SetParam('sub_systems',0) sim.SetParam('Npec',3) sim.SetParam('Nlevels',1) sim.SetParam('Nstar',Nstar) sim.SetParam('tend',80.0) sim.SetParam('dt_snap',1.0) sim.SetParam('noutputstep',128) sim.SetParam('ndiagstep',2048) sim.SetParam('dimensionless',1) sim.SetParam('run_id','BURRAU1') sim.SetParam('out_file_form','su') # Call setup routines and import particle data sim.PreSetupForPython() sim.ImportArray(x,'x','star') sim.ImportArray(y,'y','star') sim.ImportArray(vx,'vx','star') sim.ImportArray(vy,'vy','star') sim.ImportArray(m,'m','star') sim.ImportArray(h,'h','star') sim.SetupSimulation() # Plot the density of all particles near the shock plot("x","y",type="star") limit("x",-30.0,30.0,window="all") limit("y",-20.0,40.0,window="all") # Run simulation and save plot to file run() block()
gpl-2.0
-2,850,669,717,202,946,000
29.684211
79
0.63522
false
2.867213
false
false
false
Sjc1000/PyRC
UI/Disabled/FriendsList.py
1
2227
#!/usr/bin/env python3 from gi.repository import Gtk, Gdk import json class FriendsList(): servers = {} active_server = None def __init__(self, MainWindow): self.MainWindow = MainWindow self.position = [8, 5, 1, 4] def prebuild(self): self.MainWindow.ui_plugins['UserList'].position = (8, 0, 1, 5) return None def build(self): self.scroll_window = Gtk.ScrolledWindow() self.list = Gtk.ListStore(str, str) self.view = Gtk.TreeView(self.list) self.view.set_activate_on_single_click(True) self.view.set_hexpand(True) self.view.connect('row-activated', self.clicked) text_render = Gtk.CellRendererText() username = Gtk.TreeViewColumn('Friends', text_render, text=0, foreground=1) self.view.append_column(username) self.scroll_window.add(self.view) self.MainWindow.grid.attach(self.scroll_window, *self.position) return None def clicked(self, TreeView, TreePath, TreeViewColumn): print('User list clicked') return None def add_friend(self, connection, nickname): connection.send('MONITOR + ' + nickname) self.servers[connection.server]['friends'][nickname] = {'iter': None, 'online': False} if connection.server == self.active_server: iter = self.list.append([nickname, 'grey']) self.servers[connection.server]['friends'][nickname]['iter'] = iter return None def activate_path(self, server, channel, clicked=False): self.active_server = server #redraw return None def on376(self, connection, *junk): with open('UI/friends.json', 'r') as ffile: friends = json.loads(ffile.read()) if connection.server not in friends: return None self.servers[connection.server] = {'friends': {}} for nickname in sorted(friends[connection.server]): self.add_friend(connection, nickname) connection.send('MONITOR s') return None def on730(self, connection, host, nickname, uhost): if nickname == connection.nickname: return None print( uhost ) return None
gpl-2.0
-5,208,045,553,747,212,000
32.253731
94
0.619668
false
3.955595
false
false
false
wujuguang/sqlalchemy
lib/sqlalchemy/dialects/postgresql/pygresql.py
1
8129
# postgresql/pygresql.py # Copyright (C) 2005-2019 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ .. dialect:: postgresql+pygresql :name: pygresql :dbapi: pgdb :connectstring: postgresql+pygresql://user:password@host:port/dbname[?key=value&key=value...] :url: http://www.pygresql.org/ .. note:: The pygresql dialect is **not tested as part of SQLAlchemy's continuous integration** and may have unresolved issues. The recommended PostgreSQL dialect is psycopg2. """ # noqa import decimal import re from .base import _DECIMAL_TYPES from .base import _FLOAT_TYPES from .base import _INT_TYPES from .base import PGCompiler from .base import PGDialect from .base import PGIdentifierPreparer from .base import UUID from .hstore import HSTORE from .json import JSON from .json import JSONB from ... import exc from ... import processors from ... import util from ...sql.elements import Null from ...types import JSON as Json from ...types import Numeric class _PGNumeric(Numeric): def bind_processor(self, dialect): return None def result_processor(self, dialect, coltype): if not isinstance(coltype, int): coltype = coltype.oid if self.asdecimal: if coltype in _FLOAT_TYPES: return processors.to_decimal_processor_factory( decimal.Decimal, self._effective_decimal_return_scale ) elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: # PyGreSQL returns Decimal natively for 1700 (numeric) return None else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) else: if coltype in _FLOAT_TYPES: # PyGreSQL returns float natively for 701 (float8) return None elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: return processors.to_float else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) class _PGHStore(HSTORE): def bind_processor(self, dialect): if not dialect.has_native_hstore: return super(_PGHStore, self).bind_processor(dialect) hstore = dialect.dbapi.Hstore def process(value): if isinstance(value, dict): return hstore(value) return value return process def result_processor(self, dialect, coltype): if not dialect.has_native_hstore: return super(_PGHStore, self).result_processor(dialect, coltype) class _PGJSON(JSON): def bind_processor(self, dialect): if not dialect.has_native_json: return super(_PGJSON, self).bind_processor(dialect) json = dialect.dbapi.Json def process(value): if value is self.NULL: value = None elif isinstance(value, Null) or ( value is None and self.none_as_null ): return None if value is None or isinstance(value, (dict, list)): return json(value) return value return process def result_processor(self, dialect, coltype): if not dialect.has_native_json: return super(_PGJSON, self).result_processor(dialect, coltype) class _PGJSONB(JSONB): def bind_processor(self, dialect): if not dialect.has_native_json: return super(_PGJSONB, self).bind_processor(dialect) json = dialect.dbapi.Json def process(value): if value is self.NULL: value = None elif isinstance(value, Null) or ( value is None and self.none_as_null ): return None if value is None or isinstance(value, (dict, list)): return json(value) return value return process def result_processor(self, dialect, coltype): if not dialect.has_native_json: return super(_PGJSONB, self).result_processor(dialect, coltype) class _PGUUID(UUID): def bind_processor(self, dialect): if not dialect.has_native_uuid: return super(_PGUUID, self).bind_processor(dialect) uuid = dialect.dbapi.Uuid def process(value): if value is None: return None if isinstance(value, (str, bytes)): if len(value) == 16: return uuid(bytes=value) return uuid(value) if isinstance(value, int): return uuid(int=value) return value return process def result_processor(self, dialect, coltype): if not dialect.has_native_uuid: return super(_PGUUID, self).result_processor(dialect, coltype) if not self.as_uuid: def process(value): if value is not None: return str(value) return process class _PGCompiler(PGCompiler): def visit_mod_binary(self, binary, operator, **kw): return ( self.process(binary.left, **kw) + " %% " + self.process(binary.right, **kw) ) def post_process_text(self, text): return text.replace("%", "%%") class _PGIdentifierPreparer(PGIdentifierPreparer): def _escape_identifier(self, value): value = value.replace(self.escape_quote, self.escape_to_quote) return value.replace("%", "%%") class PGDialect_pygresql(PGDialect): driver = "pygresql" statement_compiler = _PGCompiler preparer = _PGIdentifierPreparer @classmethod def dbapi(cls): import pgdb return pgdb colspecs = util.update_copy( PGDialect.colspecs, { Numeric: _PGNumeric, HSTORE: _PGHStore, Json: _PGJSON, JSON: _PGJSON, JSONB: _PGJSONB, UUID: _PGUUID, }, ) def __init__(self, **kwargs): super(PGDialect_pygresql, self).__init__(**kwargs) try: version = self.dbapi.version m = re.match(r"(\d+)\.(\d+)", version) version = (int(m.group(1)), int(m.group(2))) except (AttributeError, ValueError, TypeError): version = (0, 0) self.dbapi_version = version if version < (5, 0): has_native_hstore = has_native_json = has_native_uuid = False if version != (0, 0): util.warn( "PyGreSQL is only fully supported by SQLAlchemy" " since version 5.0." ) else: self.supports_unicode_statements = True self.supports_unicode_binds = True has_native_hstore = has_native_json = has_native_uuid = True self.has_native_hstore = has_native_hstore self.has_native_json = has_native_json self.has_native_uuid = has_native_uuid def create_connect_args(self, url): opts = url.translate_connect_args(username="user") if "port" in opts: opts["host"] = "%s:%s" % ( opts.get("host", "").rsplit(":", 1)[0], opts.pop("port"), ) opts.update(url.query) return [], opts def is_disconnect(self, e, connection, cursor): if isinstance(e, self.dbapi.Error): if not connection: return False try: connection = connection.connection except AttributeError: pass else: if not connection: return False try: return connection.closed except AttributeError: # PyGreSQL < 5.0 return connection._cnx is None return False dialect = PGDialect_pygresql
mit
-2,064,211,738,100,849,400
29.56015
97
0.570058
false
4.282929
false
false
false
LockScreen/Backend
venv/lib/python2.7/site-packages/botocore/docs/sharedexample.py
1
9129
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import re import numbers from botocore.utils import parse_timestamp from datetime import datetime class SharedExampleDocumenter(object): def document_shared_example(self, example, prefix, section, operation_model): """Documents a single shared example based on its definition. :param example: The model of the example :param prefix: The prefix to use in the method example. :param section: The section to write to. :param operation_model: The model of the operation used in the example """ section.style.new_paragraph() section.write(example.get('description')) section.style.new_line() self.document_input(section, example, prefix, operation_model.input_shape) self.document_output(section, example, operation_model.output_shape) def document_input(self, section, example, prefix, shape): input_section = section.add_new_section('input') input_section.style.start_codeblock() if prefix is not None: input_section.write(prefix) params = example['input'] comments = example.get('comments') if comments: comments = comments.get('input') param_section = input_section.add_new_section('parameters') self._document_params(param_section, params, comments, [], shape) closing_section = input_section.add_new_section('input-close') closing_section.style.new_line() closing_section.style.new_line() closing_section.write('print(response)') closing_section.style.end_codeblock() def document_output(self, section, example, shape): output_section = section.add_new_section('output') output_section.writeln('Expected Output:') output_section.style.start_codeblock() params = example.get('output', {}) # There might not be an output, but we will return metadata anyway params['ResponseMetadata'] = {"...": "..."} comments = example.get('comments') if comments: comments = comments.get('output') self._document_dict(output_section, params, comments, [], shape, True) closing_section = output_section.add_new_section('output-close') closing_section.style.end_codeblock() def _document(self, section, value, comments, path, shape): """ :param section: The section to add the docs to. :param value: The input / output values representing the parameters that are included in the example. :param comments: The dictionary containing all the comments to be applied to the example. :param path: A list describing where the documenter is in traversing the parameters. This is used to find the equivalent location in the comments dictionary. """ if isinstance(value, dict): self._document_dict(section, value, comments, path, shape) elif isinstance(value, list): self._document_list(section, value, comments, path, shape) elif isinstance(value, numbers.Number): self._document_number(section, value, path) elif shape and shape.type_name == 'timestamp': self._document_datetime(section, value, path) else: self._document_str(section, value, path) def _document_dict(self, section, value, comments, path, shape, top_level=False): dict_section = section.add_new_section('dict-value') self._start_nested_value(dict_section, '{') for key, val in value.items(): path.append('.%s' % key) item_section = dict_section.add_new_section(key) item_section.style.new_line() item_comment = self._get_comment(path, comments) if item_comment: item_section.write(item_comment) item_section.style.new_line() item_section.write("'%s': " % key) # Shape could be none if there is no output besides ResponseMetadata item_shape = None if shape: if shape.type_name == 'structure': item_shape = shape.members.get(key) elif shape.type_name == 'map': item_shape = shape.value self._document(item_section, val, comments, path, item_shape) path.pop() dict_section_end = dict_section.add_new_section('ending-brace') self._end_nested_value(dict_section_end, '}') if not top_level: dict_section_end.write(',') def _document_params(self, section, value, comments, path, shape): param_section = section.add_new_section('param-values') self._start_nested_value(param_section, '(') for key, val in value.items(): path.append('.%s' % key) item_section = param_section.add_new_section(key) item_section.style.new_line() item_comment = self._get_comment(path, comments) if item_comment: item_section.write(item_comment) item_section.style.new_line() item_section.write(key + '=') # Shape could be none if there are no input parameters item_shape = None if shape: item_shape = shape.members.get(key) self._document(item_section, val, comments, path, item_shape) path.pop() param_section_end = param_section.add_new_section('ending-parenthesis') self._end_nested_value(param_section_end, ')') def _document_list(self, section, value, comments, path, shape): list_section = section.add_new_section('list-section') self._start_nested_value(list_section, '[') item_shape = shape.member for index, val in enumerate(value): item_section = list_section.add_new_section(index) item_section.style.new_line() path.append('[%s]' % index) item_comment = self._get_comment(path, comments) if item_comment: item_section.write(item_comment) item_section.style.new_line() self._document(item_section, val, comments, path, item_shape) path.pop() list_section_end = list_section.add_new_section('ending-bracket') self._end_nested_value(list_section_end, '],') def _document_str(self, section, value, path): # We do the string conversion because this might accept a type that # we don't specifically address. section.write("'%s'," % str(value)) def _document_number(self, section, value, path): section.write("%s," % str(value)) def _document_datetime(self, section, value, path): datetime_tuple = parse_timestamp(value).timetuple() datetime_str = str(datetime_tuple[0]) for i in range(1, len(datetime_tuple)): datetime_str += ", " + str(datetime_tuple[i]) section.write("datetime(%s)," % datetime_str) def _get_comment(self, path, comments): key = re.sub('^\.', '', ''.join(path)) if comments and key in comments: return '# ' + comments[key] else: return '' def _start_nested_value(self, section, start): section.write(start) section.style.indent() section.style.indent() def _end_nested_value(self, section, end): section.style.dedent() section.style.dedent() section.style.new_line() section.write(end) def document_shared_examples(section, operation_model, example_prefix, shared_examples): """Documents the shared examples :param section: The section to write to. :param operation_model: The model of the operation. :param example_prefix: The prefix to use in the method example. :param shared_examples: The shared JSON examples from the model. """ container_section = section.add_new_section('shared-examples') container_section.style.new_paragraph() container_section.style.bold('Examples') documenter = SharedExampleDocumenter() for example in shared_examples: documenter.document_shared_example( example=example, section=container_section.add_new_section(example['id']), prefix=example_prefix, operation_model=operation_model )
mit
-1,774,796,653,096,055,800
40.684932
80
0.614197
false
4.212737
false
false
false
disqus/zumanji
src/zumanji/views.py
1
6969
from django.conf import settings from django.core.urlresolvers import reverse from django.db import transaction from django.http import HttpResponseRedirect, HttpResponseForbidden from django.shortcuts import render, get_object_or_404 from django.utils import simplejson from django.views.decorators.csrf import csrf_protect, csrf_exempt from functools import wraps from zumanji.forms import UploadJsonForm from zumanji.helpers import get_trace_data, get_changes, get_git_changes from zumanji.models import Project, Build, BuildTag, Test from zumanji.importer import import_build NOTSET = object() def api_auth(func): @wraps(func) def wrapped(request, *args, **kwargs): if request.REQUEST.get('api_key'): if request.REQUEST['api_key'] != settings.ZUMANJI_CONFIG.get('API_KEY', NOTSET): return HttpResponseForbidden('Invalid api_key') return func(request, *args, **kwargs) return csrf_protect(func)(request, *args, **kwargs) return csrf_exempt(wrapped) def index(request): build_qs = Build.objects.order_by('-revision__datetime', '-datetime').select_related('revision') project_list = [] # lol O(N) for project in Project.objects.all(): try: latest_build = build_qs.filter(project=project)[0] except IndexError: latest_build = None project_list.append((project, latest_build)) return render(request, 'zumanji/index.html', { 'project_list': project_list, }) def view_project(request, project_label): project = get_object_or_404(Project, label=project_label) build_list = list(Build.objects .filter(project=project) .order_by('-revision__datetime', '-datetime') .select_related('revision', 'project')) return render(request, 'zumanji/project.html', { 'project': project, 'build_list': build_list, }) def view_tag(request, project_label, tag_id): project = get_object_or_404(Project, label=project_label) tag = get_object_or_404(BuildTag, pk=tag_id) build_list = list(Build.objects .filter(project=project, tags=tag) .order_by('-datetime') .select_related('revision', 'project')) return render(request, 'zumanji/tag.html', { 'project': project, 'tag': tag, 'build_list': build_list, }) def view_build(request, project_label, build_id, tag_id=None): filter_args = dict(project__label=project_label, id=build_id) tag = None if tag_id: tag = get_object_or_404(BuildTag, id=tag_id) filter_args["tags"] = tag build = get_object_or_404(Build, **filter_args) project = build.project previous_build = build.get_previous_build(tag=tag) next_build = build.get_next_build(tag=tag) test_list = list(build.test_set .filter(parent__isnull=True) .order_by('-upper90_duration')) compare_with = request.GET.get('compare_with') if compare_with: try: compare_build = Build.objects.get(project__label=project_label, id=compare_with) except Build.DoesNotExist: compare_build = None else: compare_build = previous_build changes = get_changes(compare_build, test_list) if compare_build: git_changes = get_git_changes(build, compare_build) else: git_changes = None return render(request, 'zumanji/build.html', { 'project': project, 'tag': tag, 'build': build, 'previous_build': previous_build, 'compare_build': compare_build, 'next_build': next_build, 'test_list': test_list, 'changes': changes, 'git_changes': git_changes, }) def view_test(request, project_label, build_id, test_label): test = get_object_or_404(Test, project__label=project_label, build=build_id, label=test_label) project = test.project build = test.build test_list = list(Test.objects.filter(parent=test) .order_by('-upper90_duration') .select_related('parent')) # this is actually a <Test> previous_test_by_build = test.get_test_in_previous_build() next_test_by_build = test.get_test_in_next_build() breadcrumbs = [ (reverse('zumanji:view_build', kwargs={'project_label': project.label, 'build_id': build.id}), 'Build #%s' % build.id) ] last = '' for node in test.get_context(): node_label = node.label[len(last):] breadcrumbs.append( (reverse('zumanji:view_test', kwargs={ 'project_label': project.label, 'build_id': build.id, 'test_label': node.label, }), node_label) ) last = node.label + '.' # include the dot previous_builds = test.get_previous_builds(50) compare_with = request.GET.get('compare_with') if compare_with: try: compare_build = Build.objects.get(project__label=project_label, id=compare_with) except Build.DoesNotExist: compare_build = None else: compare_build = previous_test_by_build.build if previous_test_by_build else None if compare_build: try: compare_test = compare_build.test_set.get(label=test.label) except Test.DoesNotExist: compare_test = None git_changes = get_git_changes(build, compare_build) else: compare_test = None git_changes = None trace_results = get_trace_data(test, compare_test) if previous_test_by_build: tests_to_check = test_list changes = get_changes(compare_build, tests_to_check) else: changes = [] return render(request, 'zumanji/test.html', { 'breadcrumbs': breadcrumbs, 'project': project, 'build': build, 'previous_test_by_build': previous_test_by_build, 'next_test_by_build': next_test_by_build, 'previous_builds': previous_builds, 'test': test, 'test_list': test_list, 'changes': changes, 'compare_build': compare_build, 'trace_results': trace_results, 'git_changes': git_changes, }) @api_auth @transaction.commit_on_success def upload_project_build(request, project_label): project = get_object_or_404(Project, label=project_label) form = UploadJsonForm(request.POST or None, request.FILES or None) if form.is_valid(): data = simplejson.loads(request.FILES['json_file'].read()) try: build = import_build(data, project=project.label, revision=form.cleaned_data.get('revision')) except Exception, e: form.errors['json_file'] = unicode(e) else: return HttpResponseRedirect(reverse('zumanji:view_build', kwargs={ 'project_label': project.label, 'build_id': build.id})) return render(request, 'zumanji/upload_build.html', { 'project': project, 'form': form, })
apache-2.0
3,989,766,211,965,808,000
31.565421
126
0.627924
false
3.656348
true
false
false
ZwEin27/phone-number-matcher
dig_phone_extractor.py
1
23737
# -*- coding: utf-8 -*- # @Author: ZwEin # @Date: 2016-06-21 12:36:47 # @Last Modified by: ZwEin # @Last Modified time: 2016-09-29 21:54:12 import os import re import sys import json import copy import types import string import collections import phonenumbers from datetime import datetime from crf_tokenizer import CrfTokenizer from urlparse import urlparse from string import maketrans from phonenumbers.phonenumberutil import NumberParseException from difflib import SequenceMatcher def is_valid_datetime(raw, date_format): try: datetime.strptime(raw, date_format) return True except ValueError: return False class Preprocessor(): re_prep = re.compile(r'[\(\)]') reg_simple_format = [ r'(?:(?<=[ \A\b-\.\?])\d{3}[ \?\.-]\d{3}[ \?\.-]\d{4}(?=[ \Z\b-\.\?]))' ] re_simple_format = re.compile(r'(?:'+r'|'.join(reg_simple_format)+r')') datetime_regexes = [ r"(?:\d{2}[ _-]\d{2}[ _-]\d{4})", r"(?:\d{4}[ _-]\d{2}[ _-]\d{2})" ] datetime_regex = r"(?:" + r"|".join(datetime_regexes) + ")" re_datetime_regex = re.compile(datetime_regex) re_digits_regex = re.compile(r"\d+") def prep_datetime(self, raw): m = Preprocessor.re_datetime_regex.findall(raw) for d in m: dd = ''.join(Preprocessor.re_digits_regex.findall(d)) if is_valid_datetime(dd, '%Y%m%d') or is_valid_datetime(dd, '%m%d%Y'): raw = raw.replace(d, "") return raw money_regex = r"(?:(?<=[\D])\$\d+(?=[\W_]))" units = ['lbs', 'kg', 'hour', 'hr', 'hh'] unit_regex = r"(?:\d+[\s\W]*(" + r"|".join(units) + "))" others_regexes = [ r"24/7", r"#\d+", r"\d+\'\d+", r"(?<=[\W_])\d{5}[\W_]{1,}\d{5}(?=[\W_])", r"- {1,}\d+$", r"\d+\%" ] other_regex = r"(?:" + "|".join(others_regexes) + ")" all_regexes = [money_regex, unit_regex, other_regex] all_regex = r"(" + r"|".join(all_regexes) + ")" re_all_regex = re.compile(all_regex) def preprocess(self, raw): raw = raw.lower() raw = raw.encode('ascii', 'ignore') raw = self.prep_datetime(raw) raw = Preprocessor.re_prep.sub(' ', raw) raw = Preprocessor.re_all_regex.sub('', raw) raw = Preprocessor.re_simple_format.sub('pnwrapper \g<0> pnwrapper', raw) return raw SOURCE_TYPE_TEXT = 'text' SOURCE_TYPE_URL = 'url' class Tokenizer(): re_2_digts_only_in_url_regex = re.compile(r'(?<=[-_])\d{2}(?=[_/])') re_all_alphabet_in_url_regex = re.compile(r'\w+') def __init__(self, source_type='text'): self.set_source_type(source_type) def set_source_type(self, source_type): """ 'text' or 'url' """ st = source_type.lower() if source_type.lower() not in [SOURCE_TYPE_TEXT, SOURCE_TYPE_URL] : raise Exception(source_type + ' is not a source type, which should be "text" or "url"') self.source_type = source_type def remove_punctuation(self, raw): return raw.translate(string.maketrans("",""), string.punctuation) def tokenize(self, raw): result = None if self.source_type == SOURCE_TYPE_TEXT: result = self.tokenize_text(raw) elif self.source_type == SOURCE_TYPE_URL: result = self.tokenize_url(raw) return ' '.join(result.split()) def tokenize_text(self, raw): t = CrfTokenizer() t.setRecognizeHtmlEntities(True) t.setRecognizeHtmlTags(True) t.setSkipHtmlTags(True) t.setRecognizePunctuation(True) tokens = t.tokenize(raw) tokens = ' '.join(tokens) tokens = self.remove_punctuation(tokens) return tokens def tokenize_url(self, raw): SEPARATOR = ' ' url_obj = urlparse(raw) # parse netloc netloc = url_obj.netloc.split('.')[:-2] # get rid of port numbers, ext and domain name # parse path path = url_obj.path path = Tokenizer.re_2_digts_only_in_url_regex.sub('', path) path = path.split('/') content = netloc + path content = [SEPARATOR.join(Tokenizer.re_all_alphabet_in_url_regex.findall(_)) for _ in content] # parse params # url_obj.params # parse query # url_obj.query return ' sep '.join(content) class Cleaner(): def prep_misspelled_numeral_words(self, raw): misspelling_dict = { "th0usand": "thousand", "th1rteen": "thirteen", "f0urteen": "fourteen", "e1ghteen": "eighteen", "n1neteen": "nineteen", "f1fteen": "fifteen", "s1xteen": "sixteen", "th1rty": "thirty", "e1ghty": "eighty", "n1nety": "ninety", "fourty": "forty", "f0urty": "forty", "e1ght": "eight", "f0rty": "forty", "f1fty": "fifty", "s1xty": "sixty", "zer0": "zero", "for": "four", "f0ur": "four", "f1ve": "five", "n1ne": "nine", "0ne": "one", "too": "two", "tw0": "two", "to": "two", "s1x": "six" } for key in misspelling_dict.keys(): raw = raw.replace(key, misspelling_dict[key]) return raw numbers = ['zero', 'one', 'two', 'three', 'four', 'five', 'siz', 'seven', 'eight', 'nine'] re_twenty_x = re.compile(r"(two|twenty[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_thirty_x = re.compile(r"(three|thirty[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_forty_x = re.compile(r"(four|forty[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_fifty_x = re.compile(r"(five|fifty[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_sixty_x = re.compile(r"(six|sixty[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_seventy_x = re.compile(r"(seven|seventy[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_eighty_x = re.compile(r"(eight|eighty[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_ninety_x = re.compile(r"(nine|ninety[\W_]+(?=(\d|" + r"|".join(numbers) + ")))") re_ten = re.compile(r"(?<=[ilo0-9])ten(?=[ \b0-9])") re_one = re.compile(r'(?:(?<=([0-9yneorxt]| ))one|(?:(?<=[ils])[i]((?=[ils])|$)))') re_zero = re.compile(r'(?:zero|oh|(?:(?<=[0-9])(o+?))|(?:o(?=[0-9]))|(?:(?<=[o\s])o(?=[o\s])))') def prep_replace_numeral_words(self, raw): raw = raw.replace("hundred", "00") raw = raw.replace("thousand", "000") raw = raw.replace("eleven", "11") raw = raw.replace("twelve", "12") raw = raw.replace("thirteen", "13") raw = raw.replace("fourteen", "14") raw = raw.replace("fifteen", "15") raw = raw.replace("sixteen", "16") raw = raw.replace("seventeen", "17") raw = raw.replace("eighteen", "18") raw = raw.replace("nineteen", "19") raw = Cleaner.re_twenty_x.sub("2", raw) raw = Cleaner.re_thirty_x.sub("3", raw) raw = Cleaner.re_forty_x.sub("4", raw) raw = Cleaner.re_fifty_x.sub("5", raw) raw = Cleaner.re_sixty_x.sub("6", raw) raw = Cleaner.re_seventy_x.sub("7", raw) raw = Cleaner.re_eighty_x.sub("8", raw) raw = Cleaner.re_ninety_x.sub("9", raw) raw = Cleaner.re_ten.sub("10", raw) raw = Cleaner.re_one.sub("1", raw) raw = Cleaner.re_zero.sub("0", raw) raw = raw.replace("twenty", "20") raw = raw.replace("thirty", "30") raw = raw.replace("forty", "40") raw = raw.replace("fifty", "50") raw = raw.replace("sixty", "60") raw = raw.replace("seventy", "70") raw = raw.replace("eighty", "80") raw = raw.replace("ninety", "90") return raw def clean(self, raw): raw = self.prep_misspelled_numeral_words(raw) raw = self.prep_replace_numeral_words(raw) # print raw return raw class ZEExtractor(): def __init__(self): pass prefix = r'(?:(?<=[\A\b\sa-zA-Z])|^)' # prefix = r'\b' # prefix = r'[ ]?' postfix = r'(?:(?=[\Z\b\sa-zA-Z])|$)' # postfix = r'\b' # postfix = r'[ ]?' phone_number_format_regex = [ r'(?:'+prefix+r"\d{10,13}"+postfix+r')', r'(?:'+prefix+r"\d{9,10}"+postfix+r')', r'(?:'+prefix+r"\d{8}[ ]\d{3,4}"+postfix+r')', r'(?:'+prefix+r"\d{7}[ ]\d{3,4}"+postfix+r')', r'(?:'+prefix+r"\d{6}[ ]\d{4}"+postfix+r')', r'(?:'+prefix+r"\d{5}[ ]\d{6}"+postfix+r')', r'(?:'+prefix+r"\d{5}[ ]\d{4}[ ]\d{4}"+postfix+r')', r'(?:'+prefix+r"\d{5}[ ]\d{4}"+postfix+r')', r'(?:'+prefix+r"\d{5}[ ]\d{4}[ ]\d{2}[ ]\d{2}"+postfix+r')', r'(?:'+prefix+r"\d{4}[ ]\d{4}[ ]\d{2}"+postfix+r')', r'(?:'+prefix+r"\d{4}[ ]\d{2}[ ]\d{2}[ ]\d{2}[ ]\d{2}"+postfix+r')', r'(?:'+prefix+r"\d{4}[ ]\d{3}[ ]\d{3}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{7,8}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{4}[ ]\d{4}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{4}[ ]\d{3}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{3}[ ]\d{4}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{3}[ ]\d{3}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{3}[ ]\d{2}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{3}[ ]\d{1}[ ]\d{3}"+postfix+r')', r'(?:'+prefix+r"\d{3}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{4}"+postfix+r')', r'(?:'+prefix+r"\d{2}[ ]\d{4}[ ]\d{4}"+postfix+r')', r'(?:'+prefix+r"\d{2}[ ]\d{8}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{8}[ ]\d{1}"+postfix+r')', # \d{2}[ ] ... r'(?:'+prefix+r"\d{1}[ ]\d{3}[ ]\d{3}[ ]\d{3}"+postfix+r')', r'(?:'+prefix+r"\d{2}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{2}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{2}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{2}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{2}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{2}[ ]\d{1}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{2}[ ]\d{1}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{2}[ ]\d{1}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{2}"+postfix+r')', r'(?:'+prefix+r"\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}[ ]\d{1}"+postfix+r')' ] # numbers_regex = r"(?:" + r"|".join(phone_number_format_regex) + r")" numbers_regex = r"(?:" + r"|".join(phone_number_format_regex) + r")" re_numbers_regex = re.compile(numbers_regex) # print numbers_regex def extract(self, raw): raw = ZEExtractor.re_numbers_regex.findall(raw) raw = [''.join(_.split()) for _ in raw if len(_.strip()) >= 10] return '\t'.join(raw) class Validator(): re_zero = re.compile(r'0{3,}') def validate_phone_number_with_coutry_code(self, raw, country_code='US'): try: z = phonenumbers.parse(raw, country_code) except NumberParseException, e: pass """ if e.error_type == NumberParseException.INVALID_COUNTRY_CODE: # Invalid country code specified return [] elif e.error_type == NumberParseException.NOT_A_NUMBER: # The string passed in had fewer than 3 digits in it. # The number failed to match the regular expression return [] elif e.error_type == NumberParseException.TOO_SHORT_AFTER_IDD: # The string started with an international dialing prefix # but after this was removed, it had fewer digits than any # valid phone number (including country code) could have. return [] elif e.error_type == NumberParseException.TOO_SHORT_NSN: # After any country code has been stripped, the string # had fewer digits than any valid phone number could have. return [] elif e.error_type == NumberParseException.TOO_LONG: # String had more digits than any valid phone number could have return [] """ # print e.error_type, e._msg else: if phonenumbers.is_possible_number(z) and phonenumbers.is_valid_number(z): return [raw] else: return [] def validate_phone_number(self, raw): # match all countries if using area_code.get_all_country_iso_two_letter_code() # may include too short phone numbers if use 'DE' country_code_list = ['US', 'CN', 'IN', 'UA', 'JP', 'RU', 'IT', 'DE', 'CA', 'TR'] for country_code in country_code_list: rtn = self.validate_phone_number_with_coutry_code(raw, country_code=country_code) if rtn: return rtn def is_datetime(self, raw): size = len(raw) date_format = '' if size == 14: return is_valid_datetime(raw, '%Y%m%d%H%M%S') elif size == 8: return is_valid_datetime(raw, '%Y%m%d') elif size == 6: return is_valid_datetime(raw, '%Y%m%d') or is_valid_datetime(raw, '%H%M%S') else: return False re_num_digits = [ None, re.compile(r"\d{1}"), re.compile(r"\d{2}"), re.compile(r"\d{3}"), re.compile(r"\d{4}"), re.compile(r"\d{5}"), re.compile(r"\d{6}") ] def is_all_dup_digits(self, raw): for i in range(1, 6): rtn = Validator.re_num_digits[i].findall(raw) if len(raw) % i != 0: continue if all(rtn[0] == rest for rest in rtn): return True return False re_start_zero = re.compile(r'^0+') def suggest_most_overlap(self, extracted_phone_list): def similar(a, b): return SequenceMatcher(None, a, b).ratio() potential_invalid, potential_valid = [], [] for pn in extracted_phone_list: if len(pn) == 10: potential_valid.append(pn) else: potential_invalid.append(pn) ans = list(potential_valid) for pi in potential_invalid: if any(similar(pi, pv) < .3 for pv in potential_valid): ans.append(pi) return ans def validate(self, raw): ans = [] for nums in raw.split('\t'): nums = nums.strip() nums = Validator.re_start_zero.sub('', nums) if len(nums) > 16: continue if len(Validator.re_zero.findall(nums)): continue if self.is_all_dup_digits(nums): continue if self.is_datetime(nums): continue ans += [nums] # valid = self.validate_phone_number(nums) # if valid: # ans.extend(valid) ans = list(set(ans)) ans = self.suggest_most_overlap(ans) return ' '.join(ans) class Normalizer(): # try extracting from this one live escort reviews pnwrapper 754 307 7279 pnwrapper 49 91 3524432077 you won t be disappointedangel re_digits = re.compile(r'(?:(?<=[ \s\b\Aa-zA-Z])[\d ]+(?=[ \s\b\Za-zA-Z]))') def normalize(self, cleaned_output, uncleaned_output, output_format='list'): # print [_.strip() for _ in Normalizer.re_digits.findall(tokenized_content) if _.strip() != ''] if output_format == 'obfuscation': output = [] for co in cleaned_output.split(): phonenum = {} phonenum['telephone'] = co if co in uncleaned_output: phonenum['obfuscation'] = 'False' else: phonenum['obfuscation'] = 'True' output.append(phonenum) return output else: return cleaned_output.split() class PhoneNumberExtractor(object): PN_OUTPUT_FORMAT_LIST = 'list' PN_OUTPUT_FORMAT_OBFUSCATION = 'obfuscation' def __init__(self, _output_format='list'): self.preprocessor = Preprocessor() self.tokenizer = Tokenizer(source_type='text') self.extractor = ZEExtractor() self.cleaner = Cleaner() self.validator = Validator() self.normalizer = Normalizer() self.set_output_format(_output_format) def set_output_format(self, _output_format): # 1. list, 2. obfuscation if _output_format not in [PhoneNumberExtractor.PN_OUTPUT_FORMAT_LIST, PhoneNumberExtractor.PN_OUTPUT_FORMAT_OBFUSCATION]: raise Exception('output_format should be "list" or "obfuscation"') self.output_format = _output_format def do_process(self, content, source_type='text', do_preprocess=True, do_tokenize=True, do_clean=True, do_extract=True, do_validate=True): if do_preprocess: content = self.preprocessor.preprocess(content) if do_tokenize: self.tokenizer.set_source_type(source_type) content = self.tokenizer.tokenize(content) if do_clean: content = self.cleaner.clean(content) if do_extract: content = self.extractor.extract(content) if do_validate: content = self.validator.validate(content) return content def match(self, content, source_type='text'): cleaned_ans = self.do_process(content, source_type=source_type) uncleaned_ans = self.do_process(content, source_type=source_type, do_clean=False) return self.normalizer.normalize(cleaned_ans, uncleaned_ans, output_format=self.output_format) ######################################################################## # URLExtractor ######################################################################## import esm import idna import tldextract re_dot = re.compile(r'(?:\s+?dot\s+?)', re.IGNORECASE) reg_url_charactor = '[a-z0-9-.]' re_url_charactor = re.compile(reg_url_charactor, re.IGNORECASE) re_pretld = re.compile(reg_url_charactor+'+?$', re.IGNORECASE) re_posttld = re.compile(':?[0-9]*[/[!#$&-;=?a-z_]+]?', re.IGNORECASE) class URLExtractor(object): def __init_tld_index(): tldindex = esm.Index() tlds = (tldextract.TLDExtract()._get_tld_extractor().tlds) ldindex = esm.Index() for tld in tlds: tldindex.enter('.' + tld.encode('idna')) tldindex.fix() return tldindex tldindex = __init_tld_index() @staticmethod def preprocess(text): def clean(text): text = re_dot.sub('.', text) return text text = clean(text) return text @staticmethod def query(text): ans = [] exts = URLExtractor.tldindex.query(text) for ext in exts: pretld, posttld = None, None url = '' tld = ext[1] startpt, endpt = ext[0][0], ext[0][1] if len(text) > endpt: nextcharacter = text[endpt] if re_url_charactor.match(nextcharacter): continue posttld = re_posttld.match(text[endpt:]) pretld = re_pretld.search(text[:startpt]) if pretld: url = pretld.group(0) startpt -= len(pretld.group(0)) url += tld if posttld: url += posttld.group(0) endpt += len(posttld.group(0)) url = url.rstrip(',.') ans.append(url) ans = list(set([_ for _ in ans if _])) return ans @staticmethod def extract(text): text = text.encode('ascii', 'ignore') text= URLExtractor.preprocess(text) ans = URLExtractor.query(text) return ans # in production # from digExtractor.extractor import Extractor # in test class Extractor: def extract(doc): raise NotImplementedError( "Need to implement extract function" ) # should create a new dictionary each time def get_metadata(): raise NotImplementedError( "Need to implement get_metadata function" ) def set_metadata(): raise NotImplementedError( "Need to implement set_metadata function" ) def get_renamed_input_fields(self): raise NotImplementedError( "Need to implement get_renamed_input_fields function" ) def set_renamed_input_fields(self, renamed_input_fields): if not (isinstance(renamed_input_fields, basestring) or isinstance(renamed_input_fields, types.ListType)): raise ValueError("renamed_input_fields must be a string or a list") self.renamed_input_fields = renamed_input_fields return self class PhoneExtractor(Extractor): def __init__(self): self.renamed_input_fields = '' # ? renamed_input_fields def extract(self, doc): urls = URLExtractor.extract(doc) extractor = PhoneNumberExtractor() extracts = [] for url in urls: extracts += extractor.match(url, source_type='url') doc = doc.replace(url, '') extracts += extractor.match(doc, source_type='text') return extracts def get_metadata(self): return copy.copy(self.metadata) def set_metadata(self, metadata): self.metadata = metadata return self def get_renamed_input_fields(self): return self.renamed_input_fields def set_renamed_input_fields(self, renamed_input_fields): if not (isinstance(renamed_input_fields, basestring) or isinstance(renamed_input_fields, types.ListType)): raise ValueError("renamed_input_fields must be a string or a list") self.renamed_input_fields = renamed_input_fields return self if __name__ == '__main__': doc = "71857376 71857376718 test 71857376719 718573767185 71837376718 71981090718 718573767198 719810907185 71857376150 1171857376 http://costarica.backpage.com/BodyRubs/hoy-cerramos-a-las-11-71857376/2909373 Sexy new girl in town searching for a great date wiff u Naughty fresh girl here searching 4 a great date wiff you Sweet new girl in town seeking for a good date with u for80 2sixseven one9zerofor 90hr incall or out call" pe = PhoneExtractor() print pe.extract(doc) """ # Samples # from phone_number_extractor import PhoneNumberExtractor extractor = PhoneNumberExtractor() url_string = "http://costarica.backpage.com/BodyRubs/hoy-cerramos-a-las-11-71857376/2909373" url_phone_numbers = extractor.match(url_string, source_type='url') print url_phone_numbers # text_string = "Sexy new girl in town searching for a great date wiff u Naughty fresh girl here searching 4 a great date wiff you Sweet new girl in town seeking for a good date with u for80 2sixseven one9zerofor 90hr incall or out call" text_string = "71857376 71857376718 test 71857376719 718573767185 71837376718 71981090718 718573767198 719810907185 71857376150 1171857376" text_phone_numbers = extractor.match(text_string, source_type='text') print text_phone_numbers """
apache-2.0
-8,800,745,410,716,933,000
34.694737
433
0.532376
false
3.109786
false
false
false
kobejean/tensorflow
tensorflow/contrib/distribute/python/tpu_strategy.py
1
20404
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TPU Distribution Strategy. This is experimental. It's not ready for general use. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distribute.python import cross_tower_ops as cross_tower_ops_lib from tensorflow.contrib.distribute.python import one_device_strategy from tensorflow.contrib.distribute.python import values from tensorflow.contrib.tpu.python.ops import tpu_ops from tensorflow.contrib.tpu.python.tpu import tpu from tensorflow.contrib.tpu.python.tpu import tpu_system_metadata as tpu_system_metadata_lib from tensorflow.contrib.tpu.python.tpu import training_loop from tensorflow.python.eager import context from tensorflow.python.eager import tape from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops import variables as variables_lib from tensorflow.python.training import device_util from tensorflow.python.training import distribute as distribute_lib from tensorflow.python.util import nest _TPU_INITIALIZE_SYSTEM_COLLECTION = "TPU_STRATEGY_INITIALIZE" def get_tpu_system_metadata(tpu_cluster_resolver): """Retrieves TPU system metadata given a TPUClusterResolver.""" master = tpu_cluster_resolver.master() # pylint: disable=protected-access cluster_spec = tpu_cluster_resolver.cluster_spec() cluster_def = cluster_spec.as_cluster_def() if cluster_spec else None tpu_system_metadata = ( tpu_system_metadata_lib._query_tpu_system_metadata( master, cluster_def=cluster_def, query_topology=False)) return tpu_system_metadata # TODO(jhseu): Deduplicate with MirroredStrategy? def _create_tpu_mirrored_variable(devices, real_mirrored_creator, *args, **kwargs): # pylint: disable=g-missing-docstring # Figure out what collections this variable should be added to. # We'll add the TPUMirroredVariable to those collections instead. collections = kwargs.pop("collections", None) if collections is None: collections = [ops.GraphKeys.GLOBAL_VARIABLES] kwargs["collections"] = [] # TODO(jhseu): Should we have different behavior for different # synchronization settings? # Get aggregation value # TODO(jhseu): Support aggregation in a tower context. aggregation = kwargs.pop("aggregation", vs.VariableAggregation.NONE) if aggregation not in [ vs.VariableAggregation.NONE, vs.VariableAggregation.SUM, vs.VariableAggregation.MEAN, vs.VariableAggregation.ONLY_FIRST_TOWER, ]: raise ValueError("Invalid variable aggregation mode: {} for variable: {}" .format(aggregation, kwargs["name"])) # Ignore user-specified caching device, not needed for mirrored variables. kwargs.pop("caching_device", None) # TODO(josh11b,apassos): It would be better if variable initialization # was never recorded on the tape instead of having to do this manually # here. with tape.stop_recording(): index = real_mirrored_creator(devices, *args, **kwargs) result = values.TPUMirroredVariable(index, index[devices[0]], aggregation) if not context.executing_eagerly(): g = ops.get_default_graph() # If "trainable" is True, next_creator() will add the member variables # to the TRAINABLE_VARIABLES collection, so we manually remove # them and replace with the MirroredVariable. We can't set # "trainable" to False for next_creator() since that causes functions # like implicit_gradients to skip those variables. if kwargs.get("trainable", True): collections.append(ops.GraphKeys.TRAINABLE_VARIABLES) l = g.get_collection_ref(ops.GraphKeys.TRAINABLE_VARIABLES) for v in index.values(): l.remove(v) g.add_to_collections(collections, result) return result # TODO(jhseu): Stop inheriting from OneDeviceStrategy. class TPUStrategy(one_device_strategy.OneDeviceStrategy): """Experimental TPU distribution strategy implementation.""" def __init__(self, tpu_cluster_resolver, steps_per_run, num_cores=None): """Initializes the TPUStrategy object. Args: tpu_cluster_resolver: A tf.contrib.cluster_resolver.TPUClusterResolver, which provides information about the TPU cluster. steps_per_run: Number of steps to run on device before returning to the host. Note that this can have side-effects on performance, hooks, metrics, summaries etc. This parameter is only used when Distribution Strategy is used with estimator or keras. num_cores: Number of cores to use on the TPU. If None specified, then auto-detect the cores and topology of the TPU system. """ # TODO(sourabhbajaj): OneDeviceStrategy should be initialized with the # master node fetched from the cluster resolver. super(TPUStrategy, self).__init__('/device:CPU:0') self._tpu_cluster_resolver = tpu_cluster_resolver self._tpu_metadata = get_tpu_system_metadata(self._tpu_cluster_resolver) # TODO(sourabhbajaj): Change this from num_cores to metadata_override self._num_cores_override = num_cores # TODO(jhseu): Switch to DeviceAssignment to support pods and model # parallelism. device_map = {d.name: i for i, d in enumerate(self._tpu_metadata.devices) if "device:TPU:" in d.name} self._device_index = values.PerDevice(device_map) self._tpu_devices = sorted(device_map.keys()) # Only create variables for the number of towers we're running. self._tpu_devices = self._tpu_devices[:self.num_towers] # TODO(sourabhbajaj): Remove this once performance of running one step # at a time is comparable to multiple steps. self.steps_per_run = steps_per_run def _get_enqueue_op_per_host(self, host_id, iterator, input_shapes, iterations): """Create an enqueue op for a single host identified using host_id. The while_loop op returned will run `iterations` times and in each run enqueue batches for each shard. Args: host_id: integer, id of the host to run the enqueue ops on. iterator: `tf.data` iterator to read the input data. input_shapes: shape of inputs to be enqueue on the queue. This is same as the value of `nest.flatten(iterator.output_shapes)`. iterations: integer, number of iterations to be run; determines the number of batches to be enqueued. Returns: while_loop_op running `iterations` times; in each run we enqueue a batch on the infeed queue from the host with id `host_id` for each device shard. """ host = self.get_host_cpu_device(host_id) def _infeed_enqueue_ops_fn(): """Enqueue ops for one iteration.""" control_deps = [] sharded_inputs = [] enqueue_ops = [] with ops.device(host): for _ in range(self.num_towers_per_host): # Use control dependencies to ensure a deterministic ordering. with ops.control_dependencies(control_deps): inputs = nest.flatten(iterator.get_next()) control_deps.extend(inputs) sharded_inputs.append(inputs) for core_id, shard_input in enumerate(sharded_inputs): enqueue_ops.append( tpu_ops.infeed_enqueue_tuple( inputs=shard_input, shapes=input_shapes, device_ordinal=core_id)) return enqueue_ops def enqueue_ops_loop_body(i): """Callable for the loop body of the while_loop instantiated below.""" with ops.control_dependencies(_infeed_enqueue_ops_fn()): return i + 1 with ops.device(host): enqueue_op_per_host = control_flow_ops.while_loop( lambda i: i < iterations, enqueue_ops_loop_body, [constant_op.constant(0)], parallel_iterations=1) return enqueue_op_per_host def distribute_dataset(self, dataset_fn): # TODO(priyag): Perhaps distribute across cores here. return self._call_dataset_fn(dataset_fn) # TODO(priyag): Deal with OutOfRange errors once b/111349762 is fixed. # TODO(sourabhbajaj): Remove the initial_loop_values parameter when we have # a mechanism to infer the outputs of `fn`. Pending b/110550782. def _run_steps_on_dataset(self, fn, iterator, iterations, initial_loop_values=None): shapes = nest.flatten(iterator.output_shapes) if any([not s.is_fully_defined() for s in shapes]): raise ValueError( 'TPU currently requires fully defined shapes. Either use ' 'set_shape() on the input tensors or use ' 'dataset.batch(..., drop_remainder=True).') types = nest.flatten(iterator.output_types) enqueue_ops = [ self._get_enqueue_op_per_host(host_id, iterator, shapes, iterations) for host_id in range(self.num_hosts)] def dequeue_fn(): dequeued = tpu_ops.infeed_dequeue_tuple(dtypes=types, shapes=shapes) return nest.pack_sequence_as(iterator.output_shapes, dequeued) # Wrap `fn` for repeat. if initial_loop_values is None: initial_loop_values = {} initial_loop_values = nest.flatten(initial_loop_values) ctx = values.MultiStepContext() def run_fn(*args, **kwargs): """Single step on the TPU device.""" del args, kwargs fn_inputs = dequeue_fn() if not isinstance(fn_inputs, tuple): fn_inputs = (fn_inputs,) fn_result = fn(ctx, *fn_inputs) flat_last_step_outputs = nest.flatten(ctx.last_step_outputs) if flat_last_step_outputs: with ops.control_dependencies([fn_result]): return [array_ops.identity(f) for f in flat_last_step_outputs] else: return fn_result # TODO(sourabhbajaj): The input to while loop should be based on the output # type of the step_fn def iterate_on_tpu(): return training_loop.repeat(iterations, run_fn, initial_loop_values) # We capture the control_flow_context at this point, before we run `fn` # inside a while_loop and TPU replicate context. This is useful in cases # where we might need to exit these contexts and get back to the outer # context to do some things, for e.g. create an op which should be # evaluated only once at the end of the loop on the host. One such usage # is in creating metrics' value op. self._outer_control_flow_context = ( ops.get_default_graph()._get_control_flow_context()) # pylint: disable=protected-access replicate_inputs = [[]] * self.num_towers replicate_outputs = tpu.replicate(iterate_on_tpu, replicate_inputs) del self._outer_control_flow_context ctx.run_op = control_flow_ops.group(replicate_outputs, enqueue_ops) # Filter out any ops from the outputs, typically this would be the case # when there were no tensor outputs. last_step_tensor_outputs = [x for x in replicate_outputs if not isinstance(x, ops.Operation)] # Outputs are currently of the structure (grouped by device) # [[output0_device0, output1_device0, output2_device0], # [output0_device1, output1_device1, output2_device1]] # Convert this to the following structure instead: (grouped by output) # [[output0_device0, output0_device1], # [output1_device0, output1_device1], # [output2_device0, output2_device1]] last_step_tensor_outputs = [list(x) for x in zip(*last_step_tensor_outputs)] # Convert replicate_outputs to the original dict structure of # last_step_outputs. last_step_tensor_outputs_dict = nest.pack_sequence_as( ctx.last_step_outputs, last_step_tensor_outputs) for (name, aggregation) in ctx._last_step_outputs_aggregations.items(): # pylint: disable=protected-access output = last_step_tensor_outputs_dict[name] # For outputs that have already been aggregated, take the first value # from the list as each value should be the same. Else return the full # list of values. if aggregation is not variables_lib.VariableAggregation.NONE: # TODO(priyag): Should this return the element or a list with 1 element last_step_tensor_outputs_dict[name] = output[0] ctx._set_last_step_outputs(last_step_tensor_outputs_dict) # pylint: disable=protected-access return ctx def _call_for_each_tower(self, fn, *args, **kwargs): # TODO(jhseu): Consider making it so call_for_each_tower implies that we're # in a tpu.rewrite(), and update TPUMirroredVariable accordingly. kwargs.pop('run_concurrently', None) with one_device_strategy._OneDeviceTowerContext(self): # pylint: disable=protected-access return fn(*args, **kwargs) def initialize(self): if context.executing_eagerly(): # TODO(priyag): Add appopriate call here when eager is supported for TPUs. raise NotImplementedError('Eager mode not supported in TPUStrategy.') else: # TODO(jhseu): We need this hack because DistributionStrategies must be # pickleable for copy.deepcopy(). Remove when initialize_system goes away. graph = ops.get_default_graph() tpu_init = graph.get_collection(_TPU_INITIALIZE_SYSTEM_COLLECTION) if tpu_init: return tpu_init graph.add_to_collection(_TPU_INITIALIZE_SYSTEM_COLLECTION, tpu.initialize_system()) return graph.get_collection(_TPU_INITIALIZE_SYSTEM_COLLECTION) def finalize(self): if context.executing_eagerly(): # TODO(priyag): Add appopriate call here when eager is supported for TPUs. raise NotImplementedError('Eager mode not supported in TPUStrategy.') else: return [tpu.shutdown_system()] def _get_devices_from(self, colocate_with=None): # TODO(jhseu): Change this when we support model parallelism. return self._tpu_devices def _create_variable(self, next_creator, *args, **kwargs): """Create a TPUMirroredVariable. See `DistributionStrategy.scope`.""" colocate_with = kwargs.pop("colocate_with", None) devices = self._get_devices_from(colocate_with) def _real_mirrored_creator(devices, *args, **kwargs): # pylint: disable=g-missing-docstring index = {} for i, d in enumerate(devices): with ops.device(d): if i > 0: # Give replicas meaningful distinct names: var0name = index[devices[0]].name.split(":")[0] # We append a / to variable names created on towers with id > 0 to # ensure that we ignore the name scope and instead use the given # name as the absolute name of the variable. kwargs["name"] = "%s/replica_%d/" % (var0name, i) # Initialize replicas with the same value: if context.executing_eagerly(): kwargs["initial_value"] = array_ops.identity( index[devices[0]].value()) else: def initial_value_fn(device=d): with ops.device(device): return array_ops.identity(index[devices[0]].initial_value) kwargs["initial_value"] = initial_value_fn with context.context().device_policy(context.DEVICE_PLACEMENT_SILENT): v = next_creator(*args, **kwargs) assert not isinstance(v, values.TPUMirroredVariable) index[d] = v return index return _create_tpu_mirrored_variable(devices, _real_mirrored_creator, *args, **kwargs) def _reduce(self, aggregation, value, destinations): if values._enclosing_tpu_context() is not None: # pylint: disable=protected-access if aggregation == vs.VariableAggregation.MEAN: # TODO(jhseu): Revisit once we support model-parallelism. value *= (1. / self.num_towers) elif aggregation != vs.VariableAggregation.SUM: raise NotImplementedError( "Currently only support sum & mean in TPUStrategy.") return tpu_ops.cross_replica_sum(value) # Validate that the destination is same as the host device # Note we don't do this when in replicate context as the reduction is # performed on the TPU device itself. devices = cross_tower_ops_lib.get_devices_from(destinations) if len(devices) == 1: assert device_util.canonicalize(devices[0]) == device_util.canonicalize( self.get_host_cpu_device(0)) else: raise ValueError('Multiple devices are not supported for TPUStrategy') if aggregation == vs.VariableAggregation.ONLY_FIRST_TOWER: return value[0] output = math_ops.add_n(value) if aggregation == vs.VariableAggregation.MEAN: return output * (1. / len(value)) return output def _update(self, var, fn, *args, **kwargs): # TODO(jhseu): Consider supporting grouped==False. assert isinstance(var, values.TPUMirroredVariable) if values._enclosing_tpu_context() is not None: # pylint: disable=protected-access return fn(var, *args, **kwargs) # Otherwise, we revert to MirroredStrategy behavior and update each variable # directly. updates = {} for d, v in var._index.items(): # pylint: disable=protected-access name = "update_%d" % self._device_index.get(d) with ops.device(d), distribute_lib.UpdateContext(d), ops.name_scope(name): # If args and kwargs are not mirrored, the value is returned as is. updates[d] = fn(v, *values.select_device_mirrored(d, args), **values.select_device_mirrored(d, kwargs)) # Make a single control dependency to keep the variables mirrored. If one # assignment is fetched, then run all assignments. sorted_keys = sorted(updates.keys()) update_tuple = control_flow_ops.tuple([updates[d] for d in sorted_keys]) for i, d in enumerate(sorted_keys): updates[d] = update_tuple[i] return values.regroup(updates, values.Mirrored) def read_var(self, var): assert isinstance(var, values.TPUMirroredVariable) return var.read_value() def _unwrap(self, value): if isinstance(value, list): return value return [value] @property def num_towers(self): return self._num_cores_override or self._tpu_metadata.num_cores @property def num_hosts(self): return self._tpu_metadata.num_hosts @property def num_towers_per_host(self): return self._tpu_metadata.num_of_cores_per_host @property def between_graph(self): return False @property def should_init(self): return True @property def should_checkpoint(self): return True @property def should_save_summary(self): return True @property def worker_devices(self): return self._tpu_devices @property def parameter_devices(self): return self._tpu_devices def get_host_cpu_device(self, host_id): if self._tpu_cluster_resolver.get_master() in ('', 'local'): return '/replica:0/task:0/device:CPU:0' job_name = self._tpu_cluster_resolver.get_job_name() or 'tpu_worker' return '/job:%s/task:%d/device:CPU:0' % (job_name, host_id) def configure(self, session_config=None, cluster_spec=None, task_type=None, task_id=None): del cluster_spec, task_type, task_id if session_config: session_config.isolate_session_state = True cluster_spec = self._tpu_cluster_resolver.cluster_spec() if cluster_spec: session_config.cluster_def.CopyFrom(cluster_spec.as_cluster_def())
apache-2.0
6,564,893,554,403,699,000
40.897331
111
0.680259
false
3.88944
false
false
false
ladybug-tools/honeybee
honeybee_plus/utilcol.py
1
1078
"""A collection of useful utilities for Honeybee""" import uuid import re def random_name(shorten=True): """Generate a random name as a string using uuid. Args: shorten: If True the name will be the first to segment of uuid. """ if shorten: return '-'.join(str(uuid.uuid4()).split('-')[:2]) else: return str(uuid.uuid4()) def check_name(name): """Check if a name is a valid honeybee name. A valid name can only have alphabet, digits, - and _. """ name = name.encode('utf-8') try: match = re.match(b"^[.A-Za-z0-9_-]*$", name) except TypeError: match = re.match(r"^[.A-Za-z0-9_-]*$", name) if match: return True else: raise ValueError( 'Invalid input name: ({}).' ' Name can only contain letters, numbers,' ' dots, underscores and dashes.'.format(name) ) if __name__ == '__main__': check_name('should_be_fine') # check_name('also-fine') check_name('this.is.also.fine.1234') # check_name('not good')
gpl-3.0
1,852,447,149,315,065,000
24.069767
71
0.56308
false
3.511401
false
false
false
zjj/trac_hack
sample-plugins/HelloWorld.py
1
2140
"""Example macro.""" revision = "$Rev: 6326 $" url = "$URL: https://svn.edgewall.org/repos/trac/tags/trac-0.12.2/sample-plugins/HelloWorld.py $" # # The following shows the code for macro, old-style. # # The `execute` function serves no purpose other than to illustrate # the example, it will not be used anymore. # # ---- (ignore in your own macro) ---- # -- from trac.util import escape def execute(hdf, txt, env): # Currently hdf is set only when the macro is called # From a wiki page if hdf: hdf['wiki.macro.greeting'] = 'Hello World' # args will be `None` if the macro is called without parenthesis. args = txt or 'No arguments' # then, as `txt` comes from the user, it's important to guard against # the possibility to inject malicious HTML/Javascript, by using `escape()`: return 'Hello World, args = ' + escape(args) # -- # ---- (ignore in your own macro) ---- # # The following is the converted new-style macro # # ---- (reuse for your own macro) ---- # -- from trac.wiki.macros import WikiMacroBase class HelloWorldMacro(WikiMacroBase): """Simple HelloWorld macro. Note that the name of the class is meaningful: - it must end with "Macro" - what comes before "Macro" ends up being the macro name The documentation of the class (i.e. what you're reading) will become the documentation of the macro, as shown by the !MacroList macro (usually used in the TracWikiMacros page). """ def expand_macro(self, formatter, name, args): """Return some output that will be displayed in the Wiki content. `name` is the actual name of the macro (no surprise, here it'll be `'HelloWorld'`), `args` is the text enclosed in parenthesis at the call of the macro. Note that if there are ''no'' parenthesis (like in, e.g. [[HelloWorld]]), then `args` is `None`. """ return 'Hello World, args = ' + unicode(args) # Note that there's no need to HTML escape the returned data, # as the template engine (Genshi) will do it for us. # -- # ---- (reuse for your own macro) ----
bsd-3-clause
5,799,304,578,152,899,000
31.923077
97
0.649533
false
3.721739
false
false
false
rymate1234/rymate-blog
migrations/versions/413f129e8b07_.py
1
1535
"""empty message Revision ID: 413f129e8b07 Revises: None Create Date: 2014-05-02 08:09:09.906725 """ # revision identifiers, used by Alembic. revision = '413f129e8b07' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=80), nullable=False), sa.Column('email', sa.String(length=80), nullable=False), sa.Column('password', sa.String(length=128), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=False), sa.Column('first_name', sa.String(length=30), nullable=True), sa.Column('last_name', sa.String(length=30), nullable=True), sa.Column('active', sa.Boolean(), nullable=True), sa.Column('is_admin', sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('email'), sa.UniqueConstraint('username') ) op.create_table('roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=80), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('roles') op.drop_table('users') ### end Alembic commands ###
bsd-3-clause
5,584,822,916,619,234,000
30.979167
65
0.663192
false
3.449438
false
false
false
zdomjus60/astrometry
tools.py
1
10051
# -*- coding: utf-8 -*- """ helper functions for time management """ import math def sin(x): return math.sin(math.radians(x)) def cos(x): return math.cos(math.radians(x)) def atan2(y , x): return math.degrees(math.atan2(y, x)) def reduce360(x): return x % 360.0 def dms2ddd(hour, minute, second): """ from sexagesimal to decimal """ return hour+minute/60.0+second/3600.0 def ddd2dms(dec_hour): """ from decimal to sexagesimal representation of hours and angles.""" if dec_hour < 0: sign = -1 dec_hour *= sign else: sign = 1 total_seconds = int(dec_hour * 3600.0+.5) seconds = total_seconds % 60 total_minutes = int((total_seconds - seconds)/60.0) minutes = total_minutes % 60 hours = int((total_minutes - minutes)/60.0) return (hours * sign, minutes * sign, seconds * sign) def cal2jul(year, month, day, hour=0, minute=0, second=0): """ converts calendar date to julian date this routine and the following are built following Duffet Smith /Zwart instructions as given in Peter Duffett-Smith-Zwart Practical Astronomy with your Calculator or Spreadsheet Fourth Edition, Cambridge University Press, Fourth Ed. 2011 For an easier use of the function, hours minutes and seconds are defaulted to 0, so it's not necessary to give them as parameters when the hour is 00:00:00 """ month2 = month year2 = year if month2 <= 2: year2 -= 1 month2 += 12 else: pass if (year*10000 + month*100 + day) >= 15821015: a = math.trunc(year2/100.0) b = 2 - a + math.trunc(a/4.0) else: a = 0 b = 0 if year < 0: c = math.trunc((365.25 * year2)-0.75) else: c = math.trunc(365.25 * year2) d = math.trunc(30.6001 *(month2 + 1)) return b + c + d + day + hour / 24.0 + minute / 1440.0 + second / 86400.0 + 1720994.5 def jul2cal(jd): """ converts julian date to calendar date """ jd += 0.5 i = math.modf(jd)[1] f = math.modf(jd)[0] if i > 2299160: a = math.trunc((i-1867216.25)/36524.25) b = i + a - math.trunc(a/4)+1 else: b = i c = b + 1524 d = math.trunc((c-122.1)/365.25) e = math.trunc(365.25 * d) g = math.trunc((c-e)/30.6001) day = c-e+f-math.trunc(30.6001*g) if g < 13.5: month = g - 1 else: month = g - 13 if month > 2.5: year = d - 4716 else: year = d - 4715 hours_frac = math.modf(day)[0]*24 day = int(day) hour, minute, second = ddd2dms(hours_frac) return (year, month, day, hour, minute, second) def day_of_the_week(year, month, day): """ given a calendar date, the routine returns a tuple with the Day Of The Week in number and in plaintext 0 for Sunday 1 for Monday and so on up to 6 Saturday """ doth = {0:'Sunday', 1:'Monday', 2:'Tuesday', 3:'Wednesday', 4:'Thursday', 5:'Friday', 6:'Saturday'} jd = cal2jul(year, month, day, 0, 0, 0) a = (jd+1.5)/7 f = math.trunc((a % 1)*7 +.5) return (f,doth[f]) def lt2ut(year, month, day, hour=0, minute=0, second=0, timezone=0, DS=0): """ Given, for a location on the Earth,a date, a time, a timezone (East + West - in hours) and the Daylight Savings (0 normal time 1 Daylight Savings), this routine gives back a calendar date in Universal Time representation (year, month, day, hour, minute, second). It aims to restore a common date and time for all places in the Earth. Timezone and Daylight Savings can be automized knowing the location using the pytz module (Olson database) """ ut = dms2ddd(hour,minute,second) - timezone - DS greenwich_calendar_date = day + ut/24 jd = cal2jul(year, month, greenwich_calendar_date) greenwich_calendar_date = jul2cal(jd) return greenwich_calendar_date def ut2lt(year, month, day, hour=0, minute=0, second=0, timezone=0, DS=0): """ Given a date, a time for Greenwich in UT format this routine gives back a calendar date in local time representation (year, month, day, hour, minute, second). It's the inverse function of the previous formula """ lt = dms2ddd(hour,minute,second) + timezone +DS local_calendar_date = day + lt/24 jd = cal2jul(year, month, local_calendar_date) local_calendar_date = jul2cal(jd) return local_calendar_date def ut2gst(year, month, day, hour, minute, second): """ Sidereal time is a time-keeping system astronomers use to keep track of the direction to point their telescopes to view a given star in the night sky. Briefly, sidereal time is a "time scale that is based on the Earth's rate of rotation measured relative to the fixed stars." (source Wikipedia) This routine converts Universal Time to Sidereal Time for Greenwich (Greenwich Sidereal Time) """ jd = cal2jul(year, month, day) S = jd - 2451545.0 T = S/36525.0 T0 = (6.697374558 + (2400.051336 * T)+ 0.000025862 *T*T) % 24 UT = dms2ddd(hour, minute, second)*1.002737909 GST = ddd2dms((UT + T0) % 24) return GST def gst2ut( year, month, day, hour, minute, second): """ Inverse of the previous function """ jd = cal2jul(year, month, day, 0,0,0) S = jd - 2451545.0 T = S/36525.0 T0 = (6.697374558 + 2400.051336 * T + 0.000025862 *T*T) % 24 GST = (dms2ddd(hour, minute, second) - T0) % 24 while GST <0: GST += 24 UT = GST * .9972695663 return ddd2dms(UT) def gst2lst( hour, minute, second, long_degree, long_minute, long_second=0): """ Corrects GST for a different location on the Earth """ GST = dms2ddd(hour,minute,second) lg = dms2ddd(long_degree, long_minute, long_second)/15.0 lst = ddd2dms((GST + lg) % 24) return lst def lst2gst( hour, minute, second, long_degree, long_minute, long_second=0): """ Inverse of the previous method """ lst = dms2ddd(hour,minute,second) lg = dms2ddd(long_degree, long_minute, long_second)/15.0 GST = ddd2dms((lst + lg) % 24) return GST def julian_centuries(year, month, day, hour=0, minute =0, second=0): d1 = cal2jul(year, month, day, hour, minute, second) d2 = cal2jul(2000,1,1,12) return (d1-d2) / 36525.0 def julian_millennia(year, month, day, hour=0, minute =0, second=0): return julian_centuries(year, month, day, hour, minute, second) / 10.0 def julian_decamillennia(year, month, day, hour=0, minute =0, second=0): return julian_centuries(year, month, day, hour, minute, second) / 100.0 def obl_ecl_JPL(year, month, day, hour=0, minute = 0, second = 0): t = julian_centuries(year, month, day, hour, minute, second) """ from JPL Astronomical Almanac 2010 """ return (23 * 3600 + 26*60 + 21.406 - 46.836769 * t - 0.0001831 * t * t + 0.00200340 * t * t * t - 0.576e-6 * t * t * t * t - 4.34e-8 * t * t * t * t * t) / 3600.0 def obl_ecl_Laskar(year, month, day, hour = 0, minute = 0, second = 0): """ Original work from Jay Tanner - converted to Python code by Domenico Mustara 2015 This PHP function computes the mean obliquity of the ecliptic given a JD argument corresponding to any given date and time. Author: Jay Tanner - 2010 The algorithm used here is based on work published by J. Laskar Astronomy and Astrophysics, Vol 157, p68 (1986), New Formulas for the Precession, Valid Over 10000 years, Table 8. Source code provided under the provisions of the GNU Affero General Public License (AGPL), version 3. http://www.gnu.org/licenses/agpl.html // ----------------------------------------------------------- // Compute the (t) value in Julian decamillennia corresponding // to the JD argument and reckoned from J2000. $t = ($JD - 2451545.0) / 3652500.0; // -------------------------------------- """ t = julian_decamillennia(year, month, day, hour, minute, second) w = 84381.448 w -= 4680.93 * t w -= 1.55 * t * t w += 1999.25 * t * t * t w -= 51.38 * t * t * t * t w -= 249.67 * t * t * t * t * t w -= 39.05 * t * t * t * t * t * t w += 7.12 * t * t * t * t * t * t * t w += 27.87 * t * t * t * t * t * t * t * t w += 5.79 * t * t * t * t * t * t * t * t * t w += 2.45 * t * t * t * t * t * t * t * t * t * t return w / 3600.0 """ Some conversion utilities between various coordinate systems """ def sph_ecl2rect_ecl(r, longitude, latitude): x = r * cos(latitude) * cos(longitude) y = r * cos(latitude) * sin(longitude) z = r * sin(latitude) return (x,y,z) def rect_ecl2sph_ecl(x,y,z): r = math.sqrt(x*x + y*y + z*z) longitude = atan2(y,x) latitude = atan2(z, math.sqrt(x*x + y*y)) return (r, longitude, latitude) def sph_equat2rect_equat(r, RA, Declination): x = r * cos(RA) * cos(Declination) y = r * sin(RA) * cos(Declination) z = r * sin(Declination) return (x,y,x) def rect_equat2sph_equat(x,y,z): r = math.sqrt(x*x + y*y +z*z) RA = atan2(y, x) Decl = atan2(z, math.sqrt(x*x + y*y)) return (r, RA, Decl) def rect_ecl2rect_equat(xeclip, yeclip, zeclip, year, month, day, hour = 0, minute = 0, second = 0): oblecl = obl_ecl_JPL(year, month, day, hour, minute, second) xequat = xeclip yequat = yeclip * cos(oblecl) - zeclip * sin(oblecl) zequat = yeclip * sin(oblecl) + zeclip * cos(oblecl) return (xequat, yequat, zequat) def rect_equat2rect_ecl(xequat, yequat, zequat, year, month, day, hour = 0, minute = 0, second = 0): oblecl = obl_ecl_JPL(year, month, day, hour, minute, second) xeclip = xequat yeclip = yequat * cos(- oblecl) - zequat * sin(- oblecl) zeclip = yequat * sin(- oblecl) + zequat * cos(- oblecl) return (xeclip, yeclip, zeclip)
cc0-1.0
-7,099,347,639,674,084,000
34.641844
111
0.594369
false
2.931175
false
false
false
stoeckli/iMatrixSpray
octoprint/printer.py
1
20362
# coding=utf-8 __author__ = "Gina Häußge <[email protected]>" __license__ = 'GNU Affero General Public License http://www.gnu.org/licenses/agpl.html' import time import datetime import threading import copy import os #import logging, logging.config import octoprint.util.comm as comm import octoprint.util as util from octoprint.settings import settings from octoprint.events import eventManager def getConnectionOptions(): """ Retrieves the available ports, baudrates, prefered port and baudrate for connecting to the printer. """ return { "ports": comm.serialList(), "baudrates": comm.baudrateList(), "portPreference": settings().get(["serial", "port"]), "baudratePreference": settings().getInt(["serial", "baudrate"]), "autoconnect": settings().getBoolean(["serial", "autoconnect"]) } class Printer(): def __init__(self, gcodeManager): from collections import deque self._gcodeManager = gcodeManager self._gcodeManager.registerCallback(self) # state self._temp = None self._bedTemp = None self._targetTemp = None self._targetBedTemp = None self._temps = { "actual": deque([], 300), "target": deque([], 300), "actualBed": deque([], 300), "targetBed": deque([], 300) } self._tempBacklog = [] self._latestMessage = None self._messages = deque([], 300) self._messageBacklog = [] self._latestLog = None self._log = deque([], 300) self._logBacklog = [] self._state = None self._currentZ = None self._progress = None self._printTime = None self._printTimeLeft = None self._printAfterSelect = False # sd handling self._sdPrinting = False self._sdStreaming = False self._selectedFile = None # comm self._comm = None # callbacks self._callbacks = [] self._lastProgressReport = None self._stateMonitor = StateMonitor( ratelimit=0.5, updateCallback=self._sendCurrentDataCallbacks, addTemperatureCallback=self._sendAddTemperatureCallbacks, addLogCallback=self._sendAddLogCallbacks, addMessageCallback=self._sendAddMessageCallbacks ) self._stateMonitor.reset( state={"state": None, "stateString": self.getStateString(), "flags": self._getStateFlags()}, jobData={"filename": None, "filesize": None, "estimatedSprayTime": None, "filament": None}, progress={"progress": None, "filepos": None, "sprayTime": None, "sprayTimeLeft": None}, currentZ=None ) #~~ callback handling def registerCallback(self, callback): self._callbacks.append(callback) self._sendInitialStateUpdate(callback) def unregisterCallback(self, callback): if callback in self._callbacks: self._callbacks.remove(callback) def _sendAddTemperatureCallbacks(self, data): for callback in self._callbacks: try: callback.addTemperature(data) except: pass def _sendAddLogCallbacks(self, data): for callback in self._callbacks: try: callback.addLog(data) except: pass def _sendAddMessageCallbacks(self, data): for callback in self._callbacks: try: callback.addMessage(data) except: pass def _sendCurrentDataCallbacks(self, data): for callback in self._callbacks: try: callback.sendCurrentData(copy.deepcopy(data)) except: pass def _sendTriggerUpdateCallbacks(self, type): for callback in self._callbacks: try: callback.sendUpdateTrigger(type) except: pass def _sendFeedbackCommandOutput(self, name, output): for callback in self._callbacks: try: callback.sendFeedbackCommandOutput(name, output) except: pass #~~ callback from gcodemanager def sendUpdateTrigger(self, type): if type == "gcodeFiles" and self._selectedFile: self._setJobData(self._selectedFile["filename"], self._selectedFile["filesize"], self._selectedFile["sd"]) #~~ printer commands def connect(self, port=None, baudrate=None): """ Connects to the printer. If port and/or baudrate is provided, uses these settings, otherwise autodetection will be attempted. """ if self._comm is not None: self._comm.close() self._comm = comm.MachineCom(port, baudrate, callbackObject=self) def disconnect(self): """ Closes the connection to the printer. """ if self._comm is not None: self._comm.close() self._comm = None eventManager().fire("Disconnected") def command(self, command): """ Sends a single gcode command to the printer. """ self.commands([command]) def commands(self, commands): """ Sends multiple gcode commands (provided as a list) to the printer. """ for command in commands: self._comm.sendCommand(command) def selectFile(self, filename, sd, printAfterSelect=False): if self._comm is None or (self._comm.isBusy() or self._comm.isStreaming()): return self._printAfterSelect = printAfterSelect self._comm.selectFile(filename, sd) self._setProgressData(0, None, None, None) self._setCurrentZ(None) def unselectFile(self): if self._comm is not None and (self._comm.isBusy() or self._comm.isStreaming()): return self._comm.unselectFile() self._setProgressData(0, None, None, None) self._setCurrentZ(None) def startPrint(self): """ Starts the currently loaded print job. Only starts if the printer is connected and operational, not currently printing and a printjob is loaded """ if self._comm is None or not self._comm.isOperational() or self._comm.isPrinting(): return if self._selectedFile is None: return self._setCurrentZ(None) self._comm.startPrint() def togglePausePrint(self): """ Pause the current printjob. """ if self._comm is None: return self._comm.setPause(not self._comm.isPaused()) def cancelPrint(self, disableMotorsAndHeater=True): """ Cancel the current printjob. """ if self._comm is None: return self._comm.cancelPrint() if disableMotorsAndHeater: self.commands(["M84", "M104 S0", "M140 S0", "M106 S0"]) # disable motors, switch off heaters and fan # reset progress, height, print time self._setCurrentZ(None) self._setProgressData(None, None, None, None) # mark print as failure if self._selectedFile is not None: self._gcodeManager.printFailed(self._selectedFile["filename"]) eventManager().fire("PrintFailed", self._selectedFile["filename"]) #~~ state monitoring def _setCurrentZ(self, currentZ): self._currentZ = currentZ formattedCurrentZ = None if self._currentZ: formattedCurrentZ = "%.2f mm" % (self._currentZ) self._stateMonitor.setCurrentZ(formattedCurrentZ) def _setState(self, state): self._state = state self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def _addLog(self, log): self._log.append(log) self._stateMonitor.addLog(log) def _addMessage(self, message): self._messages.append(message) self._stateMonitor.addMessage(message) def _setProgressData(self, progress, filepos, printTime, printTimeLeft): self._progress = progress self._printTime = printTime self._printTimeLeft = printTimeLeft formattedPrintTime = None if (self._printTime): formattedPrintTime = util.getFormattedTimeDelta(datetime.timedelta(seconds=self._printTime)) formattedPrintTimeLeft = None if (self._printTimeLeft): formattedPrintTimeLeft = util.getFormattedTimeDelta(datetime.timedelta(minutes=self._printTimeLeft)) formattedFilePos = None if (filepos): formattedFilePos = util.getFormattedSize(filepos) self._stateMonitor.setProgress({"progress": self._progress, "filepos": formattedFilePos, "printTime": formattedPrintTime, "printTimeLeft": formattedPrintTimeLeft}) def _addTemperatureData(self, temp, bedTemp, targetTemp, bedTargetTemp): currentTimeUtc = int(time.time() * 1000) self._temps["actual"].append((currentTimeUtc, temp)) self._temps["target"].append((currentTimeUtc, targetTemp)) self._temps["actualBed"].append((currentTimeUtc, bedTemp)) self._temps["targetBed"].append((currentTimeUtc, bedTargetTemp)) self._temp = temp self._bedTemp = bedTemp self._targetTemp = targetTemp self._targetBedTemp = bedTargetTemp self._stateMonitor.addTemperature({"currentTime": currentTimeUtc, "temp": self._temp, "bedTemp": self._bedTemp, "targetTemp": self._targetTemp, "targetBedTemp": self._targetBedTemp}) def _setJobData(self, filename, filesize, sd): if filename is not None: self._selectedFile = { "filename": filename, "filesize": filesize, "sd": sd } else: self._selectedFile = None formattedFilename = None formattedFilesize = None estimatedPrintTime = None fileMTime = None filament = None if filename: formattedFilename = os.path.basename(filename) # Use a string for mtime because it could be float and the # javascript needs to exact match if not sd: fileMTime = str(os.stat(filename).st_mtime) if filesize: formattedFilesize = util.getFormattedSize(filesize) fileData = self._gcodeManager.getFileData(filename) if fileData is not None and "gcodeAnalysis" in fileData.keys(): if "estimatedPrintTime" in fileData["gcodeAnalysis"].keys(): estimatedPrintTime = fileData["gcodeAnalysis"]["estimatedPrintTime"] if "filament" in fileData["gcodeAnalysis"].keys(): filament = fileData["gcodeAnalysis"]["filament"] self._stateMonitor.setJobData({"filename": formattedFilename, "filesize": formattedFilesize, "estimatedPrintTime": estimatedPrintTime, "filament": filament, "sd": sd, "mtime": fileMTime}) def _sendInitialStateUpdate(self, callback): try: data = self._stateMonitor.getCurrentData() # convert the dict of deques to a dict of lists temps = {k: list(v) for (k,v) in self._temps.iteritems()} data.update({ "temperatureHistory": temps, "logHistory": list(self._log), "messageHistory": list(self._messages) }) callback.sendHistoryData(data) except Exception, err: import sys sys.stderr.write("ERROR: %s\n" % str(err)) pass def _getStateFlags(self): if not settings().getBoolean(["feature", "sdSupport"]) or self._comm is None: sdReady = False else: sdReady = self._comm.isSdReady() return { "operational": self.isOperational(), "printing": self.isPrinting(), "closedOrError": self.isClosedOrError(), "error": self.isError(), "paused": self.isPaused(), "ready": self.isReady(), "sdReady": sdReady } def getCurrentData(self): return self._stateMonitor.getCurrentData() #~~ callbacks triggered from self._comm def mcLog(self, message): """ Callback method for the comm object, called upon log output. """ self._addLog(message) def mcTempUpdate(self, temp, bedTemp, targetTemp, bedTargetTemp): self._addTemperatureData(temp, bedTemp, targetTemp, bedTargetTemp) def mcStateChange(self, state): """ Callback method for the comm object, called if the connection state changes. """ oldState = self._state # forward relevant state changes to gcode manager if self._comm is not None and oldState == self._comm.STATE_PRINTING: if self._selectedFile is not None: if state == self._comm.STATE_OPERATIONAL: self._gcodeManager.printSucceeded(self._selectedFile["filename"]) elif state == self._comm.STATE_CLOSED or state == self._comm.STATE_ERROR or state == self._comm.STATE_CLOSED_WITH_ERROR: self._gcodeManager.printFailed(self._selectedFile["filename"]) self._gcodeManager.resumeAnalysis() # printing done, put those cpu cycles to good use elif self._comm is not None and state == self._comm.STATE_PRINTING: self._gcodeManager.pauseAnalysis() # do not analyse gcode while printing self._setState(state) def mcMessage(self, message): """ Callback method for the comm object, called upon message exchanges via serial. Stores the message in the message buffer, truncates buffer to the last 300 lines. """ self._addMessage(message) def mcProgress(self): """ Callback method for the comm object, called upon any change in progress of the printjob. Triggers storage of new values for printTime, printTimeLeft and the current progress. """ self._setProgressData(self._comm.getPrintProgress(), self._comm.getPrintFilepos(), self._comm.getPrintTime(), self._comm.getPrintTimeRemainingEstimate()) def mcZChange(self, newZ): """ Callback method for the comm object, called upon change of the z-layer. """ oldZ = self._currentZ if newZ != oldZ: # we have to react to all z-changes, even those that might "go backward" due to a slicer's retraction or # anti-backlash-routines. Event subscribes should individually take care to filter out "wrong" z-changes eventManager().fire("ZChange", newZ) self._setCurrentZ(newZ) def mcSdStateChange(self, sdReady): self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcSdFiles(self, files): self._sendTriggerUpdateCallbacks("gcodeFiles") def mcFileSelected(self, filename, filesize, sd): self._setJobData(filename, filesize, sd) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) if self._printAfterSelect: self.startPrint() def mcPrintjobDone(self): self._setProgressData(1.0, self._selectedFile["filesize"], self._comm.getPrintTime(), 0) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcFileTransferStarted(self, filename, filesize): self._sdStreaming = True self._setJobData(filename, filesize, True) self._setProgressData(0.0, 0, 0, None) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcFileTransferDone(self): self._sdStreaming = False self._setCurrentZ(None) self._setJobData(None, None, None) self._setProgressData(None, None, None, None) self._stateMonitor.setState({"state": self._state, "stateString": self.getStateString(), "flags": self._getStateFlags()}) def mcReceivedRegisteredMessage(self, command, output): self._sendFeedbackCommandOutput(command, output) #~~ sd file handling def getSdFiles(self): if self._comm is None: return return self._comm.getSdFiles() def addSdFile(self, filename, path): if not self._comm or self._comm.isBusy(): return self._comm.startFileTransfer(path, filename[:8].lower() + ".gco") def deleteSdFile(self, filename): if not self._comm: return self._comm.deleteSdFile(filename) def initSdCard(self): if not self._comm: return self._comm.initSdCard() def releaseSdCard(self): if not self._comm: return self._comm.releaseSdCard() def refreshSdFiles(self): if not self._comm: return self._comm.refreshSdFiles() #~~ state reports def getStateString(self): """ Returns a human readable string corresponding to the current communication state. """ if self._comm is None: return "Offline" else: return self._comm.getStateString() def getCurrentData(self): return self._stateMonitor.getCurrentData() def getCurrentJob(self): currentData = self._stateMonitor.getCurrentData() return currentData["job"] def getCurrentTemperatures(self): return { "extruder": { "current": self._temp, "target": self._targetTemp }, "bed": { "current": self._bedTemp, "target": self._targetBedTemp } } def isClosedOrError(self): return self._comm is None or self._comm.isClosedOrError() def isOperational(self): return self._comm is not None and self._comm.isOperational() def isPrinting(self): return self._comm is not None and self._comm.isPrinting() def isPaused(self): return self._comm is not None and self._comm.isPaused() def isError(self): return self._comm is not None and self._comm.isError() def isReady(self): return self.isOperational() and not self._comm.isStreaming() def isLoading(self): return self._gcodeLoader is not None class GcodeLoader(threading.Thread): """ The GcodeLoader takes care of loading a gcode-File from disk and parsing it into a gcode object in a separate thread while constantly notifying interested listeners about the current progress. The progress is returned as a float value between 0 and 1 which is to be interpreted as the percentage of completion. """ def __init__(self, filename, progressCallback, loadedCallback): threading.Thread.__init__(self) self._progressCallback = progressCallback self._loadedCallback = loadedCallback self._filename = filename self._gcodeList = None def run(self): #Send an initial M110 to reset the line counter to zero. prevLineType = lineType = "CUSTOM" gcodeList = ["M110 N0"] filesize = os.stat(self._filename).st_size with open(self._filename, "r") as file: for line in file: if line.startswith(";TYPE:"): lineType = line[6:].strip() if ";" in line: line = line[0:line.find(";")] line = line.strip() if len(line) > 0: if prevLineType != lineType: gcodeList.append((line, lineType, )) else: gcodeList.append(line) prevLineType = lineType self._onLoadingProgress(float(file.tell()) / float(filesize)) self._gcodeList = gcodeList self._loadedCallback(self._filename, self._gcodeList) def _onLoadingProgress(self, progress): self._progressCallback(self._filename, progress, "loading") def _onParsingProgress(self, progress): self._progressCallback(self._filename, progress, "parsing") class SdFileStreamer(threading.Thread): def __init__(self, comm, filename, file, progressCallback, finishCallback): threading.Thread.__init__(self) self._comm = comm self._filename = filename self._file = file self._progressCallback = progressCallback self._finishCallback = finishCallback def run(self): if self._comm.isBusy(): return name = self._filename[:self._filename.rfind(".")] sdFilename = name[:8].lower() + ".gco" try: size = os.stat(self._file).st_size with open(self._file, "r") as f: self._comm.startSdFileTransfer(sdFilename) for line in f: if ";" in line: line = line[0:line.find(";")] line = line.strip() if len(line) > 0: self._comm.sendCommand(line) time.sleep(0.001) # do not send too fast self._progressCallback(sdFilename, float(f.tell()) / float(size)) finally: self._comm.endSdFileTransfer(sdFilename) self._finishCallback(sdFilename) class StateMonitor(object): def __init__(self, ratelimit, updateCallback, addTemperatureCallback, addLogCallback, addMessageCallback): self._ratelimit = ratelimit self._updateCallback = updateCallback self._addTemperatureCallback = addTemperatureCallback self._addLogCallback = addLogCallback self._addMessageCallback = addMessageCallback self._state = None self._jobData = None self._gcodeData = None self._sdUploadData = None self._currentZ = None self._progress = None self._changeEvent = threading.Event() self._lastUpdate = time.time() self._worker = threading.Thread(target=self._work) self._worker.daemon = True self._worker.start() def reset(self, state=None, jobData=None, progress=None, currentZ=None): self.setState(state) self.setJobData(jobData) self.setProgress(progress) self.setCurrentZ(currentZ) def addTemperature(self, temperature): self._addTemperatureCallback(temperature) self._changeEvent.set() def addLog(self, log): self._addLogCallback(log) self._changeEvent.set() def addMessage(self, message): self._addMessageCallback(message) self._changeEvent.set() def setCurrentZ(self, currentZ): self._currentZ = currentZ self._changeEvent.set() def setState(self, state): self._state = state self._changeEvent.set() def setJobData(self, jobData): self._jobData = jobData self._changeEvent.set() def setProgress(self, progress): self._progress = progress self._changeEvent.set() def _work(self): while True: self._changeEvent.wait() now = time.time() delta = now - self._lastUpdate additionalWaitTime = self._ratelimit - delta if additionalWaitTime > 0: time.sleep(additionalWaitTime) data = self.getCurrentData() self._updateCallback(data) self._lastUpdate = time.time() self._changeEvent.clear() def getCurrentData(self): return { "state": self._state, "job": self._jobData, "currentZ": self._currentZ, "progress": self._progress }
agpl-3.0
2,885,922,597,023,972,000
28.379509
189
0.712525
false
3.325167
true
false
false
nimasmi/wagtail
wagtail/core/blocks/struct_block.py
1
8310
import collections from django import forms from django.core.exceptions import ValidationError from django.forms.utils import ErrorList from django.template.loader import render_to_string from django.utils.functional import cached_property from django.utils.html import format_html, format_html_join from django.utils.safestring import mark_safe from wagtail.admin.staticfiles import versioned_static from .base import Block, DeclarativeSubBlocksMetaclass from .utils import js_dict __all__ = ['BaseStructBlock', 'StructBlock', 'StructValue'] class StructValue(collections.OrderedDict): """ A class that generates a StructBlock value from provded sub-blocks """ def __init__(self, block, *args): super().__init__(*args) self.block = block def __html__(self): return self.block.render(self) def render_as_block(self, context=None): return self.block.render(self, context=context) @cached_property def bound_blocks(self): return collections.OrderedDict([ (name, block.bind(self.get(name))) for name, block in self.block.child_blocks.items() ]) class BaseStructBlock(Block): def __init__(self, local_blocks=None, **kwargs): self._constructor_kwargs = kwargs super().__init__(**kwargs) # create a local (shallow) copy of base_blocks so that it can be supplemented by local_blocks self.child_blocks = self.base_blocks.copy() if local_blocks: for name, block in local_blocks: block.set_name(name) self.child_blocks[name] = block self.child_js_initializers = {} for name, block in self.child_blocks.items(): js_initializer = block.js_initializer() if js_initializer is not None: self.child_js_initializers[name] = js_initializer self.dependencies = self.child_blocks.values() def get_default(self): """ Any default value passed in the constructor or self.meta is going to be a dict rather than a StructValue; for consistency, we need to convert it to a StructValue for StructBlock to work with """ return self._to_struct_value(self.meta.default.items()) def js_initializer(self): # skip JS setup entirely if no children have js_initializers if not self.child_js_initializers: return None return "StructBlock(%s)" % js_dict(self.child_js_initializers) @property def media(self): return forms.Media(js=[versioned_static('wagtailadmin/js/blocks/struct.js')]) def get_form_context(self, value, prefix='', errors=None): if errors: if len(errors) > 1: # We rely on StructBlock.clean throwing a single ValidationError with a specially crafted # 'params' attribute that we can pull apart and distribute to the child blocks raise TypeError('StructBlock.render_form unexpectedly received multiple errors') error_dict = errors.as_data()[0].params else: error_dict = {} bound_child_blocks = collections.OrderedDict([ ( name, block.bind(value.get(name, block.get_default()), prefix="%s-%s" % (prefix, name), errors=error_dict.get(name)) ) for name, block in self.child_blocks.items() ]) return { 'children': bound_child_blocks, 'help_text': getattr(self.meta, 'help_text', None), 'classname': self.meta.form_classname, 'block_definition': self, 'prefix': prefix, } def render_form(self, value, prefix='', errors=None): context = self.get_form_context(value, prefix=prefix, errors=errors) return mark_safe(render_to_string(self.meta.form_template, context)) def value_from_datadict(self, data, files, prefix): return self._to_struct_value([ (name, block.value_from_datadict(data, files, '%s-%s' % (prefix, name))) for name, block in self.child_blocks.items() ]) def value_omitted_from_data(self, data, files, prefix): return all( block.value_omitted_from_data(data, files, '%s-%s' % (prefix, name)) for name, block in self.child_blocks.items() ) def clean(self, value): result = [] # build up a list of (name, value) tuples to be passed to the StructValue constructor errors = {} for name, val in value.items(): try: result.append((name, self.child_blocks[name].clean(val))) except ValidationError as e: errors[name] = ErrorList([e]) if errors: # The message here is arbitrary - StructBlock.render_form will suppress it # and delegate the errors contained in the 'params' dict to the child blocks instead raise ValidationError('Validation error in StructBlock', params=errors) return self._to_struct_value(result) def to_python(self, value): """ Recursively call to_python on children and return as a StructValue """ return self._to_struct_value([ ( name, (child_block.to_python(value[name]) if name in value else child_block.get_default()) # NB the result of get_default is NOT passed through to_python, as it's expected # to be in the block's native type already ) for name, child_block in self.child_blocks.items() ]) def _to_struct_value(self, block_items): """ Return a Structvalue representation of the sub-blocks in this block """ return self.meta.value_class(self, block_items) def get_prep_value(self, value): """ Recursively call get_prep_value on children and return as a plain dict """ return dict([ (name, self.child_blocks[name].get_prep_value(val)) for name, val in value.items() ]) def get_api_representation(self, value, context=None): """ Recursively call get_api_representation on children and return as a plain dict """ return dict([ (name, self.child_blocks[name].get_api_representation(val, context=context)) for name, val in value.items() ]) def get_searchable_content(self, value): content = [] for name, block in self.child_blocks.items(): content.extend(block.get_searchable_content(value.get(name, block.get_default()))) return content def deconstruct(self): """ Always deconstruct StructBlock instances as if they were plain StructBlocks with all of the field definitions passed to the constructor - even if in reality this is a subclass of StructBlock with the fields defined declaratively, or some combination of the two. This ensures that the field definitions get frozen into migrations, rather than leaving a reference to a custom subclass in the user's models.py that may or may not stick around. """ path = 'wagtail.core.blocks.StructBlock' args = [list(self.child_blocks.items())] kwargs = self._constructor_kwargs return (path, args, kwargs) def check(self, **kwargs): errors = super().check(**kwargs) for name, child_block in self.child_blocks.items(): errors.extend(child_block.check(**kwargs)) errors.extend(child_block._check_name(**kwargs)) return errors def render_basic(self, value, context=None): return format_html('<dl>\n{}\n</dl>', format_html_join( '\n', ' <dt>{}</dt>\n <dd>{}</dd>', value.items())) class Meta: default = {} form_classname = 'struct-block' form_template = 'wagtailadmin/block_forms/struct.html' value_class = StructValue # No icon specified here, because that depends on the purpose that the # block is being used for. Feel encouraged to specify an icon in your # descendant block type icon = "placeholder" class StructBlock(BaseStructBlock, metaclass=DeclarativeSubBlocksMetaclass): pass
bsd-3-clause
7,582,453,976,146,293,000
37.472222
107
0.622262
false
4.229008
false
false
false
ypid/series60-remote
pc/devices/status_numbers.py
1
2071
# -*- coding: utf-8 -*- # Copyright (c) 2008 - 2010 Lukas Hetzenecker <[email protected]> NUM_CONNECTED = 100 NUM_HELLO_REQUEST = 110 NUM_HELLO_REPLY = 111 NUM_QUIT = 120 NUM_PARTIAL_MESSAGE = 130 NUM_CONTACTS_REQUEST_HASH_ALL = 200 NUM_CONTACTS_REQUEST_HASH_SINGLE= 201 NUM_CONTACTS_REQUEST_CONTACT = 204 NUM_CONTACTS_REQUEST_CONTACTS_ALL = 205 NUM_CONTACTS_REPLY_HASH_ALL= 210 NUM_CONTACTS_REPLY_HASH_SINGLE_START= 211 NUM_CONTACTS_REPLY_HASH_SINGLE_LINE= 212 NUM_CONTACTS_REPLY_HASH_SINGLE_END= 213 NUM_CONTACTS_REPLY_CONTACT_START = 220 NUM_CONTACTS_REPLY_CONTACT_LINE = 221 NUM_CONTACTS_REPLY_CONTACT_END = 222 NUM_CONTACTS_REPLY_CONTACTS_ALL_END = 223 NUM_CONTACTS_ADD = 230 NUM_CONTACTS_ADD_REPLY_ID = 231 NUM_CONTACTS_DELETE = 232 NUM_CONTACTS_CHANGE_ADDFIELD = 233 NUM_CONTACTS_CHANGE_REMOVEFIELD = 234 NUM_SYSINFO_REQUEST = 250 NUM_SYSINFO_REPLY_START = 260 NUM_SYSINFO_REPLY_LINE = 261 NUM_SYSINFO_REPLY_END = 262 NUM_MESSAGE_SEND_REQUEST = 300 NUM_MESSAGE_SEND_REPLY_OK = 301 NUM_MESSAGE_SEND_REPLY_STATUS = 302 NUM_MESSAGE_SEND_REPLY_FAILURE = 303 NUM_MESSAGE_SEND_REPLY_RETRY = 304 NUM_SET_READ = 320 NUM_MESSAGE_NEW = 350 NUM_MESSAGE_REQUEST = 351 NUM_MESSAGE_REPLY_LINE = 352 NUM_MESSAGE_REPLY_END = 353 NUM_MESSAGE_REQUEST_UNREAD = 370 NUM_MESSAGE_REPLY_UNREAD = 371 NUM_CALENDAR_REQUEST_HASH_ALL = 380 #NUM_CALENDAR_REQUEST_HASH_SINGLE = 381 NUM_CALENDAR_REQUEST_ENTRY = 382 NUM_CALENDAR_REQUEST_ENTRIES_ALL = 383 NUM_CALENDAR_REPLY_HASH_ALL= 384 #NUM_CALENDAR_REPLY_HASH_SINGLE_START= 385 #NUM_CALENDAR_REPLY_HASH_SINGLE_LINE= 386 #NUM_CALENDAR_REPLY_HASH_SINGLE_END= 387 NUM_CALENDAR_REPLY_ENTRIES_START = 388 NUM_CALENDAR_REPLY_ENTRY = 389 NUM_CALENDAR_REPLY_ENTRIES_END = 390 NUM_CALENDAR_ENTRY_ADD = 395 NUM_CALENDAR_ENTRY_ADD_REPLY = 396 NUM_CALENDAR_ENTRY_DELETE = 397 NUM_CALENDAR_ENTRY_CHANGE = 398 NUM_CALENDAR_ENTRY_CHANGE_REPLY_TIME = 399 NUM_INCOMING_CALL = 400 NUM_DEBUG = 999 NUM_END_HEADER = chr(0x02) # Start of Text NUM_SEPERATOR = chr(0x1E) # Record Separator NUM_END_TEXT = chr(0x03) # End of Text PROTOCOL_VERSION = 1.5
gpl-2.0
2,607,002,893,510,730,000
26.986486
59
0.759536
false
2.486194
false
true
false
ngmiller/mipsy
mipsy/encoder.py
1
8100
""" mipsy.encoder Instruction encoder. See README.md for usage and general information. """ # system imports import bitstring # application imports from mipsy.arch import MIPS from mipsy.util import LabelCache, ParseInfo class Encoder(object): """ Responsible for encoding individual instructions and querying the label cache. """ class tokenizer(object): """ Defines a 'list' of tokenizing functions used for varying instructions. Each 'tokenizer' returns a dictionary mapping the specified operands to their tokens from the instruction data (the portion of the instruction following the operation) instruction = (operation) (instruction_data) <-- here, we're only concerned with instruction_data """ def map_operands(self, to_split, operands): """ Helper method. Maps operands to the preprocessed instruction data string. """ operand_values = to_split.split() if len(operands) != len(operand_values): raise RuntimeError('instruction contains too many operands') operand_map = {} for i in range(len(operands)): operand_map[operands[i]] = operand_values[i] return operand_map def RI_type(self, operands, instruction_data): """ The RI_type tokenizer takes instructions with the format: (operation) [(operand1), (operand2), (operand3)] """ to_split = instruction_data.replace(',', ' ') return self.map_operands(to_split, operands) def J_type(self, operands, instruction_data): """ The J_type tokenizer takes jump (j, jal, jr) instructions with the format: (operation) [operand] """ return self.map_operands(instruction_data, operands) def load_store(self, operands, instruction_data): """ The load_store tokenizer takes instructions with the format: (operation) [operand1, (operand2)(operand3)] """ # Clear out commas and the parenthesis surrounding the base register to_split = instruction_data.replace(',', ' ').replace('(', ' ').replace(')', ' ') return self.map_operands(to_split, operands) def nop(self, operands, instruction_data): """ The nop tokenizer simply maps all the given operands to register $zero. """ return {operand: '$zero' for operand in operands} # The assembler operation table defines the parsing rules # for a given instruction. The parsing rules are used to # map tokens in the instruction string to register address # and immediate value positions. (rs, rt, rd, etc) t = tokenizer() operations = { 'nop' : ParseInfo(['rd', 'rs', 'rt'], t.nop), 'add' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'addi' : ParseInfo(['rt', 'rs', 'imm'], t.RI_type), 'and' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'beq' : ParseInfo(['rs', 'rt', 'label'], t.RI_type), 'j' : ParseInfo(['label'], t.J_type), 'jal' : ParseInfo(['label'], t.J_type), 'jr' : ParseInfo(['rs'], t.RI_type), 'lw' : ParseInfo(['rt', 'imm', 'rs'], t.load_store), 'or' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'slt' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), 'sll' : ParseInfo(['rd', 'rt', 'shamt'], t.RI_type), 'sw' : ParseInfo(['rt', 'imm', 'rs'], t.load_store), 'sub' : ParseInfo(['rd', 'rs', 'rt'], t.RI_type), # TODO ... } def __init__(self): # ISA definitions self.mips = MIPS() # Label resolution cache self.label_cache = LabelCache() def encode_instruction(self, pc, instr): """ Given an instruction string, generate the encoded bit string. PC (instruction index is used for branch label resolution) """ data = instr.split() operation = data[0] try: mips_op_info = MIPS.operations[operation] except KeyError, e: raise RuntimeError('Unknown operation: {}'.format(operation)) # Grab the parsing info from the assembler operations table # Generate the initial operand map using the specified tokenizer parse_info = self.operations[operation] encoding_map = parse_info.tokenizer(parse_info.tokens, ''.join(data[1:])) # Get the binary equivalents of the operands and MIPS operation information self.resolve_operands(encoding_map, operation, pc) # Pull MIPS operation info into encoding map self.resolve_operation_info(encoding_map, mips_op_info) instruction = self.mips.generate_instruction(mips_op_info.format) return instruction.encode(encoding_map) def resolve_operation_info(self, encoding_map, mips_op_info): """ Adds the predefined operation info (opcode, funct) to the current encoding map. """ encoding_map['opcode'] = mips_op_info.opcode encoding_map['funct'] = mips_op_info.funct def resolve_operands(self, encoding_map, operation, pc): """ Converts generic register references (such as $t0, $t1, etc), immediate values, and jump addresses to their binary equivalents. """ convert = Encoder.to_binary branch_replace = False jump_replace = False for operand, value in encoding_map.iteritems(): if (operand == 'rs' or operand == 'rt' or operand == 'rd'): encoding_map[operand] = MIPS.registers[value] elif (operand == 'imm'): encoding_map[operand] = convert(int(value), MIPS.IMMEDIATE_SIZE) elif (operand == 'addr'): encoding_map[operand] = convert(int(value), MIPS.ADDRESS_SIZE) elif (operand == 'shamt'): encoding_map[operand] = convert(int(value), MIPS.SHAMT_SIZE) elif (operand == 'label'): label = encoding_map[operand] hit, index = self.label_cache.query(label) if not hit: raise RuntimeError('No address found for label: {}'.format(label)) if ((operation == 'beq') or (operation == 'bne')): # Calculate the relative instruction offset. The MIPS ISA uses # PC + 4 + (branch offset) to resolve branch targets. if index > pc: encoding_map[operand] = convert(index - pc - 1, MIPS.IMMEDIATE_SIZE) elif index < pc: encoding_map[operand] = convert((pc + 1) - index, MIPS.IMMEDIATE_SIZE) else: # Not sure why a branch would resolve to itself, but ok # (PC + 4) - 4 = encoding_map[operand] = convert(-1, MIPS.IMMEDIATE_SIZE) branch_replace = True elif ((operation == 'j') or (operation == 'jal')): # Jump addresses are absolute encoding_map[operand] = convert(index, MIPS.ADDRESS_SIZE) jump_replace = True # Need to convert references to 'label' back to references the instruction # encoding string recognizes, otherwise we end up with the default value (zero) # This doesn't feel very clean, but working on a fix. if branch_replace: encoding_map['imm'] = encoding_map['label'] elif jump_replace: encoding_map['addr'] = encoding_map['label'] @staticmethod def to_binary(decimal, length): """ Given a decimal, generate the binary equivalent string of given length. e.g. binary(2, 5) = 00010 """ b = bitstring.Bits(int=decimal, length=length) return b.bin
mit
-3,993,751,590,257,310,700
38.512195
106
0.564691
false
4.236402
false
false
false
Akson/RemoteConsolePlus3
RemoteConsolePlus3/RCP3/Backends/Processors/Graphs/Plot1D.py
1
2341
#Created by Dmytro Konobrytskyi, 2014 (github.com/Akson) import numpy as np import matplotlib import matplotlib.pyplot from RCP3.Infrastructure import TmpFilesStorage class Backend(object): def __init__(self, parentNode): self._parentNode = parentNode def Delete(self): """ This method is called when a parent node is deleted. """ pass def GetParameters(self): """ Returns a dictionary with object parameters, their values, limits and ways to change them. """ return {} def SetParameters(self, parameters): """ Gets a dictionary with parameter values and update object parameters accordingly """ pass def ProcessMessage(self, message): """ This message is called when a new message comes. If an incoming message should be processed by following nodes, the 'self._parentNode.SendMessage(message)' should be called with an appropriate message. """ dataArray = np.asarray(message["Data"]) fig = matplotlib.pyplot.figure(figsize=(6, 4), dpi=float(96)) ax=fig.add_subplot(111) #n, bins, patches = ax.hist(dataArray, bins=50) ax.plot(range(len(dataArray)), dataArray) processedMessage = {"Stream":message["Stream"], "Info":message["Info"]} filePath, link = TmpFilesStorage.NewTemporaryFile("png") fig.savefig(filePath,format='png') matplotlib.pyplot.close(fig) html = '<img src="http://{}" alt="Image should come here">'.format(link) processedMessage["Data"] = html self._parentNode.SendMessage(processedMessage) """ print len(message["Data"]) import numpy as np import matplotlib.pyplot as plt x = np.array(message["Data"]) num_bins = 50 # the histogram of the data n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5) plt.subplots_adjust(left=0.15) plt.show() """ def AppendContextMenuItems(self, menu): """ Append backend specific menu items to a context menu that user will see when he clicks on a node. """ pass
lgpl-3.0
-487,449,994,099,500,860
29.415584
88
0.5912
false
4.383895
false
false
false
BarusXXX/K-Tree
TreeLogic.py
1
3884
import os from copy import deepcopy class RecursiveTree: def __init__(self, dir_name): self.dir_name = dir_name self.files = [] self.folders = [] #Tuple Absolute address, branch, level self.branches = [] self.children_n = [] self.currentlevel = 0 self.level=[] #len(self.branches) self.level.append(0) self.folder_n = len(self.folders) self.parentIndex = [] self.parentbranch = [] self.iterator = 0 self.reversead = 0 self.parentIndex.append(None) self.branches.append([0]) self.folders.append((dir_name, "{0}", 0)) RecursiveTree.get_immediate_subdirectories(self, self.dir_name, 0) self.level_max = max(self.level) def Branch(self): pass def PrintTree(self): print("#Folders#") for x in self.folders: print(x) print("#Branches#") for x in self.branches: print(x) print("#Parent Branches#") for x in self.parentbranch: print(x) print("#Files#") for x in self.files: print(x) def subdir(self): return self.folders def filedir(self): return self.files def sortedbranches(self): STree = [] CountX = 0 for x in self.branches: STree.append([]) for y in x: STree[CountX].append(int(y)) CountX += 1 SSum = [] CountX = 0 TTree = deepcopy(STree) for x in TTree: CountY = 0 for y in x: TTree[CountX][CountY] = y + 1 CountY += 1 CountX += 1 SSum.append(sum(x)) SortedTree = [x for y, x in sorted(list(zip(SSum, STree)))] def get_immediate_subdirectories(self, a_dir, curadd): nextadd = 0 relocator = 0 cancleNo = self.reversead for name in os.listdir(a_dir): if os.path.isdir(os.path.join(a_dir, name)): curaddstr = str(curadd) + ";" + str(nextadd) relocator += 1 self.iterator += 1 self.currentlevel += 1 ContainsSub = False ContainsNo = 0 for x in os.listdir(a_dir + "/" + name): if os.path.isdir(a_dir + "/" + name + "/" + x): ContainsSub = True ContainsNo += 1 self.children_n.append(ContainsNo) PathConstructor = "{" + str(curadd) + ";" + str(nextadd) + "}" + ":" + os.path.join(a_dir, name) AbsAddressConstructor = (PathConstructor.split(":")[1]), (PathConstructor.split(":")[2]) self.folders.append((":".join(AbsAddressConstructor), PathConstructor.split(":")[0], self.currentlevel)) self.branches.append((((((PathConstructor.split(":")[0]).split("{")[1])).split("}")[0]).split(";"))) self.parentbranch.append(str(curadd).split(";")) self.level.append(self.currentlevel) self.parentIndex.append(self.iterator - relocator - self.reversead + cancleNo) #Cannot negate 1 RecursiveTree.get_immediate_subdirectories(self, (a_dir + "/" + name), curaddstr) self.currentlevel -= 1 if ContainsSub == True: self.reversead += ContainsNo nextadd += 1 else: self.files.append((self.iterator - relocator - self.reversead + cancleNo, os.path.join(a_dir, name))) #index of parent, direct links to file #print("file found:", self.iterator - relocator - self.reversead + cancleNo, name) #print("{"+str(curadd) + ";" + str(nextadd) + "}" + ":" + os.path.join(a_dir, name))
mit
4,737,420,698,815,880,000
29.582677
156
0.511843
false
3.903518
false
false
false
ndparker/wolfe
wolfe/scheduler/_job_queue.py
1
4458
# -*- coding: ascii -*- r""" :Copyright: Copyright 2014 - 2016 Andr\xe9 Malo or his licensors, as applicable :License: Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =========== Job Queue =========== Job Queue. The queue is implemented as priority queue using a heap. """ if __doc__: # pragma: no cover # pylint: disable = redefined-builtin __doc__ = __doc__.encode('ascii').decode('unicode_escape') __author__ = r"Andr\xe9 Malo".encode('ascii').decode('unicode_escape') __docformat__ = "restructuredtext en" import heapq as _heapq class JobQueue(object): """ Job queue This container utilizes a heap structure to implement a more or less generic priority queue (see below). The sorting order of the items is defined by a wrapper class passed to the constructor. The queue is made for jobs. That's why wrapper classes have to provide a job attribute for unwrapping and items passed into the queue are expected to provide a valid ``id`` attribute. Additionally the queue implements boolean operations (it's false if it's empty) and a __contains__ operation based on job IDs. >>> class Wrapper(object): ... def __init__(self, job): ... self.job = job ... def __lt__(self, other): ... return self.job.id > other.job.id >>> class Job(object): ... def __init__(self, job_id): ... self.id = job_id >>> queue = JobQueue(Wrapper) >>> queue.put(Job(2)) >>> bool(queue) True >>> 1 in queue False >>> 2 in queue True >>> len(queue) 1 :IVariables: `_queue` : ``list`` actual heap containing wrapped jobs `_wrapper` : callable Wrapper class factory `_ids` : ``set`` Set of job IDs currently queued """ def __init__(self, wrapper_class): """ Initialization :Parameters: `wrapper_class` : any class factory expected to take a job and represent it inside the queue. The object should be comparable with other instances (``__lt__`` is the proper method) and should provide a ``job`` attribute pointing to the original object. """ self._queue = [] self._wrapper = wrapper_class self._ids = set() def __nonzero__(self): """ Return false if the queue is empty, true otherwise :Return: Is there something in the queue? :Rtype: ``bool`` """ return bool(self._queue) def __contains__(self, job_id): """ Check if the passed job_id is currently enqueued :Return: Is it? :Rtype: ``bool`` """ return job_id in self._ids def __len__(self): """ Find queue length """ return len(self._queue) def __iter__(self): """ Iterate over the queue until it's exhausted """ try: while True: yield self.get() except IndexError: pass def put(self, job): """ Put a job into the queue :Parameters: `job` : any The job to put in. The object must have an ``id`` attribute, which must be hashable. """ self._ids.add(job.id) _heapq.heappush(self._queue, self._wrapper(job)) def get(self): """ Get the next job from the queue :Return: A job :Rtype: any :Exceptions: - `IndexError` : Queue was empty """ job = _heapq.heappop(self._queue).job self._ids.remove(job.id) return job def peek(self): """ Return the next job without removing it from the queue The job will still be wrapped in the wrapper_class container :Return: wrapped job :Rtype: any :Exceptions: - `IndexError` : Queue was empty """ return self._queue[0]
apache-2.0
-4,326,341,695,374,241,300
25.855422
77
0.580978
false
4.270115
false
false
false
bvanrijn/debianpaste-clients
old-paste.py
1
7602
#!/usr/bin/python # Filename: paste # Purpose: XmlRpc interface client to paste.debian.net # Author: Copyright (C) 2007-2011 Michael Gebetsroither <[email protected]> # License: This file is licensed under the GPL v2+. Full license text in LICENSE # Modified original: No modifications have been made # # This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. # You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ################################################################################ import sys import xmlrpclib import optparse import inspect import getpass # program defaults DEFAULT_SERVER='http://paste.debian.net/server.pl' class ActionFailedException(Exception): '''Thrown if server returned an error''' def __init__(self, errormsg, ret): Exception.__init__(self, errormsg, ret) def what(self): '''Get errormessage''' return self.args[0] def dwhat(self): '''Get more verbose errormessage''' return self.args[1] class Action(object): def __init__(self, args, opts): self.args_ = args self.opts_ = opts def _createProxy(self): return xmlrpclib.ServerProxy(self.opts_.server, verbose=False) def _callProxy(self, functor, server=None): '''Wrapper for xml-rpc calls to server which throws an ActionFailedException on error''' if server is None: server = self._createProxy() ret = functor(server) if ret['rc'] != 0: raise ActionFailedException(ret['statusmessage'], ret) return ret def call(self, method_name): '''External Interface to call the appropriate action''' return self.__getattribute__(method_name)() def actionAddPaste(self): '''Add paste to the server: <1.line> <2.line> ... default Read paste from stdin. [text] Every argument on the commandline will be interpreted as a seperate line of paste. ''' server = self._createProxy() o = self.opts_ code = self.args_ if len(self.args_) == 0: code = [ i.rstrip() for i in sys.stdin.readlines() ] code = '\n'.join(code) result = self._callProxy(lambda s: s.paste.addPaste(code, o.name, o.expire * 3600, o.lang, o.private), server) return (result['statusmessage'], result) def actionDelPaste(self): '''Delete paste from server: <digest> <digest> Digest of paste you want to remove. ''' digest = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.deletePaste(digest)) return (result['statusmessage'], result) def actionGetPaste(self): '''Get paste from server: <id> <id> Id of paste you want to receive. ''' id = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.getPaste(id)) return (result['code'], result) def actionGetLangs(self): '''Get supported language highlighting types from server''' result = self._callProxy(lambda s: s.paste.getLanguages()) return ('\n'.join(result['langs']), result) def actionAddShortUrl(self): '''Add short-URL: <url> <url> Short-URL to add ''' url = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.addShortURL(url)) return (result['url'], result) def actionGetShortUrl(self): '''Resolve short-URL: <url> <url> Short-URL to get clicks of ''' url = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.resolveShortURL(url)) return (result['url'], result) def actionGetShortUrlClicks(self): '''Get clicks of short-URL: <url> <url> Short-URL to get clicks of ''' url = self.args_.pop(0) result = self._callProxy(lambda s: s.paste.ShortURLClicks(url)) return (result['count'], result) def actionHelp(self): '''Print more verbose help about specific action: <action> <action> Topic on which you need more verbose help. ''' if len(self.args_) < 1: alias = "help" else: alias = self.args_.pop(0) if alias in actions: fun = actions[alias] print inspect.getdoc(self.__getattribute__(fun)) print "\naliase: " + " ".join([i for i in actions_r[fun] if i != alias]) else: print "Error: No such command - %s" % (alias) OPT_PARSER.print_usage() sys.exit(0) # actionAddPaste -> [add, a] actions_r = {} # add -> actionAddPaste # a -> actionAddPaste actions = {} # option parser OPT_PARSER = None ## # MAIN ## if __name__ == "__main__": action_spec = ['actionAddPaste add a', 'actionDelPaste del d rm', 'actionGetPaste get g', 'actionGetLangs getlangs gl langs l', 'actionAddShortUrl addurl', 'actionGetShortUrl geturl', 'actionGetShortUrlClicks getclicks', 'actionHelp help'] for i in action_spec: aliases = i.split() cmd = aliases.pop(0) actions_r[cmd] = aliases for (k,v) in actions_r.items(): for i in v: actions[i] = k usage = "usage: %prog [options] ACTION <args>\n\n" +\ "actions:\n" +\ "\n".join(["%12s\t%s" % (v[0], inspect.getdoc(getattr(Action, k)).split('\n')[0]) \ for (k,v) in actions_r.items()]) running_user = getpass.getuser() parser = optparse.OptionParser(usage=usage) parser.add_option('-n', '--name', default=running_user, help="Name of poster") parser.add_option('-e', '--expire', type=int, default=72, metavar='HOURS', help='Time at wich paste should expire') parser.add_option('-l', '--lang', default='Plain', help='Type of language to highlight') parser.add_option("-p", "--private", action="count", dest="private", default=0, help='Create hidden paste'), parser.add_option('-s', '--server', default=DEFAULT_SERVER, help='Paste server') parser.add_option('-v', '--verbose', action='count', default=0, help='More output') (opts, args) = parser.parse_args() OPT_PARSER = parser if len(args) == 0: parser.error('Please provide me with an action') elif args[0] in actions: cmd = args.pop(0) action = Action(args, opts) try: (msg, ret) = action.call(actions[cmd]) if opts.verbose == 0: print msg else: print ret except ActionFailedException, e: sys.stderr.write('Server Error: %s\n' % e.what()) if opts.verbose >0: print e.dwhat() sys.exit(1) else: parser.error('Unknown action: %s' % args[0])
gpl-2.0
4,928,760,378,934,636,000
35.373206
241
0.578269
false
3.934783
false
false
false
wjakob/layerlab
recipes/coated-gold-with-scatmedium.py
1
2082
# Creates a rough gold layer with a rough dielectric coating containing an # anisotropic scattering medium import sys sys.path.append('.') from utils.materials import gold from utils.cie import get_rgb import layerlab as ll eta_top = 1.5 # This step integrates the spectral IOR against the CIE XYZ curves to obtain # equivalent sRGB values. This may seem fairly approximate but turns out to # yield excellent agreement with spectral reference renders print('Computing gold IOR parameters') eta_bot = get_rgb(gold) alpha_top = 0.1 # Beckmann roughness of top layer (coating) alpha_bot = 0.1 # Beckmann roughness of bottom layer (gold) # Medium parameters g = 0.5 # Scattering anisotropy albedo = [0.25, 0.0, 0.95] # Single scattering albedo tau = 0.5 # Optical depth # Construct quadrature scheme suitable for the material n_top, m_top = ll.parameterHeuristicMicrofacet(eta=eta_top, alpha=alpha_top) n_bot, m_bot = ll.parameterHeuristicMicrofacet(eta=eta_bot[0], alpha=alpha_bot) n_med, m_med = ll.parameterHeuristicHG(g=g) n = max(n_top, n_bot) # Max of zenith angle discretization m = m_top # Number of Fourier orders determined by top layer mu, w = ll.quad.gaussLobatto(n) print("# of nodes = %i, fourier orders = %i" % (n, m)) # Construct coating layer print("Creating coating layer") coating = ll.Layer(mu, w, m) coating.setMicrofacet(eta=eta_top, alpha=alpha_top) output = [] for channel in range(3): # Construct diffuse bottom layer for each channel print("Creating metal layer") l = ll.Layer(mu, w, m) l.setMicrofacet(eta=eta_bot[channel], alpha=alpha_bot) # Construct medium layer print("Creating medium layer") l2 = ll.Layer(mu, w, m) l2.setHenyeyGreenstein(g=g, albedo=albedo[channel]) l2.expand(tau) # Apply medium layer print("Applying medium ..") l.addToTop(l2) # Apply coating print("Applying coating..") l.addToTop(coating) output.append(l) # .. and write to disk print("Writing to disk..") storage = ll.BSDFStorage.fromLayerRGB("output.bsdf", *output) storage.close()
bsd-2-clause
-3,367,170,747,667,034,600
29.617647
79
0.713737
false
3.013025
false
false
false
plumer/codana
projectdata.py
1
5358
class VersionDataManager: """Manager of all the information of files and packages in a specific version Attributes: packages (list of str): List of packages name files (list of str): List of all the files in the project packagedict (dict): Map of packages(key) and filenames(value) filebugnum (dict): Map of filename(key) and bug numbers(value) fileattr (dict): Map of filename(key) and the attributes of the file(value) packageattr (dict): Map of package(key) and the attributes of the package(value) filedepends (list of tuple): List of all the edges in the dependence graph of all files packagedepends (list of tuple) : List of all the edges in the dependence graph of all packages """ def __init__(self, version='6.0.0'): self.packagedict = {} self.fileattr = {} self.files = [] self.filebugnum = {} self.packageattr = {} self.versionArray = [] datafile = open(r'tomcat_history/tomcat' + version + r'/tomcat_pack.txt', 'r') for packs in datafile: packslice = packs.strip(' \t\n').split('\t') self.packagedict[packslice[0]] = [] self.packageattr[packslice[0]] = self.packPackageAttr(packslice[1:]) filenum = 0 if int(packslice[1]) == 0: continue for files in datafile: fileattr = files.strip(' \t\n').split('\t') if not fileattr[0] in self.packagedict[packslice[0]]: self.files.append(fileattr[0]) self.packagedict[packslice[0]].append(fileattr[0]) self.fileattr[fileattr[0]] = self.packFileAttr(fileattr[1:]) filenum = filenum + 1 if filenum >= int(packslice[1]): break datafile.close() datafile = open(r'tomcat_history/tomcat' + version + r'/log.txt', 'r') for record in datafile: recordslice = record.strip(' \t\n').split('\t') self.filebugnum[recordslice[0]] = int(recordslice[1]) datafile.close() self.packages = self.packagedict.keys() self.packagedepends = [] packdependfile = open(r'tomcat_history/tomcat' + version + r'/tomcat_pack_depends.txt', 'r') for e in packdependfile: vertices = e.strip(' \t\n').split(' ') self.packagedepends.append( (vertices[0], vertices[-1]) ) packdependfile.close() self.filedepends = [] filedependfile = open(r'tomcat_history/tomcat' + version + r'/tomcat_depends.txt', 'r') for e in filedependfile: vertices = e.strip(' \t\n').split('\t') self.filedepends.append( (vertices[0], vertices[-1]) ) filedependfile.close() def packPackageAttr(self, attrs): return {'filenum' : attrs[0], 'codelines' : attrs[1], 'cyclomatic' : attrs[2]} def packFileAttr(self, attrs): return {'codelines' : attrs[0], 'cyclomatic' : attrs[1]} def listFileAttr(self): return ('codelines', 'cyclomatic') def listPackageAttr(self): return ('filenum', 'codelines' , 'cyclomatic') def getPackages(self): return self.packages def getFilenames(self): return self.files def getFilesOfPackage(self, package): return self.packagedict[package] def getPackageOfFile(self, filename): return self.filedict[filename] def getFileAttr(self, filename): return self.fileattr[filename] def getPackageAttr(self, package): return self.packageattr[package] def getFileDependence(self): return self.filedepends def getPackageDependence(self): return self.packagedepends def getFileDependenceOfPackage(self, package): deplist = [] filelist = self.getFilesOfPackage(package) for dep in self.filedepends: if dep[0] in filelist and dep[1] in filelist: deplist.append(dep) return deplist def getBugNumberOfFile(self, filename): if filename in self.filebugnum: return self.filebugnum[filename] return 0 def getBugNumberOfPackage(self, package): bugnum = 0 for filename in self.packagedict[package]: if filename in self.filebugnum: bugnum = bugnum + self.filebugnum[filename] return bugnum class DataManager: '''Manage all the data in all versions Attributes: versionArray (list): List of all the versions dataManages (dict): Map of the version(key) and the specified data manager(value) ''' def __init__(self): self.versionArray = [] datafile = open(r'tomcat_history/tomcat_list.txt', 'r') for line in datafile: self.versionArray.append(line.strip(' \n').strip('tomcat')) datafile.close() self.dataManages = {} for version in self.versionArray: self.dataManages[version] = VersionDataManager(version) def getManager(self, version): return self.dataManages[version] def getVersionArray(self): return self.versionArray if __name__ == '__main__': dm = DataManager() dm.getFileDependenceOfPackage('apache.catalina')
mit
-4,992,400,439,942,177,000
35.69863
102
0.601904
false
3.905248
false
false
false
chutsu/robotics
prototype/models/two_wheel.py
1
3500
from math import cos from math import sin import numpy as np import sympy from sympy import pprint def two_wheel_2d_model(x, u, dt): """Two wheel 2D motion model Parameters ---------- x : np.array Two Wheel model state vector (x, y, theta) u : np.array Input dt : float Time difference Returns ------- np.array (x, y, theta) """ gdot = np.array([[u[0, 0] * cos(x[2, 0]) * dt], [u[0, 0] * sin(x[2, 0]) * dt], [u[1, 0] * dt]]) return x + gdot def two_wheel_2d_linearized_model(x, u, dt): """Two wheel 2D linearized motion model Parameters ---------- x : np.array Two Wheel model state vector (x, y, theta) u : np.array Input dt : float Time difference Returns ------- np.array 3x3 matrix of linearized two wheel model """ G1 = 1.0 G2 = 0.0 G3 = -u[0, 0] * sin(x[2, 0]) * dt G4 = 0.0 G5 = 1.0 G6 = u[0, 0] * cos(x[2, 0]) * dt G7 = 0.0 G8 = 0.0 G9 = 1.0 return np.array([[G1, G2, G3], [G4, G5, G6], [G7, G8, G9]]) def two_wheel_3d_model(x, u, dt): """Two wheel 3D motion model Parameters ---------- x : np.array Two Wheel model state vector (x, y, theta) u : np.array Input dt : float Time difference Returns ------- np.array (x, y, z, theta) """ g1 = x[0] + u[0] * cos(x[3]) * dt g2 = x[1] + u[0] * sin(x[3]) * dt g3 = x[2] + u[1] * dt g4 = x[3] + u[2] * dt return np.array([g1, g2, g3, g4]) def two_wheel_2d_deriv(): """ Symbolic derivation of Jacobian of the 2D two wheel motion model """ x1, x2, x3, x4, x5 = sympy.symbols("x1,x2,x3,x4,x5") dt = sympy.symbols("dt") # x, y, theta, v, omega f1 = x1 + x4 * sympy.cos(x3) * dt f2 = x2 + x4 * sympy.sin(x3) * dt f3 = x3 + x5 * dt f4 = x4 f5 = x5 F = sympy.Matrix([f1, f2, f3, f4, f5]) pprint(F.jacobian([x1, x2, x3, x4, x5])) def two_wheel_3d_deriv(): """ Symbolic derivation of Jacobian of the 3D two wheel motion model """ x1, x2, x3, x4, x5, x6, x7 = sympy.symbols("x1,x2,x3,x4,x5,x6,x7") dt = sympy.symbols("dt") # x1 - x # x2 - y # x3 - z # x4 - theta # x5 - v # x6 - omega # x7 - vz # x, y, z, theta, v, omega, vz f1 = x1 + x5 * sympy.cos(x4) * dt f2 = x2 + x5 * sympy.sin(x4) * dt f3 = x3 + x7 * dt f4 = x4 + x6 * dt f5 = x5 f6 = x6 f7 = x7 F = sympy.Matrix([f1, f2, f3, f4, f5, f6, f7]) pprint(F.jacobian([x1, x2, x3, x4, x5, x6, x7])) def two_wheel_3d_deriv2(): """ Symbolic derivation of Jacobian of the 3D two wheel motion model """ functions = sympy.symbols("f1,f2,f3,f4,f5,f6,f7,f8,f9") variables = sympy.symbols("x1,x2,x3,x4,x5,x6,x7,x8,x9") f1, f2, f3, f4, f5, f6, f7, f8, f9 = functions x1, x2, x3, x4, x5, x6, x7, x8, x9 = variables dt = sympy.symbols("dt") # x1 - x # x2 - y # x3 - z # x4 - theta # x5 - v # x6 - vz # x7 - omega # x8 - a # x9 - az f1 = x1 + x5 * sympy.cos(x4) * dt f2 = x2 + x5 * sympy.sin(x4) * dt f3 = x3 + x6 * dt f4 = x4 + x7 * dt f5 = x5 + x8 * dt f6 = x6 + x9 * dt f7 = x7 f8 = x8 f9 = x9 F = sympy.Matrix([f1, f2, f3, f4, f5, f6, f7, f8, f9]) pprint(F.jacobian([x1, x2, x3, x4, x5, x6, x7, x8, x9]))
gpl-3.0
2,906,790,711,327,816,000
19.833333
76
0.483714
false
2.470007
false
false
false
lingthio/Flask-User
flask_user/user_mixin.py
1
4450
"""This module implements the UserMixin class for Flask-User. This Mixin adds required methods to User data-model. """ from flask import current_app from flask_login import UserMixin as FlaskLoginUserMixin class UserMixin(FlaskLoginUserMixin): """ This class adds required methods to the User data-model. Example: class User(db.Model, UserMixin): ... """ def get_id(self): """Converts a User ID and parts of a User password hash to a token.""" # This function is used by Flask-Login to store a User ID securely as a browser cookie. # The last part of the password is included to invalidate tokens when password change. # user_id and password_ends_with are encrypted, timestamped and signed. # This function works in tandem with UserMixin.get_user_by_token() user_manager = current_app.user_manager user_id = self.id password_ends_with = '' if user_manager.USER_ENABLE_AUTH0 else self.password[-8:] user_token = user_manager.generate_token( user_id, # User ID password_ends_with, # Last 8 characters of user password ) # print("UserMixin.get_id: ID:", self.id, "token:", user_token) return user_token @classmethod def get_user_by_token(cls, token, expiration_in_seconds=None): # This function works in tandem with UserMixin.get_id() # Token signatures and timestamps are verified. # user_id and password_ends_with are decrypted. # Verifies a token and decrypts a User ID and parts of a User password hash user_manager = current_app.user_manager data_items = user_manager.verify_token(token, expiration_in_seconds) # Verify password_ends_with token_is_valid = False if data_items: # Load user by User ID user_id = data_items[0] password_ends_with = data_items[1] user = user_manager.db_manager.get_user_by_id(user_id) user_password = '' if user_manager.USER_ENABLE_AUTH0 else user.password[-8:] # Make sure that last 8 characters of user password matches token_is_valid = user and user_password==password_ends_with return user if token_is_valid else None def has_roles(self, *requirements): """ Return True if the user has all of the specified roles. Return False otherwise. has_roles() accepts a list of requirements: has_role(requirement1, requirement2, requirement3). Each requirement is either a role_name, or a tuple_of_role_names. role_name example: 'manager' tuple_of_role_names: ('funny', 'witty', 'hilarious') A role_name-requirement is accepted when the user has this role. A tuple_of_role_names-requirement is accepted when the user has ONE of these roles. has_roles() returns true if ALL of the requirements have been accepted. For example: has_roles('a', ('b', 'c'), d) Translates to: User has role 'a' AND (role 'b' OR role 'c') AND role 'd'""" # Translates a list of role objects to a list of role_names user_manager = current_app.user_manager role_names = user_manager.db_manager.get_user_roles(self) # has_role() accepts a list of requirements for requirement in requirements: if isinstance(requirement, (list, tuple)): # this is a tuple_of_role_names requirement tuple_of_role_names = requirement authorized = False for role_name in tuple_of_role_names: if role_name in role_names: # tuple_of_role_names requirement was met: break out of loop authorized = True break if not authorized: return False # tuple_of_role_names requirement failed: return False else: # this is a role_name requirement role_name = requirement # the user must have this role if not role_name in role_names: return False # role_name requirement failed: return False # All requirements have been met: return True return True
mit
2,653,800,167,023,835,600
42.203883
106
0.602921
false
4.405941
false
false
false
abrt/faf
src/pyfaf/storage/migrations/versions/168c63b81f85_report_history_default_value.py
1
1945
# Copyright (C) 2014 ABRT Team # Copyright (C) 2014 Red Hat, Inc. # # This file is part of faf. # # faf is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # faf is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with faf. If not, see <http://www.gnu.org/licenses/>. """ Report history default value Revision ID: 168c63b81f85 Revises: 183a15e52a4f Create Date: 2016-12-13 15:49:32.883743 """ from alembic.op import alter_column, execute # revision identifiers, used by Alembic. revision = '168c63b81f85' down_revision = '1c4d6317721a' def upgrade() -> None: alter_column('reporthistorydaily', 'unique', server_default="0") alter_column('reporthistoryweekly', 'unique', server_default="0") alter_column('reporthistorymonthly', 'unique', server_default="0") execute('UPDATE reporthistorydaily SET "unique" = 0 WHERE "unique" IS NULL') execute('UPDATE reporthistoryweekly SET "unique" = 0 WHERE "unique" IS NULL') execute('UPDATE reporthistorymonthly SET "unique" = 0 WHERE "unique" IS NULL') def downgrade() -> None: alter_column('reporthistorydaily', 'unique', server_default=None) alter_column('reporthistoryweekly', 'unique', server_default=None) alter_column('reporthistorymonthly', 'unique', server_default=None) execute('UPDATE reporthistorydaily SET "unique" = NULL WHERE "unique" = 0') execute('UPDATE reporthistoryweekly SET "unique" = NULL WHERE "unique" = 0') execute('UPDATE reporthistorymonthly SET "unique" = NULL WHERE "unique" = 0')
gpl-3.0
7,853,489,964,225,810,000
37.137255
82
0.731105
false
3.504505
false
false
false
sradevski/homeAutomate
scripts/laptop_on_network.py
1
1994
#!/usr/bin/python import remote_core as core import os import sys import nmap import datetime import time import re import go_to_sleep try: nm = nmap.PortScanner() # instance of nmap.PortScanner except nmap.PortScannerError: print('Nmap not found', sys.exc_info()[0]) sys.exit(0) except: print("Unexpected error:", sys.exc_info()[0]) sys.exit(0) macAddressToSearch = '64:76:BA:A3:43:B0' laptopHasBeenTurnedOn = False disconnectedCounter = 0 def checkIfLaptopOn(): global macAddressToSearch, laptopHasBeenTurnedOn, disconnectedCounter curHosts = [] # nm.scan(hosts = '192.168.11.1-8', arguments = '-n -sP -PS 7,22,88,443,80,660,2195 -PA 80,22,443 -PU -T3') nm.scan(hosts = '192.168.11.1-8', arguments = '-n -sn -PR') for host in nm.all_hosts(): try: mac = nm[host]['addresses']['mac'] vendor = nm[host]['vendor'][mac] except: vendor = mac = 'unknown' curHosts.append(mac) localtime = time.asctime(time.localtime(time.time())) print('============ {0} ============'.format(localtime)) for host in curHosts: print(host) config = core.load_config(); if config['location']['am_home']: if macAddressToSearch not in curHosts: if laptopHasBeenTurnedOn: if disconnectedCounter > 3: wentToSleepScript() laptopHasBeenTurnedOn = False disconnectedCounter += 1 else: laptopHasBeenTurnedOn = True def wentToSleepScript(): time.sleep(10) go_to_sleep.go_to_sleep() # print("SLEEPING") if __name__ == '__main__': start_at_hour = 22 stop_at_hour = 2 sleep_seconds = 60 * 60 * (start_at_hour - stop_at_hour) - 20 while True: localtime = time.localtime(time.time()) if localtime.tm_hour > stop_at_hour and localtime.tm_hour < start_at_hour: time.sleep(sleep_seconds - (60 * 60 * (start_at_hour - localtime.tm_hour))) time.sleep(10) checkIfLaptopOn()
mit
6,664,738,618,122,529,000
25.586667
110
0.61986
false
3.091473
false
false
false
JordanReiter/django-notification
notification/views.py
1
6596
from django.core.urlresolvers import reverse from django.shortcuts import render_to_response, get_object_or_404 from django.http import HttpResponseRedirect, Http404 from django.template import RequestContext from django.contrib.auth.decorators import login_required try: from django.contrib.syndication.views import Feed except ImportError: from django.contrib.syndication.views import feed as Feed from notification.models import * from notification.decorators import basic_auth_required, simple_basic_auth_callback from notification.feeds import NoticeUserFeed @basic_auth_required(realm="Notices Feed", callback_func=simple_basic_auth_callback) def feed_for_user(request): """ An atom feed for all unarchived :model:`notification.Notice`s for a user. """ url = "feed/%s" % request.user.username return Feed(request, url, { "feed": NoticeUserFeed, }) @login_required def notices(request): """ The main notices index view. Template: :template:`notification/notices.html` Context: notices A list of :model:`notification.Notice` objects that are not archived and to be displayed on the site. """ notices = Notice.objects.notices_for(request.user, on_site=True) return render_to_response("notification/notices.html", { "notices": notices, }, context_instance=RequestContext(request)) @login_required def notice_settings(request): """ The notice settings view. Template: :template:`notification/notice_settings.html` Context: notice_types A list of all :model:`notification.NoticeType` objects. notice_settings A dictionary containing ``column_headers`` for each ``NOTICE_MEDIA`` and ``rows`` containing a list of dictionaries: ``notice_type``, a :model:`notification.NoticeType` object and ``cells``, a list of tuples whose first value is suitable for use in forms and the second value is ``True`` or ``False`` depending on a ``request.POST`` variable called ``form_label``, whose valid value is ``on``. """ notice_types = NoticeType.objects.all() settings_table = [] for notice_type in notice_types: settings_row = [] for medium_id, medium_display in NOTICE_MEDIA: form_label = "%s_%s" % (notice_type.label, medium_id) setting = get_notification_setting(request.user, notice_type, medium_id) if request.method == "POST": if request.POST.get(form_label) == "on": if not setting.send: setting.send = True setting.save() else: if setting.send: setting.send = False setting.save() settings_row.append((form_label, setting.send)) settings_table.append({"notice_type": notice_type, "cells": settings_row}) if request.method == "POST": next_page = request.POST.get("next_page", ".") return HttpResponseRedirect(next_page) notice_settings = { "column_headers": [medium_display for medium_id, medium_display in NOTICE_MEDIA], "rows": settings_table, } return render_to_response("notification/notice_settings.html", { "notice_types": notice_types, "notice_settings": notice_settings, }, context_instance=RequestContext(request)) @login_required def single(request, id, mark_seen=True): """ Detail view for a single :model:`notification.Notice`. Template: :template:`notification/single.html` Context: notice The :model:`notification.Notice` being viewed Optional arguments: mark_seen If ``True``, mark the notice as seen if it isn't already. Do nothing if ``False``. Default: ``True``. """ notice = get_object_or_404(Notice, id=id) if request.user == notice.recipient: if mark_seen and notice.unseen: notice.unseen = False notice.save() return render_to_response("notification/single.html", { "notice": notice, }, context_instance=RequestContext(request)) raise Http404 @login_required def archive(request, noticeid=None, next_page=None): """ Archive a :model:`notices.Notice` if the requesting user is the recipient or if the user is a superuser. Returns a ``HttpResponseRedirect`` when complete. Optional arguments: noticeid The ID of the :model:`notices.Notice` to be archived. next_page The page to redirect to when done. """ if noticeid: try: notice = Notice.objects.get(id=noticeid) if request.user == notice.recipient or request.user.is_superuser: notice.archive() else: # you can archive other users' notices # only if you are superuser. return HttpResponseRedirect(next_page) except Notice.DoesNotExist: return HttpResponseRedirect(next_page) return HttpResponseRedirect(next_page) @login_required def delete(request, noticeid=None, next_page=None): """ Delete a :model:`notices.Notice` if the requesting user is the recipient or if the user is a superuser. Returns a ``HttpResponseRedirect`` when complete. Optional arguments: noticeid The ID of the :model:`notices.Notice` to be archived. next_page The page to redirect to when done. """ if noticeid: try: notice = Notice.objects.get(id=noticeid) if request.user == notice.recipient or request.user.is_superuser: notice.delete() else: # you can delete other users' notices # only if you are superuser. return HttpResponseRedirect(next_page) except Notice.DoesNotExist: return HttpResponseRedirect(next_page) return HttpResponseRedirect(next_page) @login_required def mark_all_seen(request): """ Mark all unseen notices for the requesting user as seen. Returns a ``HttpResponseRedirect`` when complete. """ for notice in Notice.objects.notices_for(request.user, unseen=True): notice.unseen = False notice.save() return HttpResponseRedirect(reverse("notification_notices"))
mit
8,042,785,939,941,627,000
32.482234
89
0.622347
false
4.336621
false
false
false
alexwaters/python-readability-api
readability/models.py
1
5472
# -*- coding: utf-8 -*- """ readability.models ~~~~~~~~~~~~~~~~~~ This module provides the core Readability API models. """ from .helpers import to_python, to_api class BaseResource(object): """A Base BaseResource object.""" def __init__(self): super(BaseResource, self).__init__() self._rdd = None def __dir__(self): d = self.__dict__.copy() try: del d['_rdd'] except KeyError: pass return d.keys() class Bookmark(BaseResource): """Bookmark API Model.""" def __init__(self): self.id = None self.user_id = None self.read_percent = None self.date_updated = None self.favorite = None self.archive = None self.date_archived = None self.date_opened = None self.date_added = None self.article = None def __repr__(self): return '<bookmark id="%s" favorite="%s" archive="%s" read_percent="%s">' % (self.id, self.favorite, self.archive, self.read_percent) @staticmethod def new_from_dict(d, rdd=None): b = to_python( obj=Bookmark(), in_dict=d, string_keys = ( 'id', 'user_id', 'read_percent', 'favorite', 'archive', 'author', ), date_keys = ('date_updated', 'date_archived', 'date_opened', 'date_added'), object_map = {'article': Article}, _rdd = rdd ) return b def delete(self): """Deletes Bookmark.""" return self._rdd._delete_resource(('bookmarks', self.id)) def update(self): """Updates Bookmark.""" args = to_api( dict( favorite=self.favorite, archive=self.archive, read_percent=self.read_percent, ), int_keys=('favorite', 'archive') ) r = self._rdd._post_resource(('bookmarks', self.id), **args) return r class Article(BaseResource): def __init__(self): self.id = None self.domain = None self.title = None self.url = None self.short_url = None self.author = None self.word_count = None self.content = None self.excerpt = None self.date_published = None self.next_page_href = None self.processed = None self.content_size = None def __repr__(self): return '<article id="%s">' % (self.id,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=Article(), in_dict=d, string_keys = ( 'id', 'domain', 'title', 'url', 'short_url', 'author', 'word_count', 'content', 'excerpt', 'next_page_href', 'processed', 'content_size', ), date_keys = ('date_published',), _rdd = rdd ) class Domain(BaseResource): def __init__(self): super(Domain, self).__init__() self.fqdn = None self.articles_ref = None def __repr__(self): return '<domain fqdn="%s">' % (self.fqdn,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=Domain(), in_dict=d, string_keys = ('fqdn', 'articles_ref'), _rdd = rdd ) def articles(self, **filters): """Returns Article list, filtered by Domain.""" return self._rdd.get_articles(domain=self.fqdn, **filters) def contributions(self, **filters): """Returns Article list, filtered by Domain.""" return self._rdd.get_contributions(domain=self.fqdn, **filters) class Contribution(BaseResource): def __init__(self): super(Contribution, self).__init__() self.date = None self.contribution = None self.user = None self.domain = None self.num_bookmarks = None def __repr__(self): return '<contribution domain="%s">' % (self.domain,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=Contribution(), in_dict=d, string_keys = ('contribution', 'user', 'domain', 'num_bookmarks'), date_keys = ('date'), _rdd = rdd ) class User(BaseResource): """User API Model.""" def __init__(self): self.username = None self.first_name = None self.last_name = None self.date_joined = None def __repr__(self): return '<user name="%s">' % (self.username,) @staticmethod def new_from_dict(d, rdd=None): return to_python( obj=User(), in_dict=d, string_keys = ('username', 'first_name'), date_keys = ('date_joined',), _rdd=rdd ) def bookmarks(self, **filters): """Returns Bookmark list, filtered by User.""" if self.username == self._rdd.username: return self._rdd.get_bookmarks(user=self.username, **filters) else: return self._rdd.get_bookmarks_by_user(self.username, **filters) def contributions(self, **filters): """Returns Contributions list, filtered by User.""" if self.username == self._rdd.username: return self._rdd.get_contributions(user=self.username, **filters) else: return self._rdd.get_contributions_by_user(self.username, **filters)
mit
-2,055,132,855,764,576,500
22.088608
140
0.524671
false
4.01173
false
false
false
kaphka/catconv
convert.py
1
1091
import argparse import signal from tqdm import tqdm import catconv.operations as co import catconv.stabi as sb exit = False def signal_handler(signal, frame): print('You pressed Ctrl+C!') exit = True parser = argparse.ArgumentParser() parser.add_argument("source") parser.add_argument("target") parser.add_argument("-u", "--update", help="overwrite previous results", action="store_true") args = parser.parse_args() source = sb.op.normpath(args.source) target = sb.op.normpath(args.target) data_dir, target_cat_name = sb.op.split(target) pages = map(sb.page_from_path, sb.catalog_pages(source,ext=".tif")) print("Source catalog:") print("path:", source) print("pages:", len(pages)) conversion = {"ext": ".jpg", "remove_type": True, "to_cat": data_dir,"cat": target_cat_name} from_to = [(page, sb.convert_page_path(page, conversion)) for page in pages] for ft in tqdm(from_to): if exit: break from_page, to_page = ft if sb.op.isfile(to_page['path']) and not args.update: continue else: co.convert_to_png(*ft)
apache-2.0
5,971,109,955,525,650,000
24.372093
92
0.669111
false
3.190058
false
false
false
alirizakeles/zato
code/zato-zmq/src/zato/zmq_/mdp/worker.py
1
9531
# -*- coding: utf-8 -*- """ Copyright (C) 2016 Dariusz Suchojad <dsuch at zato.io> Licensed under LGPLv3, see LICENSE.txt for terms and conditions. """ from __future__ import absolute_import, division, print_function, unicode_literals # stdlib import logging import time from datetime import datetime, timedelta # ZeroMQ import zmq.green as zmq # Zato from zato.zmq_.mdp import BaseZMQConnection, const, EventWorkerDisconnect, EventWorkerHeartbeat, EventReady, EventWorkerReply # ################################################################################################################################ logger = logging.getLogger(__name__) # ################################################################################################################################ class Worker(BaseZMQConnection): """ Standalone implementation of a worker for ZeroMQ Majordomo Protocol 0.1 http://rfc.zeromq.org/spec:7 """ def __init__(self, service_name, broker_address='tcp://localhost:47047', linger=0, poll_interval=100, log_details=False, heartbeat=3, heartbeat_mult=2, reconnect_sleep=2): self.service_name = service_name super(Worker, self).__init__(broker_address, linger, poll_interval, log_details) # How often, in seconds, to send a heartbeat to the broker or expect one from the broker self.heartbeat = heartbeat # If self.heartbeat * self.heartbeat_mult is exceeded, we assume the broker is down self.heartbeat_mult = heartbeat_mult # How long, in seconds, to wait before attempting to reconnect to the broker self.reconnect_sleep = reconnect_sleep # When did we last hear from the broker self.broker_last_heartbeat = None # When did we last send our own heartbeat to the broker self.worker_last_heartbeat = None # Timestamp of when we started to run self.last_connected = datetime.utcnow() self.has_debug = logger.isEnabledFor(logging.DEBUG) # Maps event IDs to methods that handle a given one self.handle_event_map = { const.v01.request_to_worker: self.on_event_request_to_worker, const.v01.heartbeat: self.on_event_heartbeat, const.v01.disconnect: self.on_event_disconnect, } # ################################################################################################################################ def connect(self): logger.info('Connecting to broker %s', self.broker_address) # Open ZeroMQ sockets first # From worker to broker self.client_socket.connect(self.broker_address) # From broker to worker self.worker_socket = self.ctx.socket(zmq.DEALER) self.worker_socket.linger = self.linger self.worker_poller = zmq.Poller() self.worker_poller.register(self.worker_socket, zmq.POLLIN) self.worker_socket.connect(self.broker_address) # Ok, we are ready self.notify_ready() # We can assume that the broker received our message self.last_connected = datetime.utcnow() # ################################################################################################################################ def stop(self): self.worker_poller.unregister(self.worker_socket) self.worker_socket.close() self.stop_client_socket() self.connect_client_socket() logger.info('Stopped worker for %s', self.broker_address) # ################################################################################################################################ def needs_reconnect(self): base_timestamp = self.broker_last_heartbeat if self.broker_last_heartbeat else self.last_connected return datetime.utcnow() >= base_timestamp + timedelta(seconds=self.heartbeat * self.heartbeat_mult) # ################################################################################################################################ def reconnect(self): last_hb = '{} (UTC)'.format(self.broker_last_heartbeat.isoformat()) if self.broker_last_heartbeat else 'never' logger.info('Sleeping for %ss before reconnecting to broker %s, last HB from broker: %s', self.reconnect_sleep, self.broker_address, last_hb) time.sleep(self.reconnect_sleep) logger.info('Reconnecting to broker %s', self.broker_address) self.stop() self.connect() # Let's give the other side a moment to reply to our ready event time.sleep(self.reconnect_sleep) # ################################################################################################################################ def needs_hb_to_broker(self): return datetime.utcnow() >= self.worker_last_heartbeat + timedelta(seconds=self.heartbeat) # ################################################################################################################################ def serve_forever(self): # To speed up look-ups log_details = self.log_details # Main loop while self.keep_running: try: items = self.worker_poller.poll(self.poll_interval) except KeyboardInterrupt: self.notify_disconnect() break if items: msg = self.worker_socket.recv_multipart() if log_details: logger.info('Received msg at %s %s', self.broker_address, msg) self.handle(msg) else: if log_details: logger.info('No items for worker at %s', self.broker_address) if self.needs_hb_to_broker(): self.notify_heartbeat() if self.needs_reconnect(): self.reconnect() # ################################################################################################################################ def on_event_request_to_worker(self, msg): logger.info('In _handle %s', msg) return datetime.utcnow().isoformat() # ################################################################################################################################ def on_event_heartbeat(self, *ignored): """ A no-op since self.handle already handles heartbeats from the broker. """ # ################################################################################################################################ def on_event_disconnect(self, *ignored): """ Our broker tells us to disconnect - according to the spec we now must re-open the connection. """ self.reconnect() # ################################################################################################################################ def handle(self, msg): logger.info('Handling %s', msg) # Since we received this message, it means the broker is up so the message, # no matter what event it is, allows us to update the timestamp of the last HB from broker self.broker_last_heartbeat = datetime.utcnow() sender_id = None body = None command = msg[2] if command == const.v01.request_to_worker: sender_id = msg[3] body = msg[4] # Hand over the message to an actual implementation and reply if told to response = self.handle_event_map[command](body) if response: self.send(EventWorkerReply(response, sender_id).serialize()) # Message handled, we are ready to handle a new one, assuming this one was a request if command == const.v01.request_to_worker: self.notify_ready() # ################################################################################################################################ def send(self, data, needs_hb=True): """ Sends data to the broker and updates an internal timer of when the last time we send a heartbeat to the broker since sending anything in that direction should be construed by the broker as a heartbeat itself. """ # Send data first self.worker_socket.send_multipart(data) # Update the timer if needs_hb: self.worker_last_heartbeat = datetime.utcnow() # ################################################################################################################################ def notify_ready(self): """ Notify the broker that we are ready to handle a new message. """ self.send(EventReady(self.service_name).serialize()) # ################################################################################################################################ def notify_heartbeat(self): """ Notify the broker that we are still around. """ self.send(EventWorkerHeartbeat().serialize()) # ################################################################################################################################ def notify_disconnect(self): """ Notify the broker that we are to disconnect from it. """ self.send(EventWorkerDisconnect().serialize(), needs_hb=False) # ################################################################################################################################ if __name__ == '__main__': w = Worker(b'My service', 'tcp://localhost:47047') w.connect() w.serve_forever()
gpl-3.0
-5,260,113,745,436,168,000
37.587045
130
0.484
false
5.113197
false
false
false
antonygc/liblightbase
liblightbase/lbdoc/metaclass.py
1
6065
from liblightbase import lbutils from liblightbase.lbdoc.metadata import DocumentMetadata def generate_metaclass(struct, base=None): """ Generate document metaclass. The document metaclass is an abstraction of document model defined by base structures. @param struct: Field or Group object. @param base: Base object or None. """ build_metadata = False if base is None: base = struct build_metadata = True snames = struct.content.__snames__ rnames = struct.content.__rnames__ class MetaClass(object): """ Document metaclass. Describes the structures defifined by document structure model. """ # @property __valreq__: Flag used to validate required # fields or not. __valreq__ = True # @property __slots__: reserves space for the declared # variables and prevents the automatic creation of # __dict__ and __weakref__ for each instance. __slots__ = ['_' + sname for sname in snames] if build_metadata: __slots__.append('__metadata__') def __init__(self, **kwargs): """ Document MetaClass constructor """ if self.__valreq__: lbutils.validate_required(rnames, kwargs) for arg in kwargs: setattr(self, arg, kwargs[arg]) for childstruct in struct.content: structname, prop = generate_property(base, childstruct) setattr(MetaClass, structname, prop) if build_metadata: MetaClass._metadata = build_metadata_prop() MetaClass.__name__ = struct.metadata.name return MetaClass def generate_property(base, struct): """ Make python's property based on structure attributes. @param base: Base object. @param struct: Field or Group object. """ if struct.is_field: structname = struct.name elif struct.is_group: structname = struct.metadata.name attr_name = '_' + structname def getter(self): value = getattr(self, attr_name) if struct.is_field: return getattr(value, '__value__') return value def setter(self, value): struct_metaclass = base.metaclass(structname) if struct.is_field: value = struct_metaclass(value) elif struct.is_group: if struct.metadata.multivalued: msg = 'object {} should be instance of {}'.format( struct.metadata.name, list) assert isinstance(value, list), msg msg = '{} list elements should be instances of {}'.format( struct.metadata.name, struct_metaclass) assertion = all(isinstance(element, struct_metaclass) \ for element in value) assert assertion, msg value = generate_multimetaclass(struct, struct_metaclass)(value) else: msg = '{} object should be an instance of {}'.format( struct.metadata.name, struct_metaclass) assert isinstance(value, struct_metaclass), msg setattr(self, attr_name, value) def deleter(self): delattr(self, attr_name) return structname, property(getter, setter, deleter, structname) def build_metadata_prop(): def fget(self): return self.__metadata__ def fset(self, value): msg = '_metadata attribute should be a DocumentMetadata object.' assert isinstance(value, DocumentMetadata) self.__metadata__ = value def fdel(self): del self.__metadata__ return property(fget, fset, fdel, '_metadata') def generate_multimetaclass(struct, struct_metaclass): """ Generate metaclass to use with multivalued groups. @param struct: Field or Group object @param struct_metaclass: The struct Metaclass """ class MultiGroupMetaClass(list): """ Multivalued Group Metaclass. Metaclass used to ensure list elements are instances of right metaclasses. """ def __setitem__(self, index, element): """ x.__setitem__(y, z) <==> x[y] = z """ msg = '{} list elements should be instances of {}'.format( struct.metadata.name, struct_metaclass) assert isinstance(element, struct_metaclass), msg return super(MultiGroupMetaClass, self).__setitem__(index, element) def append(self, element): """ L.append(object) -- append object to end """ msg = '{} list elements should be instances of {}'.format( struct.metadata.name, struct_metaclass) assert isinstance(element, struct_metaclass), msg return super(MultiGroupMetaClass, self).append(element) return MultiGroupMetaClass def generate_field_metaclass(field, base): """ Generate field metaclass. The field metaclass validates incoming value against fields' datatype. @param field: Field object. @param base: Base object. """ class FieldMetaClass(object): """ Field MetaClass. validates incoming value against fields' datatype. """ def __init__(self, value): self.__value__ = value def __setattr__(self, obj, value): validator = field._datatype.__schema__(base, field, 0) if field.multivalued is True: msg = 'Expected type list for {}, but found {}' assert isinstance(value, list), msg.format( field.name, type(value)) value = [validator(element) for element in value] else: value = validator(value) super(FieldMetaClass, self).__setattr__('__value__', value) def __getattr__(self, obj): return super(FieldMetaClass, self).__getattribute__('__value__') FieldMetaClass.__name__ = field.name return FieldMetaClass
gpl-2.0
6,355,603,194,399,791,000
33.460227
76
0.588458
false
4.658218
false
false
false
aio-libs/aiozmq
examples/core_dealer_router.py
1
1579
import asyncio import aiozmq import zmq class ZmqDealerProtocol(aiozmq.ZmqProtocol): transport = None def __init__(self, queue, on_close): self.queue = queue self.on_close = on_close def connection_made(self, transport): self.transport = transport def msg_received(self, msg): self.queue.put_nowait(msg) def connection_lost(self, exc): self.on_close.set_result(exc) class ZmqRouterProtocol(aiozmq.ZmqProtocol): transport = None def __init__(self, on_close): self.on_close = on_close def connection_made(self, transport): self.transport = transport def msg_received(self, msg): self.transport.write(msg) def connection_lost(self, exc): self.on_close.set_result(exc) async def go(): router_closed = asyncio.Future() dealer_closed = asyncio.Future() router, _ = await aiozmq.create_zmq_connection( lambda: ZmqRouterProtocol(router_closed), zmq.ROUTER, bind="tcp://127.0.0.1:*" ) addr = list(router.bindings())[0] queue = asyncio.Queue() dealer, _ = await aiozmq.create_zmq_connection( lambda: ZmqDealerProtocol(queue, dealer_closed), zmq.DEALER, connect=addr ) for i in range(10): msg = (b"data", b"ask", str(i).encode("utf-8")) dealer.write(msg) answer = await queue.get() print(answer) dealer.close() await dealer_closed router.close() await router_closed def main(): asyncio.run(go()) print("DONE") if __name__ == "__main__": main()
bsd-2-clause
-5,655,556,457,899,408,000
21.239437
86
0.621279
false
3.455142
false
false
false
pyfa-org/eos
eos/item/mixin/effect_stats/remote_repair.py
1
1829
# ============================================================================== # Copyright (C) 2011 Diego Duclos # Copyright (C) 2011-2018 Anton Vorobyov # # This file is part of Eos. # # Eos is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Eos is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Eos. If not, see <http://www.gnu.org/licenses/>. # ============================================================================== from eos.eve_obj.effect.repairs.base import RemoteArmorRepairEffect from eos.eve_obj.effect.repairs.base import RemoteShieldRepairEffect from eos.item.mixin.base import BaseItemMixin class RemoteRepairMixin(BaseItemMixin): def __repair_effect_iter(self, effect_class): for effect in self._type_effects.values(): if not isinstance(effect, effect_class): continue if effect.id not in self._running_effect_ids: continue yield effect def get_armor_rps(self, reload=False): rps = 0 for effect in self.__repair_effect_iter(RemoteArmorRepairEffect): rps += effect.get_rps(self, reload=reload) return rps def get_shield_rps(self, reload=False): rps = 0 for effect in self.__repair_effect_iter(RemoteShieldRepairEffect): rps += effect.get_rps(self, reload=reload) return rps
lgpl-3.0
-2,539,301,026,785,657,300
37.914894
80
0.636413
false
4.04646
false
false
false
bollu/polymage
sandbox/apps/python/img_proc/harris/init.py
1
1485
import sys import os.path from PIL import Image import numpy as np from arg_parser import parse_args from printer import print_header, print_usage, print_line def init_images(app_data): print("[init.py] : initializing images...") app_args = app_data['app_args'] # input image: img_path = app_args.img_file img = np.array(Image.open(img_path).convert('1')) rows, cols = img.shape # convert to float image IN = np.array(img) IN = IN.astype(np.float32).ravel() # final output image OUT = np.zeros((rows, cols), np.float32).ravel() img_data = {} img_data['IN'] = IN img_data['OUT'] = OUT app_data['img_data'] = img_data app_data['rows'] = rows app_data['cols'] = cols return def get_input(app_data): # parse the command-line arguments app_args = parse_args() app_data['app_args'] = app_args app_data['mode'] = app_args.mode app_data['runs'] = int(app_args.runs) app_data['graph_gen'] = bool(app_args.graph_gen) app_data['timer'] = app_args.timer # storage optimization app_data['optimize_storage'] = bool(app_args.optimize_storage) # early freeing of allocated arrays app_data['early_free'] = bool(app_args.early_free) # pool allocate option app_data['pool_alloc'] = bool(app_args.pool_alloc) return def init_all(app_data): pipe_data = {} app_data['pipe_data'] = pipe_data get_input(app_data) init_images(app_data) return
apache-2.0
-1,343,414,416,860,723,500
22.203125
66
0.630976
false
3.207343
false
false
false
Endika/mitmproxy
libmproxy/contentviews.py
1
16688
""" Mitmproxy Content Views ======================= mitmproxy includes a set of content views which can be used to format/decode/highlight data. While they are currently used for HTTP message bodies only, the may be used in other contexts in the future, e.g. to decode protobuf messages sent as WebSocket frames. Thus, the View API is very minimalistic. The only arguments are `data` and `**metadata`, where `data` is the actual content (as bytes). The contents on metadata depend on the protocol in use. For HTTP, the message headers are passed as the ``headers`` keyword argument. """ from __future__ import (absolute_import, print_function, division) import cStringIO import json import logging import subprocess import sys import lxml.html import lxml.etree import datetime from PIL import Image from PIL.ExifTags import TAGS import html2text import six from netlib.odict import ODict from netlib import encoding from netlib.utils import clean_bin, hexdump, urldecode, multipartdecode, parse_content_type from . import utils from .exceptions import ContentViewException from .contrib import jsbeautifier from .contrib.wbxml.ASCommandResponse import ASCommandResponse try: import pyamf from pyamf import remoting, flex except ImportError: # pragma nocover pyamf = None try: import cssutils except ImportError: # pragma nocover cssutils = None else: cssutils.log.setLevel(logging.CRITICAL) cssutils.ser.prefs.keepComments = True cssutils.ser.prefs.omitLastSemicolon = False cssutils.ser.prefs.indentClosingBrace = False cssutils.ser.prefs.validOnly = False # Default view cutoff *in lines* VIEW_CUTOFF = 512 KEY_MAX = 30 def format_dict(d): """ Helper function that transforms the given dictionary into a list of ("key", key ) ("value", value) tuples, where key is padded to a uniform width. """ max_key_len = max(len(k) for k in d.keys()) max_key_len = min(max_key_len, KEY_MAX) for key, value in d.items(): key += ":" key = key.ljust(max_key_len + 2) yield [ ("header", key), ("text", value) ] def format_text(text): """ Helper function that transforms bytes into the view output format. """ for line in text.splitlines(): yield [("text", line)] class View(object): name = None prompt = () content_types = [] def __call__(self, data, **metadata): """ Transform raw data into human-readable output. Args: data: the data to decode/format as bytes. metadata: optional keyword-only arguments for metadata. Implementations must not rely on a given argument being present. Returns: A (description, content generator) tuple. The content generator yields lists of (style, text) tuples, where each list represents a single line. ``text`` is a unfiltered byte string which may need to be escaped, depending on the used output. Caveats: The content generator must not yield tuples of tuples, because urwid cannot process that. You have to yield a *list* of tuples per line. """ raise NotImplementedError() class ViewAuto(View): name = "Auto" prompt = ("auto", "a") content_types = [] def __call__(self, data, **metadata): headers = metadata.get("headers", {}) ctype = headers.get("content-type") if ctype: ct = parse_content_type(ctype) if ctype else None ct = "%s/%s" % (ct[0], ct[1]) if ct in content_types_map: return content_types_map[ct][0](data, **metadata) elif utils.isXML(data): return get("XML")(data, **metadata) if utils.isMostlyBin(data): return get("Hex")(data) return get("Raw")(data) class ViewRaw(View): name = "Raw" prompt = ("raw", "r") content_types = [] def __call__(self, data, **metadata): return "Raw", format_text(data) class ViewHex(View): name = "Hex" prompt = ("hex", "e") content_types = [] @staticmethod def _format(data): for offset, hexa, s in hexdump(data): yield [ ("offset", offset + " "), ("text", hexa + " "), ("text", s) ] def __call__(self, data, **metadata): return "Hex", self._format(data) class ViewXML(View): name = "XML" prompt = ("xml", "x") content_types = ["text/xml"] def __call__(self, data, **metadata): parser = lxml.etree.XMLParser( remove_blank_text=True, resolve_entities=False, strip_cdata=False, recover=False ) try: document = lxml.etree.fromstring(data, parser) except lxml.etree.XMLSyntaxError: return None docinfo = document.getroottree().docinfo prev = [] p = document.getroottree().getroot().getprevious() while p is not None: prev.insert( 0, lxml.etree.tostring(p) ) p = p.getprevious() doctype = docinfo.doctype if prev: doctype += "\n".join(prev).strip() doctype = doctype.strip() s = lxml.etree.tostring( document, pretty_print=True, xml_declaration=True, doctype=doctype or None, encoding=docinfo.encoding ) return "XML-like data", format_text(s) class ViewJSON(View): name = "JSON" prompt = ("json", "s") content_types = ["application/json"] def __call__(self, data, **metadata): pretty_json = utils.pretty_json(data) if pretty_json: return "JSON", format_text(pretty_json) class ViewHTML(View): name = "HTML" prompt = ("html", "h") content_types = ["text/html"] def __call__(self, data, **metadata): if utils.isXML(data): parser = lxml.etree.HTMLParser( strip_cdata=True, remove_blank_text=True ) d = lxml.html.fromstring(data, parser=parser) docinfo = d.getroottree().docinfo s = lxml.etree.tostring( d, pretty_print=True, doctype=docinfo.doctype, encoding='utf8' ) return "HTML", format_text(s) class ViewHTMLOutline(View): name = "HTML Outline" prompt = ("html outline", "o") content_types = ["text/html"] def __call__(self, data, **metadata): data = data.decode("utf-8") h = html2text.HTML2Text(baseurl="") h.ignore_images = True h.body_width = 0 outline = h.handle(data) return "HTML Outline", format_text(outline) class ViewURLEncoded(View): name = "URL-encoded" prompt = ("urlencoded", "u") content_types = ["application/x-www-form-urlencoded"] def __call__(self, data, **metadata): d = urldecode(data) return "URLEncoded form", format_dict(ODict(d)) class ViewMultipart(View): name = "Multipart Form" prompt = ("multipart", "m") content_types = ["multipart/form-data"] @staticmethod def _format(v): yield [("highlight", "Form data:\n")] for message in format_dict(ODict(v)): yield message def __call__(self, data, **metadata): headers = metadata.get("headers", {}) v = multipartdecode(headers, data) if v: return "Multipart form", self._format(v) if pyamf: class DummyObject(dict): def __init__(self, alias): dict.__init__(self) def __readamf__(self, input): data = input.readObject() self["data"] = data def pyamf_class_loader(s): for i in pyamf.CLASS_LOADERS: if i != pyamf_class_loader: v = i(s) if v: return v return DummyObject pyamf.register_class_loader(pyamf_class_loader) class ViewAMF(View): name = "AMF" prompt = ("amf", "f") content_types = ["application/x-amf"] def unpack(self, b, seen=set([])): if hasattr(b, "body"): return self.unpack(b.body, seen) if isinstance(b, DummyObject): if id(b) in seen: return "<recursion>" else: seen.add(id(b)) for k, v in b.items(): b[k] = self.unpack(v, seen) return b elif isinstance(b, dict): for k, v in b.items(): b[k] = self.unpack(v, seen) return b elif isinstance(b, list): return [self.unpack(i) for i in b] elif isinstance(b, datetime.datetime): return str(b) elif isinstance(b, flex.ArrayCollection): return [self.unpack(i, seen) for i in b] else: return b def _format(self, envelope): for target, message in iter(envelope): if isinstance(message, pyamf.remoting.Request): yield [ ("header", "Request: "), ("text", str(target)), ] else: yield [ ("header", "Response: "), ("text", "%s, code %s" % (target, message.status)), ] s = json.dumps(self.unpack(message), indent=4) for msg in format_text(s): yield msg def __call__(self, data, **metadata): envelope = remoting.decode(data, strict=False) if envelope: return "AMF v%s" % envelope.amfVersion, self._format(envelope) class ViewJavaScript(View): name = "JavaScript" prompt = ("javascript", "j") content_types = [ "application/x-javascript", "application/javascript", "text/javascript" ] def __call__(self, data, **metadata): opts = jsbeautifier.default_options() opts.indent_size = 2 res = jsbeautifier.beautify(data, opts) return "JavaScript", format_text(res) class ViewCSS(View): name = "CSS" prompt = ("css", "c") content_types = [ "text/css" ] def __call__(self, data, **metadata): if cssutils: sheet = cssutils.parseString(data) beautified = sheet.cssText else: beautified = data return "CSS", format_text(beautified) class ViewImage(View): name = "Image" prompt = ("image", "i") content_types = [ "image/png", "image/jpeg", "image/gif", "image/vnd.microsoft.icon", "image/x-icon", ] def __call__(self, data, **metadata): try: img = Image.open(cStringIO.StringIO(data)) except IOError: return None parts = [ ("Format", str(img.format_description)), ("Size", "%s x %s px" % img.size), ("Mode", str(img.mode)), ] for i in sorted(img.info.keys()): if i != "exif": parts.append( (str(i), str(img.info[i])) ) if hasattr(img, "_getexif"): ex = img._getexif() if ex: for i in sorted(ex.keys()): tag = TAGS.get(i, i) parts.append( (str(tag), str(ex[i])) ) fmt = format_dict(ODict(parts)) return "%s image" % img.format, fmt class ViewProtobuf(View): """Human friendly view of protocol buffers The view uses the protoc compiler to decode the binary """ name = "Protocol Buffer" prompt = ("protobuf", "p") content_types = [ "application/x-protobuf", "application/x-protobuffer", ] @staticmethod def is_available(): try: p = subprocess.Popen( ["protoc", "--version"], stdout=subprocess.PIPE ) out, _ = p.communicate() return out.startswith("libprotoc") except: return False def decode_protobuf(self, content): # if Popen raises OSError, it will be caught in # get_content_view and fall back to Raw p = subprocess.Popen(['protoc', '--decode_raw'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate(input=content) if out: return out else: return err def __call__(self, data, **metadata): decoded = self.decode_protobuf(data) return "Protobuf", format_text(decoded) class ViewWBXML(View): name = "WBXML" prompt = ("wbxml", "w") content_types = [ "application/vnd.wap.wbxml", "application/vnd.ms-sync.wbxml" ] def __call__(self, data, **metadata): try: parser = ASCommandResponse(data) parsedContent = parser.xmlString if parsedContent: return "WBXML", format_text(parsedContent) except: return None views = [] content_types_map = {} view_prompts = [] def get(name): for i in views: if i.name == name: return i def get_by_shortcut(c): for i in views: if i.prompt[1] == c: return i def add(view): # TODO: auto-select a different name (append an integer?) for i in views: if i.name == view.name: raise ContentViewException("Duplicate view: " + view.name) # TODO: the UI should auto-prompt for a replacement shortcut for prompt in view_prompts: if prompt[1] == view.prompt[1]: raise ContentViewException("Duplicate view shortcut: " + view.prompt[1]) views.append(view) for ct in view.content_types: l = content_types_map.setdefault(ct, []) l.append(view) view_prompts.append(view.prompt) def remove(view): for ct in view.content_types: l = content_types_map.setdefault(ct, []) l.remove(view) if not len(l): del content_types_map[ct] view_prompts.remove(view.prompt) views.remove(view) add(ViewAuto()) add(ViewRaw()) add(ViewHex()) add(ViewJSON()) add(ViewXML()) add(ViewWBXML()) add(ViewHTML()) add(ViewHTMLOutline()) add(ViewJavaScript()) add(ViewCSS()) add(ViewURLEncoded()) add(ViewMultipart()) add(ViewImage()) if pyamf: add(ViewAMF()) if ViewProtobuf.is_available(): add(ViewProtobuf()) def safe_to_print(lines, encoding="utf8"): """ Wraps a content generator so that each text portion is a *safe to print* unicode string. """ for line in lines: clean_line = [] for (style, text) in line: try: text = clean_bin(text.decode(encoding, "strict")) except UnicodeDecodeError: text = clean_bin(text).decode(encoding, "strict") clean_line.append((style, text)) yield clean_line def get_content_view(viewmode, data, **metadata): """ Args: viewmode: the view to use. data, **metadata: arguments passed to View instance. Returns: A (description, content generator) tuple. In contrast to calling the views directly, text is always safe-to-print unicode. Raises: ContentViewException, if the content view threw an error. """ if not data: return "No content", [] msg = [] headers = metadata.get("headers", {}) enc = headers.get("content-encoding") if enc and enc != "identity": decoded = encoding.decode(enc, data) if decoded: data = decoded msg.append("[decoded %s]" % enc) try: ret = viewmode(data, **metadata) # Third-party viewers can fail in unexpected ways... except Exception as e: six.reraise( ContentViewException, ContentViewException(str(e)), sys.exc_info()[2] ) if not ret: ret = get("Raw")(data, **metadata) msg.append("Couldn't parse: falling back to Raw") else: msg.append(ret[0]) return " ".join(msg), safe_to_print(ret[1])
mit
1,470,349,869,913,732,900
26.583471
98
0.54704
false
3.998083
false
false
false
dropbox/changes
changes/listeners/mail.py
1
8772
from __future__ import absolute_import, print_function from itertools import imap import logging import toronado from email.utils import parseaddr from flask import current_app, render_template from flask_mail import Message, sanitize_address from jinja2 import Markup from typing import List # NOQA from changes.config import db, mail from changes.constants import Result, Status from changes.db.utils import try_create from changes.lib import build_context_lib, build_type from changes.lib.build_context_lib import CollectionContext # NOQA from changes.models.event import Event, EventType from changes.models.build import Build from changes.models.job import Job from changes.models.jobplan import JobPlan from changes.models.project import ProjectOption def filter_recipients(email_list, domain_whitelist=None): """ Returns emails from email_list that have been white-listed by domain_whitelist. """ if domain_whitelist is None: domain_whitelist = current_app.config['MAIL_DOMAIN_WHITELIST'] if not domain_whitelist: return email_list return [ e for e in email_list if parseaddr(e)[1].split('@', 1)[-1] in domain_whitelist ] class MailNotificationHandler(object): logger = logging.getLogger('mail') def send(self, msg, build): msg.recipients = filter_recipients(msg.recipients) if not msg.recipients: self.logger.info( 'Exiting for collection_id={} because its message has no ' 'recipients.'.format(build.collection_id)) return event = try_create(Event, where={ 'type': EventType.email, 'item_id': build.collection_id, 'data': { 'triggering_build_id': build.id.hex, 'recipients': msg.recipients, } }) # If we were unable to create the Event, we must've done so (and thus sent the mail) already. if not event: self.logger.warning('An email has already been sent for collection_id=%s, (build_id=%s).', build.collection_id, build.id.hex) return mail.send(msg) def get_msg(self, builds): # type: (List[Build]) -> Message context = build_context_lib.get_collection_context(builds) # type: CollectionContext if context.result == Result.passed: return None max_shown = current_app.config.get('MAX_SHOWN_ITEMS_PER_BUILD_MAIL', 3) context_dict = context._asdict() context_dict.update({ 'MAX_SHOWN_ITEMS_PER_BUILD': max_shown, 'showing_failing_tests_count': sum([min(b['failing_tests_count'], max_shown) for b in context.builds]) }) recipients = self.get_collection_recipients(context) msg = Message(context.title, recipients=recipients, extra_headers={ 'Reply-To': ', '.join(sanitize_address(r) for r in recipients), }) msg.body = render_template('listeners/mail/notification.txt', **context_dict) msg.html = Markup(toronado.from_string( render_template('listeners/mail/notification.html', **context_dict) )) return msg def get_collection_recipients(self, collection_context): # type: (CollectionContext) -> List[unicode] """ Returns a list of recipients for a collection context created by get_collection_context. Only recipients for failing builds will be returned. """ recipient_lists = map( lambda build_context: self.get_build_recipients(build_context['build']), collection_context.builds) return list(set([r for rs in recipient_lists for r in rs])) def get_build_recipients(self, build): # type: (Build) -> List[unicode] """ Returns a list of recipients for a build. The build author is included unless the build and all failing jobs have turned off the mail.notify-author option. Successful builds will return the empty list. Recipients are also collected from each failing job's mail.notify-addresses and mail.notify-addresses-revisions options. Should there be no failing jobs (is that possible?), recipients are collected from the build's own mail.notify-addresses and mail.notify-addresses-revisions options. """ if build.result == Result.passed: return [] recipients = [] options = self.get_build_options(build) if options['mail.notify-author']: author = build.author if author: recipients.append(u'%s <%s>' % (author.name, author.email)) recipients.extend(options['mail.notify-addresses']) if build_type.is_initial_commit_build(build): recipients.extend(options['mail.notify-addresses-revisions']) return recipients def get_build_options(self, build): """ Returns a build's mail options as a { 'mail.notify-author': bool, 'mail.notify-addresses': set, 'mail.notify-addresses-revisions': set, } dict. The 'mail.notify-author' option is True unless the build and all failing jobs have turned off the mail.notify-author option. The mail.notify-addresses and mail.notify-addresses-revisions options respectively are sets of email addresses constructed by merging the corresponding options of all failing jobs. Note that the build's options are used as defaults when constructing the options for each job, so that the job options override the build options. Finally, the build's own options are used if there are no failing jobs. """ default_options = { 'mail.notify-author': '1', 'mail.notify-addresses': '', 'mail.notify-addresses-revisions': '', } build_options = dict( default_options, **dict(db.session.query( ProjectOption.name, ProjectOption.value ).filter( ProjectOption.project_id == build.project_id, ProjectOption.name.in_(default_options.keys()), )) ) # Get options for all failing jobs. jobs_options = [] for job in list(Job.query.filter(Job.build_id == build.id)): if job.result != Result.passed: jobs_options.append(dict( build_options, **self.get_job_options(job))) # Merge all options. # Fallback to build options in case there are no failing jobs. all_options = jobs_options or [build_options] merged_options = { # Notify the author unless all jobs and the build have turned the # notify-author option off. 'mail.notify-author': any( imap( lambda options: options.get('mail.notify-author') == '1', all_options, ), ), 'mail.notify-addresses': set(), 'mail.notify-addresses-revisions': set(), } recipient_keys = ['mail.notify-addresses', 'mail.notify-addresses-revisions'] for options in all_options: for key in recipient_keys: # XXX(dcramer): we dont have option validators so lets assume # people enter slightly incorrect values merged_options[key] |= set( [x.strip() for x in options[key].split(',') if x.strip()] ) return merged_options def get_job_options(self, job): jobplan = JobPlan.query.filter( JobPlan.job_id == job.id, ).first() options = {} if jobplan and 'snapshot' in jobplan.data: options = jobplan.data['snapshot']['options'] return options def build_finished_handler(build_id, *args, **kwargs): build = Build.query.get(build_id) if not build: return if not build.collection_id: # If there isn't a collection_id, assume the build stands alone. # All builds should probably have collection_id set. builds = [build] else: builds = list( Build.query.filter(Build.collection_id == build.collection_id)) # Exit if there are no builds for the given build_id, or any build hasn't # finished. if not builds or any(map(lambda build: build.status != Status.finished, builds)): return notification_handler = MailNotificationHandler() msg = notification_handler.get_msg(builds) if msg is not None: notification_handler.send(msg, build)
apache-2.0
7,238,504,638,627,023,000
35.39834
102
0.614683
false
4.35119
false
false
false
pidydx/grr
grr/lib/flows/general/audit.py
1
2003
#!/usr/bin/env python """This implements the auditing system. How does it work? Noteworthy events within the GRR system (such as approval granting, flow execution etc) generate events to notify listeners about the event. The audit system consists of a group of event listeners which receive these events and act upon them. """ from grr.lib import aff4 from grr.lib import events from grr.lib import flow from grr.lib import queues from grr.lib import rdfvalue from grr.lib import sequential_collection AUDIT_EVENT = "Audit" class AuditEventCollection(sequential_collection.IndexedSequentialCollection): RDF_TYPE = events.AuditEvent def AllAuditLogs(token=None): # TODO(user): This is not great, we should store this differently. for log in aff4.FACTORY.Open("aff4:/audit/logs", token=token).ListChildren(): yield AuditEventCollection(log, token=token) def AuditLogsForTimespan(start_time, end_time, token=None): # TODO(user): This is not great, we should store this differently. for log in aff4.FACTORY.Open( "aff4:/audit/logs", token=token).ListChildren(age=(start_time, end_time)): yield AuditEventCollection(log, token=token) class AuditEventListener(flow.EventListener): """Receive the audit events.""" well_known_session_id = rdfvalue.SessionID( base="aff4:/audit", queue=queues.FLOWS, flow_name="listener") EVENTS = [AUDIT_EVENT] created_logs = set() def EnsureLogIsIndexed(self, log_urn): if log_urn not in self.created_logs: # Just write any type to the aff4 space so we can determine # which audit logs exist easily. aff4.FACTORY.Create( log_urn, aff4.AFF4Volume, mode="w", token=self.token).Close() self.created_logs.add(log_urn) return log_urn @flow.EventHandler(auth_required=False) def ProcessMessage(self, message=None, event=None): _ = message log_urn = aff4.CurrentAuditLog() self.EnsureLogIsIndexed(log_urn) AuditEventCollection.StaticAdd(log_urn, self.token, event)
apache-2.0
4,533,730,079,903,174,000
30.793651
80
0.736895
false
3.489547
false
false
false
MicBrain/Tic_Tac_Toe
Tic_Tac_Toe.py
1
8653
################### ### DESCRIPTION ### ################### """ Tic-tac-toe (or Noughts and crosses, Xs and Os) is a game for two players, X and O, who take turns marking the spaces in a 3×3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game. The simplicity of Tic-tac-toe makes it ideal as a pedagogical tool for teaching the concepts of good sportsmanship and the branch of artificial intelligence that deals with the searching of game trees. It is straightforward to write a computer program to play Tic-tac-toe perfectly. The game can be generalized to an m,n,k-game in which two players alternate placing stones of their own color on an m×n board, with the goal of getting k of their own color in a row. Tic-tac-toe is the (3,3,3)-game. Despite its apparent simplicity, Tic-tac-toe requires detailed analysis to determine even some elementary combinatory facts, the most interesting of which are the number of possible games and the number of possible positions. A position is merely a state of the board, while a game usually refers to the way a terminal position is obtained. """ from string import * from random import * import itertools import math #################### ## MAIN VARIABLES ## #################### Player_1 = 'x' # player 1's mark Player_2 = 'o' # player 2's mark A = 'A' # these just make it easier to keep referring to 'A', 'B' and 'C' B = 'B' C = 'C' ##################### ## State variables ## ##################### EMPTY = ' ' Table = [[EMPTY, EMPTY, EMPTY], [EMPTY, EMPTY, EMPTY], [EMPTY, EMPTY, EMPTY]] current = randint(1, 2) ######################### ### Coordinate system ### ######################### def square(row, col): # squares are represented as tuples of (row, col). return (row, col) # rows are numbered 1 thru 3, cols 'A' thru 'C'. def square_row(square): # these two functions save us the hassle of using return square[0] # index values in our code, e.g. square[0]... def square_col(square): # from this point on, i should never directly use return square[1] # tuples when working with squares. def get_square(square): row_i = square_row(square) - 1 col_i = ord(square_col(square)) - ord(A) return Table[row_i][col_i] # note how this and set_square are the ONLY # functions which directly use board! def set_square(square, mark): row_i = square_row(square) - 1 col_i = ord(square_col(square)) - ord(A) Table[row_i][col_i] = mark # note how this and get_square are the ONLY def get_row(row): return [get_square((row, A)), get_square((row, B)), get_square((row, C))] def get_column(col): return [get_square((1, col)), get_square((2, col)), get_square((3, col))] def get_diagonal(corner_square): if corner_square == (1, A) or corner_square == (3, C): return [get_square((1, A)), get_square((2, B)), get_square((3, C))] else: return [get_square((1, C)), get_square((2, B)), get_square((3, A))] def get_mark(player): if player == 1: return Player_1 else: return Player_2 def all_squares_filled(): for row in range(1, 4): # range(1, 4) returns the list [1, 2, 3] if EMPTY in get_row(row): return False # this row contains an empty square, we know enough return True # no empty squares found, all squares are filled def player_has_won(player): MARK = get_mark(player) win = [MARK, MARK, MARK] if get_row(1) == win or get_row(2) == win or get_row(3) == win: return True if get_column(A) == win or get_column(B) == win or get_column(C) == win: return True if get_diagonal((1, A)) == win or get_diagonal((1, C)) == win: return True return False def draw_board_straight(): A1, A2, A3 = get_square((1, A)), get_square((2, A)), get_square((3, A)) B1, B2, B3 = get_square((1, B)), get_square((2, B)), get_square((3, B)) C1, C2, C3 = get_square((1, C)), get_square((2, C)), get_square((3, C)) lines = [] lines.append("") lines.append(" " + A + " " + B + " " + C + " ") lines.append(" ") lines.append("1 " + A1 + " | " + B1 + " | " + C1 + " ") lines.append(" ---+---+---") lines.append("2 " + A2 + " | " + B2 + " | " + C2 + " ") lines.append(" ---+---+---") lines.append("3 " + A3 + " | " + B3 + " | " + C3 + " ") lines.append("") return str.join(str(lines), '\n') # the '\n' represents a newline def draw_board_slanted(): A1, A2, A3 = get_square((1, A)), get_square((2, A)), get_square((3, A)) B1, B2, B3 = get_square((1, B)), get_square((2, B)), get_square((3, B)) C1, C2, C3 = get_square((1, C)), get_square((2, C)), get_square((3, C)) lines = [] lines.append("") lines.append(" " + A + " " + B + " " + C + " ") lines.append(" ") lines.append(" 1 " + A1 + " / " + B1 + " / " + C1 + " ") lines.append(" ---/---/--- ") lines.append(" 2 " + A2 + " / " + B2 + " / " + C2 + " ") lines.append(" ---/---/--- ") lines.append("3 " + A3 + " / " + B3 + " / " + C3 + " ") lines.append("") return str.join(str(lines), '\n') def draw_board(): return draw_board_slanted() def reset_main_board(): for row in (1, 2, 3): for col in (A, B, C): set_square(square(row, col), EMPTY) def play(): global current reset_main_board() current = randint(1, 2) print ("Tic-Tac-Toe!") print player1_name = input("Player 1, what is your name? ") player2_name = input("Player 2, what is your name? ") def get_name(player): if player == 1: return player1_name else: return player2_name print print ("Welcome,", player1_name, "and", player2_name + "!") print (player1_name, "will be", Player_1 + ", and", player2_name, "will be", Player_2 + ".") print ("By random decision,", get_name(current), "will go first.") print input("[Press enter when ready to play.] ") # just waiting for them to press enter print (draw_board()) while not all_squares_filled(): choice = input(get_name(current) + ", which square? (e.g. 2B, 2b, B2 or b2) ") if len(choice) != 2: print ("That's not a square. You must enter a square like b2, or 3C.") print continue if choice[0] not in ["1", "2", "3"] and str.upper(choice[0]) not in [A, B, C]: print ("The first character must be a row (1, 2 or 3) or column (A, B or C).") print continue if choice[1] not in ["1", "2", "3"] and str.upper(choice[1]) not in [A, B, C]: print ("The second character must be a row (1, 2 or 3) or column (A, B or C).") print continue if choice[0] in ["1", "2", "3"] and choice[1] in ["1", "2", "3"]: print ("You entered two rows! You must enter one row and one column (A, B or C).") print continue if str.upper(choice[0]) in [A, B, C] and str.upper(choice[1]) in [A, B, C]: print ("You entered two columns! You must enter one row (1, 2 or 3) and one column.") print continue if choice[0] in ["1", "2", "3"]: row = int(choice[0]) col = str.upper(choice[1]) else: row = int(choice[1]) col = str.upper(choice[0]) choice = square(row, col) # make this into a (row, col) tuple if get_square(choice) != EMPTY: print ("Sorry, that square is already marked.") print continue set_square(choice, get_mark(current)) print (draw_board()) if player_has_won(current): print ("Congratulations", get_name(current), "-- you win!") print break if all_squares_filled(): print ("Cats game!", player1_name, "and", player2_name, "draw.") print break current = 3 - current # sets 1 to 2 and 2 to 1 print ("GAME IS OVER") print if __name__ == "__main__": continue_playing = True while continue_playing: play() again = str.lower(input("Play again? (y/n) ")) print print print if again != "y": continue_playing = False print ("Thanks for playing!") print
gpl-3.0
-7,830,777,343,375,921,000
37.620536
101
0.539475
false
3.309487
false
false
false
jpetto/bedrock
bedrock/firefox/helpers.py
1
8778
from collections import OrderedDict from django.core.cache import cache from django.conf import settings import jingo import jinja2 from bedrock.firefox.models import FirefoxOSFeedLink from bedrock.firefox.firefox_details import firefox_desktop, firefox_android, firefox_ios from bedrock.base.urlresolvers import reverse from lib.l10n_utils import get_locale def android_builds(channel, builds=None): builds = builds or [] variations = OrderedDict([ ('api-9', 'Gingerbread'), ('api-15', 'Ice Cream Sandwich+'), ('x86', 'x86'), ]) if channel == 'alpha': for type, arch_pretty in variations.iteritems(): link = firefox_android.get_download_url('alpha', type) builds.append({'os': 'android', 'os_pretty': 'Android', 'os_arch_pretty': 'Android %s' % arch_pretty, 'arch': 'x86' if type == 'x86' else 'armv7up %s' % type, 'arch_pretty': arch_pretty, 'download_link': link}) else: link = firefox_android.get_download_url(channel) builds.append({'os': 'android', 'os_pretty': 'Android', 'download_link': link}) return builds def ios_builds(channel, builds=None): builds = builds or [] link = firefox_ios.get_download_url(channel) builds.append({'os': 'ios', 'os_pretty': 'iOS', 'download_link': link}) return builds @jingo.register.function @jinja2.contextfunction def download_firefox(ctx, channel='release', small=False, icon=True, platform='all', dom_id=None, locale=None, simple=False, force_direct=False, force_full_installer=False, force_funnelcake=False, check_old_fx=False): """ Output a "download firefox" button. :param ctx: context from calling template. :param channel: name of channel: 'release', 'beta' or 'alpha'. :param small: Display the small button if True. :param icon: Display the Fx icon on the button if True. :param platform: Target platform: 'desktop', 'android', 'ios', or 'all'. :param dom_id: Use this string as the id attr on the element. :param locale: The locale of the download. Default to locale of request. :param simple: Display button with text only if True. Will not display icon or privacy/what's new/systems & languages links. Can be used in conjunction with 'small'. :param force_direct: Force the download URL to be direct. :param force_full_installer: Force the installer download to not be the stub installer (for aurora). :param force_funnelcake: Force the download version for en-US Windows to be 'latest', which bouncer will translate to the funnelcake build. :param check_old_fx: Checks to see if the user is on an old version of Firefox and, if true, changes the button text from 'Free Download' to 'Update your Firefox'. Must be used in conjunction with 'simple' param being true. :return: The button html. """ show_desktop = platform in ['all', 'desktop'] show_android = platform in ['all', 'android'] show_ios = platform in ['all', 'ios'] alt_channel = '' if channel == 'release' else channel locale = locale or get_locale(ctx['request']) funnelcake_id = ctx.get('funnelcake_id', False) dom_id = dom_id or 'download-button-%s-%s' % ( 'desktop' if platform == 'all' else platform, channel) l_version = firefox_desktop.latest_builds(locale, channel) if l_version: version, platforms = l_version else: locale = 'en-US' version, platforms = firefox_desktop.latest_builds('en-US', channel) # Gather data about the build for each platform builds = [] if show_desktop: for plat_os, plat_os_pretty in firefox_desktop.platform_labels.iteritems(): # Windows 64-bit builds are not available on the ESR channel yet if plat_os == 'win64' and channel in ['esr', 'esr_next']: continue # Fallback to en-US if this plat_os/version isn't available # for the current locale _locale = locale if plat_os_pretty in platforms else 'en-US' # And generate all the info download_link = firefox_desktop.get_download_url( channel, version, plat_os, _locale, force_direct=force_direct, force_full_installer=force_full_installer, force_funnelcake=force_funnelcake, funnelcake_id=funnelcake_id, ) # If download_link_direct is False the data-direct-link attr # will not be output, and the JS won't attempt the IE popup. if force_direct: # no need to run get_download_url again with the same args download_link_direct = False else: download_link_direct = firefox_desktop.get_download_url( channel, version, plat_os, _locale, force_direct=True, force_full_installer=force_full_installer, force_funnelcake=force_funnelcake, funnelcake_id=funnelcake_id, ) if download_link_direct == download_link: download_link_direct = False builds.append({'os': plat_os, 'os_pretty': plat_os_pretty, 'download_link': download_link, 'download_link_direct': download_link_direct}) if show_android: builds = android_builds(channel, builds) if show_ios: builds.append({'os': 'ios', 'os_pretty': 'iOS', 'download_link': firefox_ios.get_download_url()}) # Get the native name for current locale langs = firefox_desktop.languages locale_name = langs[locale]['native'] if locale in langs else locale data = { 'locale_name': locale_name, 'version': version, 'product': 'firefox-%s' % platform, 'builds': builds, 'id': dom_id, 'small': small, 'simple': simple, 'channel': alt_channel, 'show_desktop': show_desktop, 'show_android': show_android, 'show_ios': show_ios, 'icon': icon, 'check_old_fx': check_old_fx and simple, } html = jingo.render_to_string(ctx['request'], 'firefox/includes/download-button.html', data) return jinja2.Markup(html) @jingo.register.function def firefox_url(platform, page, channel=None): """ Return a product-related URL like /firefox/all/ or /mobile/beta/notes/. Examples ======== In Template ----------- {{ firefox_url('desktop', 'all', 'organizations') }} {{ firefox_url('desktop', 'sysreq', channel) }} {{ firefox_url('android', 'notes') }} """ kwargs = {} # Tweak the channel name for the naming URL pattern in urls.py if channel == 'release': channel = None if channel == 'alpha': if platform == 'desktop': channel = 'developer' if platform == 'android': channel = 'aurora' if channel == 'esr': channel = 'organizations' if channel: kwargs['channel'] = channel if platform != 'desktop': kwargs['platform'] = platform # Firefox for Android and iOS have the system requirements page on SUMO if platform in ['android', 'ios'] and page == 'sysreq': return settings.FIREFOX_MOBILE_SYSREQ_URL return reverse('firefox.%s' % page, kwargs=kwargs) @jingo.register.function def firefox_os_feed_links(locale, force_cache_refresh=False): if locale in settings.FIREFOX_OS_FEED_LOCALES: cache_key = 'firefox-os-feed-links-' + locale if not force_cache_refresh: links = cache.get(cache_key) if links: return links links = list( FirefoxOSFeedLink.objects.filter(locale=locale).order_by( '-id').values_list('link', 'title')[:10]) cache.set(cache_key, links) return links elif '-' in locale: return firefox_os_feed_links(locale.split('-')[0]) @jingo.register.function def firefox_os_blog_link(locale): try: return settings.FXOS_PRESS_BLOG_LINKS[locale] except KeyError: if '-' in locale: return firefox_os_blog_link(locale.split('-')[0]) else: return None
mpl-2.0
5,004,060,017,684,913,000
35.728033
89
0.583276
false
4.00639
false
false
false
satish-avninetworks/murano
murano/dsl/murano_package.py
1
7758
# Copyright (c) 2014 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import inspect import weakref import semantic_version import six from yaql.language import specs from yaql.language import utils from murano.dsl import constants from murano.dsl import dsl_types from murano.dsl import exceptions from murano.dsl import helpers from murano.dsl import meta as dslmeta from murano.dsl import murano_object from murano.dsl import murano_type from murano.dsl import namespace_resolver from murano.dsl import principal_objects from murano.dsl import yaql_integration class MuranoPackage(dsl_types.MuranoPackage, dslmeta.MetaProvider): def __init__(self, package_loader, name, version=None, runtime_version=None, requirements=None, meta=None): super(MuranoPackage, self).__init__() self._package_loader = weakref.proxy(package_loader) self._name = name self._meta = None self._version = helpers.parse_version(version) self._runtime_version = helpers.parse_version(runtime_version) self._requirements = { name: semantic_version.Spec('==' + str(self._version.major)) } if name != constants.CORE_LIBRARY: self._requirements[constants.CORE_LIBRARY] = \ semantic_version.Spec('==0') self._classes = {} self._imported_types = {object, murano_object.MuranoObject} for key, value in six.iteritems(requirements or {}): self._requirements[key] = helpers.parse_version_spec(value) self._load_queue = {} self._native_load_queue = {} if self.name == constants.CORE_LIBRARY: principal_objects.register(self) self._package_class = self._create_package_class() self._meta = dslmeta.MetaData( meta, dsl_types.MetaTargets.Package, self._package_class) @property def package_loader(self): return self._package_loader @property def name(self): return self._name @property def version(self): return self._version @property def runtime_version(self): return self._runtime_version @property def requirements(self): return self._requirements @property def classes(self): return set(self._classes.keys()).union( self._load_queue.keys()).union(self._native_load_queue.keys()) def get_resource(self, name): raise NotImplementedError('resource API is not implemented') # noinspection PyMethodMayBeStatic def get_class_config(self, name): return {} def _register_mpl_classes(self, data, name=None): type_obj = self._classes.get(name) if type_obj is not None: return type_obj if callable(data): data = data() data = helpers.list_value(data) unnamed_class = None last_ns = {} for cls_data in data: last_ns = cls_data.setdefault('Namespaces', last_ns.copy()) if len(cls_data) == 1: continue cls_name = cls_data.get('Name') if not cls_name: if unnamed_class: raise exceptions.AmbiguousClassName(name) unnamed_class = cls_data else: ns_resolver = namespace_resolver.NamespaceResolver(last_ns) cls_name = ns_resolver.resolve_name(cls_name) if cls_name == name: type_obj = murano_type.create( cls_data, self, cls_name, ns_resolver) self._classes[name] = type_obj else: self._load_queue.setdefault(cls_name, cls_data) if type_obj is None and unnamed_class: unnamed_class['Name'] = name return self._register_mpl_classes(unnamed_class, name) return type_obj def _register_native_class(self, cls, name): if cls in self._imported_types: return self._classes[name] try: m_class = self.find_class(name, False) except exceptions.NoClassFound: m_class = self._register_mpl_classes({'Name': name}, name) m_class.extension_class = cls for method_name in dir(cls): if method_name.startswith('_'): continue method = getattr(cls, method_name) if not any(( helpers.inspect_is_method(cls, method_name), helpers.inspect_is_static(cls, method_name), helpers.inspect_is_classmethod(cls, method_name))): continue method_name_alias = (getattr( method, '__murano_name', None) or specs.convert_function_name( method_name, yaql_integration.CONVENTION)) m_class.add_method(method_name_alias, method, method_name) self._imported_types.add(cls) return m_class def register_class(self, cls, name=None): if inspect.isclass(cls): name = name or getattr(cls, '__murano_name', None) or cls.__name__ if name in self._classes: self._register_native_class(cls, name) else: self._native_load_queue.setdefault(name, cls) elif isinstance(cls, dsl_types.MuranoType): self._classes[cls.name] = cls elif name not in self._classes: self._load_queue[name] = cls def find_class(self, name, search_requirements=True): payload = self._native_load_queue.pop(name, None) if payload is not None: return self._register_native_class(payload, name) payload = self._load_queue.pop(name, None) if payload is not None: result = self._register_mpl_classes(payload, name) if result: return result result = self._classes.get(name) if result: return result if search_requirements: pkgs_for_search = [] for package_name, version_spec in six.iteritems( self._requirements): if package_name == self.name: continue referenced_package = self._package_loader.load_package( package_name, version_spec) try: return referenced_package.find_class(name, False) except exceptions.NoClassFound: pkgs_for_search.append(referenced_package) continue raise exceptions.NoClassFound( name, packages=pkgs_for_search + [self]) raise exceptions.NoClassFound(name, packages=[self]) @property def context(self): return None def _create_package_class(self): ns_resolver = namespace_resolver.NamespaceResolver(None) return murano_type.MuranoClass( ns_resolver, self.name, self, utils.NO_VALUE) def get_meta(self, context): if not self._meta: return [] return self._meta.get_meta(context) def __repr__(self): return 'MuranoPackage({name})'.format(name=self.name)
apache-2.0
3,568,733,459,473,349,000
35.252336
78
0.59603
false
4.10911
false
false
false
DevHugo/zds-site
zds/utils/tutorials.py
1
2669
# coding: utf-8 import os # Used for indexing tutorials, we need to parse each manifest to know which content have been published class GetPublished: published_part = [] published_chapter = [] published_extract = [] def __init__(self): pass @classmethod def get_published_content(cls): # If all array are empty load_it if not len(GetPublished.published_part) and \ not len(GetPublished.published_chapter) and \ not len(GetPublished.published_extract): # Get all published tutorials from zds.tutorial.models import Tutorial tutorials_database = Tutorial.objects.filter(sha_public__isnull=False).all() for tutorial in tutorials_database: # Load Manifest json = tutorial.load_json_for_public() # Parse it GetPublished.load_tutorial(json) return {"parts": GetPublished.published_part, "chapters": GetPublished.published_chapter, "extracts": GetPublished.published_extract} @classmethod def load_tutorial(cls, json): # Load parts, chapter and extract if 'parts' in json: for part_json in json['parts']: # If inside of parts we have chapters, load it GetPublished.load_chapters(part_json) GetPublished.load_extracts(part_json) GetPublished.published_part.append(part_json['pk']) GetPublished.load_chapters(json) GetPublished.load_extracts(json) @classmethod def load_chapters(cls, json): if 'chapters' in json: for chapters_json in json['chapters']: GetPublished.published_chapter.append(chapters_json['pk']) GetPublished.load_extracts(chapters_json) return GetPublished.published_chapter @classmethod def load_extracts(cls, json): if 'extracts' in json: for extract_json in json['extracts']: GetPublished.published_extract.append(extract_json['pk']) return GetPublished.published_extract def get_blob(tree, chemin): for blob in tree.blobs: try: if os.path.abspath(blob.path) == os.path.abspath(chemin): data = blob.data_stream.read() return data.decode('utf-8') except (OSError, IOError): return "" if len(tree.trees) > 0: for atree in tree.trees: result = get_blob(atree, chemin) if result is not None: return result return None else: return None
gpl-3.0
-8,591,455,257,756,504,000
30.034884
103
0.59423
false
4.284109
false
false
false
Hubert51/AutoGrading
learning/number_recognization/test.py
1
1250
from pytesseract import image_to_string from PIL import Image import cv2 import numpy import sys if __name__ == '__main__': f = open("test1.txt") f = f.read() for element in f: str1 = element position = ((712, 571), (725, 587)) dh = position[1][1] - position[0][1] upper = position[0][1] - 2 * dh lower = position[1][1] + int(3.5 * dh) left = position[1][0] print(upper,lower, left) img = cv2.imread('answerSheet_with_name.png') #image = Image.open('answerSheet_with_name.png') img = img[upper:lower, left:img[1].size] gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray,(5,5),0) thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,6) cv2.imshow("hello", img) ################# Now finding Contours ################### img,contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, contours, -1, (0, 0, 255),1) im = Image.fromarray(img, 'RGB') file = open("image_to_string.txt", "w") # box = image_to_string(image).split('\n') file.write(image_to_string(im)) #file.write(image_to_string(image)) file.close()
mit
-715,447,482,893,040,000
26.777778
98
0.6064
false
2.82167
false
false
false
bblais/Tech-SIE
Estimating_Proportion/Estimating_Proportion.py
1
4755
# coding: utf-8 # #Statistical Inference for Everyone: Technical Supplement # # # # This document is the technical supplement, for instructors, for [Statistical Inference for Everyone], the introductory statistical inference textbook from the perspective of "probability theory as logic". # # <img src="http://web.bryant.edu/~bblais/images/Saturn_with_Dice.png" align=center width = 250px /> # # [Statistical Inference for Everyone]: http://web.bryant.edu/~bblais/statistical-inference-for-everyone-sie.html # # ## Estimating a Proportion # # $$\newcommand{\twocvec}[2]{\left(\begin{array}{c} # #1 \\\\ #2 # \end{array}\right)} # \newcommand{\nchoosek}[2]{\twocvec{#1}{#2}} # $$ # # If $\theta$ is the model representing the probability, $\theta$, of the coin # landing on heads (and $1-\theta$ is the probability of landing on tails), we # need to make an estimate of probability of model $\theta$ being true given the # data, which will consist of $N$ flips of which $h$ are heads. # # Bayes rule is: # \begin{eqnarray} # p(\theta|D,I) &=& \frac{p(D|\theta,I)p(\theta|I)}{p(D|I)} = # \frac{p(D|\theta,I)p(\theta,I)}{\sum_\theta p(D|\theta,I)p(\theta|I)} # \end{eqnarray} # # Thus, the probability of a particular model $\theta$ being true is the product # of the probability of the observed data ($h$ heads in $N$ flips) given the # model $\theta$ and the prior probability of the model $\theta$ being true # before we even look at the data, divided by the probability of the data itself # over all models. # # The prior probability of model $\theta$ will be assumed to be uniform (from # maximum entropy considerations). The probability, $\theta$, ranges from 0 to # 1, to the prior is # \begin{eqnarray} # p(\theta|I) = 1 # \end{eqnarray} # # The probability of the data given the random model, is just the binomial # distribution: # # \begin{eqnarray} # p(D|\theta)=\nchoosek{N}{h} \theta^h (1-\theta)^{N-h} # \end{eqnarray} # # The probability of the data, $p(D|I)$, is found by summing (or in this case # integrating) $p(D|\theta,I)p(\theta|I)$ for all $\theta$: # # \begin{eqnarray} # p(D|I) &=& \int_0^1 \nchoosek{N}{h} \theta^h (1-\theta)^{N-h} \cdot 1 d\theta # \\\\ # &=&\frac{N!}{h!(N-h)!} \frac{h!(N-h)!}{(N+1)!} = \frac{1}{N+1} # \end{eqnarray} # # Now the probability of model $\theta$ being true, given the data, is just # # \begin{eqnarray} # p(\theta|D,I)&=& (N+1) \cdot \nchoosek{N}{h} \theta^h (1-\theta)^{N-h} \\ # &=& \frac{(N+1)!}{h!(N-h)!} \theta^h (1-\theta)^{N-h} # \end{eqnarray} # # # ### Max, Mean, Variance # # The model with the maximum probability is found by maximizing $p(\theta|D,I)$ # w.r.t. $\theta$: # # \begin{eqnarray} # \frac{dP(\theta|D,I)}{d\theta} &=& 0 = \frac{(N+1)!}{h!(N-h)!} \left( # -(N-h) \theta^h (1-\theta)^{N-h-1} + h \theta^{h-1} (1-\theta)^{N-h} \right) \\\\ # (N-h) \theta^h (1-\theta)^{N-h-1} &=& h \theta^{h-1} (1-\theta)^{N-h} \\\\ # \theta(N-h) &=& (1-\theta) h = h-\theta h = N\theta-\theta h \\\\ # \theta&=&\frac{h}{N} \;\;\;\;\;\surd # \end{eqnarray} # # The average and the standard deviation is also straightforward. # # # \begin{eqnarray} # \bar{\theta} &=& \int_0^1 \theta \cdot \frac{(N+1)!}{h!(N-h)!} \theta^h (1-\theta)^{N-h} \\\\ # &=& \frac{(N+1)!}{h!(N-h)!} \int_0^1 \theta^{h+1} (1-\theta)^{N-h} \\\\ # &=&\frac{(N+1)!}{h!(N-h)!} \frac{(h+1)!(N-h)!}{(N+2)!} \\\\ # &=&\frac{h+1}{N+2} \\\\ # \bar{\theta^2} &=& \int_0^1 \theta^2 \cdot \frac{(N+1)!}{h!(N-h)!} \theta^h (1-\theta)^{N-h} \\\\ # &=&\frac{(N+1)!}{h!(N-h)!} \frac{(h+2)!(N-h)!}{(N+3)!} \\\\ # &=&\frac{(h+1)(h+2)}{(N+2)(N+3)} \\\\ # \sigma^2 &=& \bar{\theta^2} - \bar{\theta}^2 = \frac{(h+1)(h+2)}{(N+2)(N+3)} - # \frac{(h+1)(h+1)}{(N+2)(N+2)} \\\\ # &=&\frac{(h+1)(N-h+1)}{(N+2)^2(N+3)} \\\\ # &=& \frac{(h+1)}{(N+2)}\left( \frac{n+2}{n+2} - \frac{h+1}{N+2}\right) # \frac{1}{N+3} \\\\ # &=& \bar{\theta}(1-\bar{\theta})\frac{1}{N+3} # \end{eqnarray} # # ### An Approximation for the Variance # # If $f=h/N$ is the actual fraction of heads observed, then the variance above # can be written as # \begin{eqnarray} # \sigma^2 &=&\frac{(fN+1)(N-fN+1)}{(N+2)^2(N+3)} \\\\ # \mbox{(for large $N$)}&\approx& \frac{(fN+1)(N-fN)}{N^3} # =\frac{(fN+1)(1-f)}{N^2} \\\\ # \mbox{(for large $fN$)}&\approx& \frac{(fN)(N-fN)}{N^2} = \frac{f(1-f)}{N} \\\\ # \sigma^2&\approx& \frac{f(1-f)}{N} # \end{eqnarray} # # In this limit, the distribution (beta distribution) can be approximated with a # Gaussian. # # In[11]: # --------------------- # In[8]: from IPython.core.display import HTML def css_styling(): styles = open("../styles/custom.css", "r").read() return HTML(styles) css_styling()
mit
8,721,158,606,299,497,000
33.708029
206
0.578549
false
2.258907
false
false
false
wylee/django-local-settings
src/local_settings/util.py
1
5070
import importlib import io import os import dotenv NO_DEFAULT = type( "NO_DEFAULT", (), { "__nonzero__": (lambda self: False), # Python 2 "__bool__": (lambda self: False), # Python 3 "__str__": (lambda self: self.__class__.__name__), "__repr__": (lambda self: str(self)), "__copy__": (lambda self: self), }, )() def get_file_name(): """Get local settings file from environ or discover it. If the ``LOCAL_SETTINGS_FILE`` environment variable is set, its value is returned directly. Otherwise, the current working directory is searched for `local.{ext}` for each file extension handled by each loading :mod:`strategy`. Note that the search is done in alphabetical order so that if ``local.cfg`` and ``local.yaml`` both exist, the former will be returned. Returns: str: File name if set via environ or discovered None: File name isn't set and wasn't discovered """ file_name = os.environ.get("LOCAL_SETTINGS_FILE") if file_name: return file_name cwd = os.getcwd() default_file_names = get_default_file_names() for file_name in default_file_names: file_name = os.path.join(cwd, file_name) if os.path.exists(file_name): return file_name def get_default_file_names(): """Get default file names for all loading strategies, sorted.""" from .strategy import get_file_type_map # noqa: Avoid circular import return sorted(f"local.{ext}" for ext in get_file_type_map()) def parse_file_name_and_section( file_name, section=None, extender=None, extender_section=None ): """Parse file name and (maybe) section. File names can be absolute paths, relative paths, or asset specs:: /home/user/project/local.cfg local.cfg some.package:local.cfg File names can also include a section:: some.package:local.cfg#dev If a ``section`` is passed, it will take precedence over a section parsed out of the file name. """ if "#" in file_name: file_name, parsed_section = file_name.rsplit("#", 1) else: parsed_section = None if ":" in file_name: file_name = asset_path(file_name) if extender: if not file_name: # Extended another section in the same file file_name = extender elif not os.path.isabs(file_name): # Extended by another file in the same directory file_name = abs_path(file_name, relative_to=os.path.dirname(extender)) if section: pass elif parsed_section: section = parsed_section elif extender_section: section = extender_section else: section = None return file_name, section # Path utilities def abs_path(path, relative_to=None): """Make path absolute and normalize it.""" if os.path.isabs(path): path = os.path.normpath(path) elif ":" in path: path = asset_path(path) else: path = os.path.expanduser(path) if relative_to: path = os.path.join(relative_to, path) path = os.path.abspath(path) path = os.path.normpath(path) return path def asset_path(path): """Get absolute path from asset spec and normalize it.""" if ":" in path: package_name, rel_path = path.split(":", 1) else: package_name, rel_path = path, "" try: package = importlib.import_module(package_name) except ImportError: raise ValueError( f"Could not get asset path for {path}; could not import " f"package: {package_name}" ) if not hasattr(package, "__file__"): raise ValueError("Can't compute path relative to namespace package") package_path = os.path.dirname(package.__file__) if rel_path: path = os.path.join(package_path, rel_path) path = os.path.normpath(path) return path def dotenv_path(path=None, relative_to=None, file_name=".env"): """Get .env path. If a path is specified, convert it to an absolute path. Otherwise, use the default, "./.env". .. note:: By default, the dotenv package discovers the default .env file relative to the call site, so we have to tell it use CWD. """ if path: path = abs_path(path, relative_to) else: path = dotenv.find_dotenv(filename=file_name, usecwd=True) return path def load_dotenv(path=None, relative_to=None, file_name=".env"): """Load vars from dotenv file into environ.""" path = dotenv_path(path, relative_to, file_name) dotenv.load_dotenv(path) # These TTY functions were copied from Invoke def is_a_tty(stream): if hasattr(stream, "isatty") and callable(stream.isatty): return stream.isatty() elif has_fileno(stream): return os.isatty(stream.fileno()) return False def has_fileno(stream): try: return isinstance(stream.fileno(), int) except (AttributeError, io.UnsupportedOperation): return False
mit
-6,834,773,356,538,003,000
26.258065
82
0.622091
false
3.843821
false
false
false
ngageoint/scale
scale/data/models.py
1
24039
"""Defines the database models for datasets""" from __future__ import absolute_import, unicode_literals import copy import logging from collections import namedtuple import django.contrib.postgres.fields from django.db import models, transaction from django.db.models import Q, Count from data.data import data_util from data.data.json.data_v6 import convert_data_to_v6_json, DataV6 from data.data.exceptions import InvalidData from data.data.value import FileValue from data.dataset.dataset import DataSetDefinition from data.dataset.json.dataset_v6 import convert_definition_to_v6_json, DataSetDefinitionV6 from data.exceptions import InvalidDataSetDefinition, InvalidDataSetMember from data.serializers import DataSetFileSerializerV6, DataSetMemberSerializerV6 from storage.models import ScaleFile from util import rest as rest_utils from util.database import alphabetize logger = logging.getLogger(__name__) DataSetValidation = namedtuple('DataSetValidation', ['is_valid', 'errors', 'warnings']) # DataSetKey = namedtuple('DataSetKey', ['name', 'version']) class DataSetManager(models.Manager): """Provides additional methods for handling datasets""" def create_dataset_v6(self, definition, title=None, description=None): """Creates and returns a new dataset for the given name/title/description/definition/version?? :param definition: Parameter definition of the dataset :type definition: :class:`data.dataset.dataset.DataSetDefinition` :param title: Optional title of the dataset :type title: string :param description: Optional description of the dataset :type description: string :returns: The new dataset :rtype: :class:`data.models.DataSet` :raises :class:`data.exceptions.InvalidDataSet`: If a give dataset has an invalid value """ if not definition: definition = DataSetDefinition(definition={}) dataset = DataSet() dataset.title = title dataset.description = description dataset.definition = definition.get_dict() dataset.save() return dataset def get_details_v6(self, dataset_id): """Gets additional details for the given dataset id :returns: The full dataset for the given id :rtype: :class:`data.models.DataSet` """ ds = DataSet.objects.get(pk=dataset_id) ds.files = DataSetFile.objects.get_dataset_files(ds.id) return ds def get_datasets_v6(self, started=None, ended=None, dataset_ids=None, keywords=None, order=None): """Handles retrieving datasets - possibly filtered and ordered :returns: The list of datasets that match the given filters :rtype: [:class:`data.models.DataSet`] """ return self.filter_datasets(started=started, ended=ended, dataset_ids=dataset_ids, keywords=keywords, order=order) def filter_datasets(self, started=None, ended=None, dataset_ids=None, keywords=None, order=None): """Returns a query for dataset models that filters on the given fields :param started: Query datasets created after this amount of time. :type started: :class:`datetime.datetime` :param ended: Query datasets created before this amount of time. :type ended: :class:`datetime.datetime` :param dataset_ids: Query datasets assciated with the given id(s) :type dataset_ids: :func:`list` :param keywords: Query datasets with title or description matching one of the specified keywords :type keywords: :func:`list` :param order: A list of fields to control the sort order. :type order: :func:`list` :returns: The dataset query :rtype: :class:`django.db.models.QuerySet` """ # Fetch a list of the datasets datasets = self.all() # Apply time range filtering if started: datasets = datasets.filter(created__gte=started) if ended: datasets = datasets.filter(created__lte=ended) # Apply additional filters if dataset_ids: datasets = datasets.filter(id__in=dataset_ids) # Execute a sub-query that returns distinct job type names that match the provided filter arguments if keywords: key_query = Q() for keyword in keywords: key_query |= Q(title__icontains=keyword) key_query |= Q(description__icontains=keyword) datasets = datasets.filter(key_query) # Apply sorting if order: ordering = alphabetize(order, DataSet.ALPHABETIZE_FIELDS) datasets = datasets.order_by(*ordering) else: datasets = datasets.order_by('id') for ds in datasets: files = DataSetFile.objects.get_file_ids(dataset_ids=[ds.id]) ds.files = len(files) return datasets def validate_dataset_v6(self, definition, title=None, description=None): """Validates the given dataset definiton :param definition: The dataset definition :type definition: dict :returns: The dataset validation :rtype: :class:`datset.models.DataSetValidation` """ is_valid = True errors = [] warnings = [] dataset_definition = None try: dataset_definition = DataSetDefinitionV6(definition=definition, do_validate=True) except InvalidDataSetDefinition as ex: is_valid = False errors.append(ex.error) message = 'Dataset definition is invalid: %s' % ex logger.info(message) pass # validate other fields return DataSetValidation(is_valid, errors, warnings) def get_dataset_files(self, dataset_id): """Returns the files associated with the given dataset :returns: The list of DataSetFiles matching the file_id :rtype: [:class:`data.models.DataSetFile`] """ files = DataSetFile.objects.get_dataset_files(dataset_id=dataset_id) return files def get_dataset_members(self, dataset_id): """Returns the members associated with the given dataset_id :returns: The list of DataSetMembers :rtype: [:class:`data.models.DataSetMember`] """ dataset = self.get(pk=dataset_id) members = DataSetMember.objects.all().filter(dataset=dataset) return members class DataSet(models.Model): """ Represents a DataSet object :keyword name: The identifying name of the dataset used by clients for queries :type name: :class:`django.db.models.CharField` :keyword version: The version of the dataset :type version: :class:`django.db.models.CharField` :keyword version_array: The version of the dataset split into SemVer integer components (major,minor,patch,prerelease) :type version_array: :func:`list` :keyword title: The human-readable title of this dataset (optional) :type title: :class:`django.db.models.CharField` :keyword description: The description of the dataset (optional) :type description: :class:`django.db.models.CharField` :keyword created: Defines the created time of the dataset :type created: :class:`django.db.models.DateTimeField` :keyword definition: Defines the dataset :type definition: class:`django.contrib.postgres.fields.JSONField` """ ALPHABETIZE_FIELDS = ['title', 'description'] title = models.CharField(blank=True, max_length=50, null=True) description = models.TextField(blank=True, null=True) created = models.DateTimeField(auto_now_add=True) definition = django.contrib.postgres.fields.JSONField(default=dict) objects = DataSetManager() def get_definition(self): """Returns the dataset definition :returns: The DataSet definition :rtype: :class:`data.dataset.dataset.DataSetDefinition` """ if isinstance(self.definition, basestring): self.definition = {} return DataSetDefinitionV6(definition=self.definition).get_definition() def get_v6_definition_json(self): """Returns the dataset definition in v6 of the JSON schema :returns: The dataset definition in v6 of the JSON schema :rtype: dict """ return rest_utils.strip_schema_version(convert_definition_to_v6_json(self.get_definition()).get_dict()) def get_dataset_definition(self): """Returns the dataset definition :returns: The dataset definition json :rtype: dict """ return self.definition def get_dataset_members_json(self): """Returns the JSON for the associated dataset members :returns: Returns the outgoing primitive representation. :rtype: dict? """ members = DataSet.objects.get_dataset_members(dataset_id=self.id) serializer = DataSetMemberSerializerV6(members, many=True) return serializer.data def get_dataset_files_json(self): """Returns the JSON for the associated dataset files :returns: Returns the outgoing primitive representation. :rtype: dict? """ files = DataSet.objects.get_dataset_files(self.id) serializer = DataSetFileSerializerV6(files, many=True) return serializer.data class Meta(object): """meta information for the db""" db_table = 'data_set' class DataSetMemberManager(models.Manager): """Provides additional methods for handling dataset members""" def build_data_list(self, template, data_started=None, data_ended=None, created_started=None, created_ended=None, source_started=None, source_ended=None, source_sensor_classes=None, source_sensors=None, source_collections=None,source_tasks=None, mod_started=None, mod_ended=None, job_type_ids=None, job_type_names=None, job_ids=None, is_published=None, is_superseded=None, file_names=None, job_outputs=None, recipe_ids=None, recipe_type_ids=None, recipe_nodes=None, batch_ids=None, order=None): """Builds a list of data dictionaries from a template and file filters :param template: The template to fill with files found through filters :type template: dict :param data_started: Query files where data started after this time. :type data_started: :class:`datetime.datetime` :param data_ended: Query files where data ended before this time. :type data_ended: :class:`datetime.datetime` :param created_started: Query files created after this time. :type created_started: :class:`datetime.datetime` :param created_ended: Query files created before this time. :type created_ended: :class:`datetime.datetime` :param source_started: Query files where source collection started after this time. :type source_started: :class:`datetime.datetime` :param source_ended: Query files where source collection ended before this time. :type source_ended: :class:`datetime.datetime` :param source_sensor_classes: Query files with the given source sensor class. :type source_sensor_classes: :func:`list` :param source_sensor: Query files with the given source sensor. :type source_sensor: :func:`list` :param source_collection: Query files with the given source class. :type source_collection: :func:`list` :param source_tasks: Query files with the given source tasks. :type source_tasks: :func:`list` :param mod_started: Query files where the last modified date is after this time. :type mod_started: :class:`datetime.datetime` :param mod_ended: Query files where the last modified date is before this time. :type mod_ended: :class:`datetime.datetime` :param job_type_ids: Query files with jobs with the given type identifier. :type job_type_ids: :func:`list` :param job_type_names: Query files with jobs with the given type name. :type job_type_names: :func:`list` :keyword job_ids: Query files with a given job id :type job_ids: :func:`list` :param is_published: Query files flagged as currently exposed for publication. :type is_published: bool :param is_superseded: Query files that have/have not been superseded. :type is_superseded: bool :param file_names: Query files with the given file names. :type file_names: :func:`list` :keyword job_outputs: Query files with the given job outputs :type job_outputs: :func:`list` :keyword recipe_ids: Query files with a given recipe id :type recipe_ids: :func:`list` :keyword recipe_nodes: Query files with a given recipe nodes :type recipe_nodes: :func:`list` :keyword recipe_type_ids: Query files with the given recipe types :type recipe_type_ids: :func:`list` :keyword batch_ids: Query files with batches with the given identifiers. :type batch_ids: :func:`list` :param order: A list of fields to control the sort order. :type order: :func:`list` """ files = ScaleFile.objects.filter_files( data_started=data_started, data_ended=data_ended, source_started=source_started, source_ended=source_ended, source_sensor_classes=source_sensor_classes, source_sensors=source_sensors, source_collections=source_collections, source_tasks=source_tasks, mod_started=mod_started, mod_ended=mod_ended, job_type_ids=job_type_ids, job_type_names=job_type_names, job_ids=job_ids, file_names=file_names, job_outputs=job_outputs, recipe_ids=recipe_ids, recipe_type_ids=recipe_type_ids, recipe_nodes=recipe_nodes, batch_ids=batch_ids, order=order) data_list = [] try: for f in files: entry = copy.deepcopy(template) file_params = entry['files'] for p in file_params: if file_params[p] == 'FILE_VALUE': file_params[p] = [f.id] data_list.append(DataV6(data=entry, do_validate=True).get_data()) except (KeyError, TypeError) as ex: raise InvalidData('INVALID_TEMPLATE', "Specified template is invalid: %s" % ex) return data_list def validate_data_list(self, dataset_def, data_list): """Validates a list of data objects against a dataset :param dataset_def: The dataset definition the member is a part of :type dataset_def: :param data_list: Data definitions of the dataset members :type data_list: [:class:`data.data.data.Data`] """ is_valid = True errors = [] warnings = [] for data in data_list: try: dataset_def.validate(data) except (InvalidData, InvalidDataSetMember) as ex: is_valid = False errors.append(ex.error) message = 'Dataset definition is invalid: %s' % ex logger.info(message) pass # validate other fields return DataSetValidation(is_valid, errors, warnings) def create_dataset_members(self, dataset, data_list): """Creates a dataset member :param dataset: The dataset the member is a part of :type dataset: :class:`data.models.DataSet` :param data_list: Data definitions of the dataset members :type data_list: [:class:`data.data.data.Data`] """ with transaction.atomic(): dataset_members = [] datasetfiles = [] existing_scale_ids = DataSetFile.objects.get_file_ids(dataset_ids=[dataset.id]) for d in data_list: dataset_member = DataSetMember() dataset_member.dataset = dataset dataset_member.data = convert_data_to_v6_json(d).get_dict() dataset_member.file_ids = list(data_util.get_file_ids(d)) dataset_members.append(dataset_member) datasetfiles.extend(DataSetFile.objects.create_dataset_files(dataset, d, existing_scale_ids)) existing_scale_ids.append(dataset_member.file_ids) DataSetFile.objects.bulk_create(datasetfiles) return DataSetMember.objects.bulk_create(dataset_members) def get_dataset_members(self, dataset): """Returns dataset members for the given dataset :returns: members for a given dataset :rtype: QuerySet<DataSetMember> """ return self.all().filter(dataset=dataset).order_by('id') def get_details_v6(self, dsm_id): """Gets additional details for the given dataset member id :returns: The full dataset member for the given id :rtype: :class:`data.models.DataSetMember` """ dsm = DataSetMember.objects.get(pk=dsm_id) dsm.files = DataSetFile.objects.filter(dataset=dsm.dataset, scale_file_id__in=list(dsm.file_ids)) return dsm class DataSetMember(models.Model): """ Defines the data of a dataset? contains list/descriptors of DataFiles :keyword dataset: Refers to dataset member belongs to :type dataset: :class:`django.db.models.ForeignKey` :keyword data: JSON description of the data in this DataSetMember. :type data: :class: `django.contrib.postgres.fields.JSONField(default=dict)` :keyword created: Created Time :type created: datetime """ dataset = models.ForeignKey('data.DataSet', on_delete=models.PROTECT) data = django.contrib.postgres.fields.JSONField(default=dict) file_ids = django.contrib.postgres.fields.ArrayField(models.IntegerField(null=True)) created = models.DateTimeField(auto_now_add=True) objects = DataSetMemberManager() def get_dataset_definition(self): """Returns the dataset definition :returns: The dataset definition :rtype: :class:`data.dataset.dataset.DataSetDefinition` """ return self.dataset.get_definition() def get_data(self): """Returns the data for this datasetmember :returns: The data for this datasetmember :rtype: :class:`data.data.data.Data` """ return DataV6(data=self.data, do_validate=False).get_data() def get_v6_data_json(self): """Returns the data for this datasetmember as v6 json with the version stripped :returns: The v6 JSON output data dict for this datasetmember :rtype: dict """ return rest_utils.strip_schema_version(convert_data_to_v6_json(self.get_data()).get_dict()) class Meta(object): """meta information for the db""" db_table = 'data_set_member' class DataSetFileManager(models.Manager): """Manages the datasetfile model""" def create_dataset_files(self, dataset, data, existing_scale_ids): """Creates dataset files for the given dataset and data""" datasetfiles = [] for i in data.values.keys(): v = data.values[i] if type(v) is FileValue: for id in v.file_ids: if id in existing_scale_ids: continue file = DataSetFile() file.dataset = dataset file.scale_file = ScaleFile.objects.get(pk=id) file.parameter_name = i datasetfiles.append(file) return datasetfiles def get_file_ids(self, dataset_ids, parameter_names=None): """Returns a list of the file IDs for the given datasets, optionally filtered by parameter_name. :param dataset_ids: The ids of the associated datasets :type dataset_ids: integer :param parameter_names: The parameter names to search for in the given datasets :type parameter_names: string :returns: The list of scale file IDs :rtype: :func:`list` """ query = self.all().filter(dataset_id__in=list(dataset_ids)) if parameter_names: query = query.filter(parameter_name__in=list(parameter_names)) return [result.scale_file_id for result in query.only('scale_file_id').distinct()] def get_dataset_ids(self, file_ids, all_files=False): """Returns a list of the dataset IDs that contain the given files :param file_ids: The ids of the files to look for :type dataset_id: integer :param all_files: Whether or not a dataset must contain all files or just some of the files in the list :type all_files: bool :returns: The list of dataset IDs :rtype: :func:`list` """ results = [] if not all_files: query = self.all().filter(scale_file_id__in=list(file_ids)).only('dataset_id').distinct() results = [result.dataset_id for result in query] else: query = self.all().filter(scale_file_id__in=list(file_ids)).values('dataset_id').annotate(total=Count('dataset_id')).order_by('total') for result in query: if result['total'] == len(file_ids): results.append(result['dataset_id']) return results def get_files(self, dataset_ids, parameter_names=None): """Returns the dataset files associated with the given dataset_ids :param dataset_ids: The ids of the associated datasets :type dataset_ids: integer :param parameter_names: The parameter names to search for in the given datasets :type parameter_names: string :returns: The DataSetFiles associated with that dataset_id :rtype: [:class:`data.models.DataSetFile`] """ files = self.all().filter(dataset_id__in=list(dataset_ids)) if parameter_names: files = files.filter(parameter_name__in=list(parameter_names)) return files def get_datasets(self, file_ids, all_files=False): """Returns the datasets associated with the given file_id :param file_id: The id of the associated file :type file_id: integer :param all_files: Whether or not a dataset must contain all files or just some of the files in the list :type all_files: bool :returns: The DataSets associated with that dataset_id :rtype: [:class:`data.models.DataSet`] """ dataset_ids = self.get_dataset_ids(file_ids=file_ids, all_files=all_files) datasets = DataSet.objects.filter(id__in=dataset_ids) return datasets def get_dataset_files(self, dataset_id): """Returns the dataset files associated with the given dataset_id :param dataset_id: The id of the associated dataset :type dataset_id: integer :returns: The DataSetFiles associated with that dataset_id :rtype: [:class:`data.models.DataSetFile`] """ files = DataSetFile.objects.filter(dataset_id=dataset_id) return files class DataSetFile(models.Model): """ The actual file in a dataset member :keyword dataset: Refers to the dataset the file is a member of :type dataset: :class:`django.db.models.ForeignKey` :keyword scale_file: Refers to the ScaleFile :type scale_file: :class:`django.db.models.ForeignKey` :keyword parameter_name: Refers to the File parameter name :type parameter_name: :class:`django.db.models.CharField` """ dataset = models.ForeignKey('data.DataSet', on_delete=models.PROTECT) scale_file = models.ForeignKey('storage.ScaleFile', on_delete=models.PROTECT) parameter_name = models.CharField(db_index=True, max_length=50) objects = DataSetFileManager() class Meta(object): """meta information for the db""" db_table = 'data_set_file' unique_together = ("dataset", "scale_file")
apache-2.0
391,126,229,335,592,260
39.745763
146
0.650193
false
4.198952
false
false
false
alphatwirl/alphatwirl
alphatwirl/summary/Scan.py
1
1209
# Tai Sakuma <[email protected]> ##__________________________________________________________________|| import numpy as np import copy ##__________________________________________________________________|| class Scan: def __init__(self, val=None, weight=1, contents=None): if contents is not None: self.contents = contents return if val is None: self.contents = [ ] return self.contents = [val] def __add__(self, other): contents = self.contents + other.contents return self.__class__(contents=contents) def __radd__(self, other): # is called with other = 0 when e.g. sum([obj1, obj2]) if other == 0: return self.__class__() + self raise TypeError('unsupported: {!r} + {!r}'.format(other, self)) def __repr__(self): return '{}(contents={})'.format(self.__class__.__name__, self.contents) def __eq__(self, other): return self.contents == other.contents def __copy__(self): contents = list(self.contents) return self.__class__(contents=contents) ##__________________________________________________________________||
bsd-3-clause
-5,268,649,975,022,638,000
28.487805
79
0.456576
false
4.428571
false
false
false
absperf/wagtailapproval
wagtailapproval/menu.py
1
3637
from __future__ import (absolute_import, division, print_function, unicode_literals) import itertools from django.contrib.auth import get_user from django.core.urlresolvers import reverse, reverse_lazy from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ungettext_lazy as _n from wagtail.wagtailadmin import messages from wagtail.wagtailadmin.menu import MenuItem from .models import ApprovalStep def get_user_approval_items(user): '''Get an iterable of all items pending for a user's approval. :param User user: A user object whose groups are to be checked for appropriate steps :rtype: Iterable[ApprovalItem] :returns: All the items that this user can approve or reject. ''' if user.is_superuser: steps = ApprovalStep.objects.all() else: groups = user.groups.all() steps = ApprovalStep.objects.filter(group__in=groups) return itertools.chain.from_iterable( step.get_items(user) for step in steps) class ApprovalMenuItem(MenuItem): '''The menu item that shows in the wagtail sidebar''' def __init__( self, label=_('Approval'), url=reverse_lazy('wagtailapproval:index'), classnames='icon icon-tick-inverse', order=201, **kwargs): super(ApprovalMenuItem, self).__init__( label, url, classnames=classnames, order=order, **kwargs) def is_shown(self, request): '''Only show the menu if the user is in an owned approval group''' user = get_user(request) # If the user is superuser, show the menu if any steps exist at all if user.is_superuser: return ApprovalStep.objects.exists() groups = user.groups.all() if ApprovalStep.objects.filter(group__in=groups).exists(): # Display the approval notification only outside of the approval # paths if not request.path.startswith(reverse('wagtailapproval:index')): # Get the count of waiting approvals waiting_approvals = sum( 1 for _ in get_user_approval_items(user)) if waiting_approvals > 0: messages.info( request, _n( '{num:d} item waiting for approval', '{num:d} items waiting for approval', waiting_approvals).format(num=waiting_approvals), buttons=[ messages.button( reverse('wagtailapproval:index'), _('Examine Now')) ] ) return True return False class ApprovalAdminMenuItem(MenuItem): '''The admin menu item that shows in the wagtail sidebar, for administrating entire pipelines and manually dropping items into steps.''' def __init__( self, label=_('Approval Admin'), url=reverse_lazy('wagtailapproval:admin_index'), classnames='icon icon-cog', order=200, **kwargs): super(ApprovalAdminMenuItem, self).__init__( label, url, classnames=classnames, order=order, **kwargs) def is_shown(self, request): '''Only show the menu if the user is a superuser and any ApprovalStep objects exist.''' user = get_user(request) if user.is_superuser: return ApprovalStep.objects.exists() return False
bsd-2-clause
-1,745,352,902,436,354,300
35.009901
78
0.587022
false
4.65685
false
false
false
lulivi/debate_bot
bot.py
1
5398
#!/usr/bin/python3 -u # -*- coding: utf-8 -*- import sys import time import telebot # Librería de la API del bot. from telebot import types # Tipos para la API del bot. from priv.__init__ import token as tk bot = telebot.TeleBot(tk()) # Creamos el objeto de nuestro bot. ############################################################################### # commands ############################################################################### # start mensaje de bienvenida @bot.message_handler(commands=['start']) def command_start(m): cid = m.chat.id comando = m.text[7:] if comando == 'reglas': command_reglas(m) else: bot.send_message(cid,"¡Hola! Soy Debatebot.\nUsa el comando /ayuda para que te muestre mis demás comandos.\n\nEspero ser de utilidad.") ######################################## # muestra los comandos visibles @bot.message_handler(commands=['ayuda']) def command_ayuda(m): bot.reply_to(m,"Guardo y doy información acerca de debates.\n/nuevo establezco el nuevo tema de debate.\n/actual muestro el tema actual de debate.\n/fin termino el debate actual.\n/reglas muestro las reglas actuales del grupo.") ######################################## # nuevo debat @bot.message_handler(commands=['nuevo']) def command_nuevo(m): pos = m.text.find(" ") cid = m.chat.id if pos == -1: bot.send_message(cid,m.from_user.first_name+", escribe:\n/nuevo nuevo_tema_de_debate") else: if get_matter(cid) == "": set_matter(cid, m.text[pos:]) fuid = m.from_user.id set_matter_id(cid, fuid) bot.send_message(cid,"El tema actual se ha guardado con éxito, "+m.from_user.first_name+".") else: bot.send_message(cid,"Ya se está debatifino un tema, "+m.from_user.first_name+".\n/fin para terminarlo.\n/actual para obtenerlo.") ######################################## # debate actual @bot.message_handler(commands=['actual']) def command_actual(m): cid = m.chat.id actual = get_matter(cid) if actual != "": bot.send_message(cid,"\"* "+actual+" *\" es el tema actual.\n\n/fin para terminarlo.",parse_mode="Markdown") else: bot.send_message(cid,"No hay debate actualmente.\n/nuevo para comenzar uno.") ######################################## # terminar el debate @bot.message_handler(commands=['fin']) def command_fin(m): cid = m.chat.id if get_matter(cid) != "": uid = get_matter_id(cid) fuid = m.from_user.id if uid == fuid: set_matter(cid) set_matter_id(cid,uid) bot.send_message(cid,"Tema cerrado, "+m.from_user.first_name+".\n/nuevo para comenzar uno.") else: bot.send_message(cid,"No tiene permiso para terminar el debate, "+m.from_user.first_name+".") else: bot.send_message(cid, "No hay debate actualmente, "+m.from_user.first_name+".\n/nuevo para comenzar uno.") ######################################## REGLASID = "" # reglas @bot.message_handler(commands=['reglas']) def command_to_reglas(m): cid = m.chat.id if cid < 0: REGLASID = str(cid) bot.send_message(cid,"Pulse [aquí](https://telegram.me/debate_bot?start=reglas)",parse_mode="Markdown") else: command_reglas(m) def command_reglas(m): if REGLASID != "": reglas = get_reglas(REGLASID) else: cid = m.chat.id reglas = get_reglas(cid) if reglas != "": bot.reply_to(m,"Reglas de participación en este grupo:\n\n"+reglas) else: bot.reply_to(m,"No hay relgas definidas para este grupo.") ######################################## # definir las reglas @bot.message_handler(commands=['definereglas']) def command_definereglas(m): cid = m.chat.id text = m.text pos = text.find(" ") if pos != -1: txt = m.text[pos+1:] set_reglas(cid, txt) else: txt = "" set_reglas(cid, txt) ############################################################################### # functions ############################################################################### ##### matter ##### def set_matter(chatid,txt=""): cid = str(chatid) with open("./matter/"+cid+".mat",'w') as f: f.write(txt) def get_matter(chatid): cid = str(chatid) with open("./matter/"+cid+".mat",'a') as f: pass with open("./matter/"+cid+".mat",'r') as f: matter = f.read() return matter ##### reglas ##### def set_reglas(chatid, txt): cid = str(chatid) with open("./reglas/"+cid+".rul",'w') as f: f.write(txt) def get_reglas(chatid): cid = str(chatid) with open("./reglas/"+cid+".rul",'a') as f: pass with open("./reglas/"+cid+".rul",'r') as f: reglas = f.read() return reglas ##### matter id ##### def set_matter_id(chatid,userid): cid = str(chatid) uid = str(userid) with open("./matter/"+cid+".matid",'w') as f: f.write(uid) def get_matter_id(chatid): cid = str(chatid) with open("./matter/"+cid+".matid",'a') as f: pass with open("./matter/"+cid+".matid",'r') as f: uid = f.read() if uid == "": return -1 else: return int(uid) ############################################################################### bot.polling()
gpl-2.0
6,137,335,804,472,736,000
31.083333
232
0.520779
false
3.24113
false
false
false
chugunovyar/factoryForBuild
neuron/SaveClosedPossition.py
1
31069
# -*- coding: utf-8 -*- import logging from neuron.models import DataSet import dateutil.parser as DP loggermsg = logging.getLogger('django') def saveClosedPossition(jsondata): #loggermsg.info(len(jsondata)) # Проверяем есть ли такой ордер в БД ifExistOrdernum = DataSet.objects.filter(open_magicnum=jsondata['magicnum']) # Если нет такого ордера то записываем его в бд. if len(ifExistOrdernum) == 0: if float(jsondata['result']) > 0: effectivnes = 1 else: effectivnes = 0 dataToSave = DataSet( open_magicnum = jsondata['magicnum'],\ open_neuron_name = jsondata['neuron_name'],\ open_period = jsondata['period'],\ orderOpenPrice = jsondata['openprice'],\ open_type = jsondata['open_type'],\ open_time = DP.parse(jsondata['orderopentime']),\ open_close_1 = jsondata['open_close_1'],\ open_open_1 = jsondata['open_open_1'],\ open_high_1 = jsondata['open_high_1'],\ open_low_1 = jsondata['open_low_1'], open_upband_1 = jsondata['open_upband_1'], open_lowband_1 = jsondata['open_lowband_1'], open_midleband_1 = jsondata['open_midleband_1'], open_jaw_1 = jsondata['open_jaw_1'], open_lips_1 = jsondata['open_lips_1'], open_teeth_1 = jsondata['open_teeth_1'], open_volume_1 = jsondata['open_volume_1'], open_close_2 = jsondata['open_close_2'], open_open_2 = jsondata['open_open_2'], open_high_2 = jsondata['open_high_2'], open_low_2 = jsondata['open_low_2'], open_upband_2 = jsondata['open_upband_2'], open_lowband_2 = jsondata['open_lowband_2'], open_midleband_2 = jsondata['open_midleband_2'], open_jaw_2 = jsondata['open_jaw_2'], open_lips_2 = jsondata['open_lips_2'], open_teeth_2 = jsondata['open_teeth_2'], open_volume_2 = jsondata['open_volume_2'], open_close_3 = jsondata['open_close_3'], open_open_3 = jsondata['open_open_3'], open_high_3 = jsondata['open_high_3'], open_low_3 = jsondata['open_low_3'], open_upband_3 = jsondata['open_upband_3'], open_lowband_3 = jsondata['open_lowband_3'], open_midleband_3 = jsondata['open_midleband_3'], open_jaw_3 = jsondata['open_jaw_3'], open_lips_3 = jsondata['open_lips_3'], open_teeth_3 = jsondata['open_teeth_3'], open_volume_3 = jsondata['open_volume_3'], open_close_4 = jsondata['open_close_4'], open_open_4 = jsondata['open_open_4'], open_high_4 = jsondata['open_high_4'], open_low_4 = jsondata['open_low_4'], open_upband_4 = jsondata['open_upband_4'], open_lowband_4 = jsondata['open_lowband_4'], open_midleband_4 = jsondata['open_midleband_4'], open_jaw_4 = jsondata['open_jaw_4'], open_lips_4 = jsondata['open_lips_4'], open_teeth_4 = jsondata['open_teeth_4'], open_volume_4 = jsondata['open_volume_4'], open_close_5 = jsondata['open_close_5'], open_open_5 = jsondata['open_open_5'], open_high_5 = jsondata['open_high_5'], open_low_5 = jsondata['open_low_5'], open_upband_5 = jsondata['open_upband_5'], open_lowband_5 = jsondata['open_lowband_5'], open_midleband_5 = jsondata['open_midleband_5'], open_jaw_5 = jsondata['open_jaw_5'], open_lips_5 = jsondata['open_lips_5'], open_teeth_5 = jsondata['open_teeth_5'], open_volume_5 = jsondata['open_volume_5'], open_close_6 = jsondata['open_close_6'], open_open_6 = jsondata['open_open_6'], open_high_6 = jsondata['open_high_6'], open_low_6 = jsondata['open_low_6'], open_upband_6 = jsondata['open_upband_6'], open_lowband_6 = jsondata['open_lowband_6'], open_midleband_6 = jsondata['open_midleband_6'], open_jaw_6 = jsondata['open_jaw_6'], open_lips_6 = jsondata['open_lips_6'], open_teeth_6 = jsondata['open_teeth_6'], open_volume_6 = jsondata['open_volume_6'], open_close_7 = jsondata['open_close_7'], open_open_7 = jsondata['open_open_7'], open_high_7 = jsondata['open_high_7'], open_low_7 = jsondata['open_low_7'], open_upband_7 = jsondata['open_upband_7'], open_lowband_7 = jsondata['open_lowband_7'], open_midleband_7 = jsondata['open_midleband_7'], open_jaw_7 = jsondata['open_jaw_7'], open_lips_7 = jsondata['open_lips_7'], open_teeth_7 = jsondata['open_teeth_7'], open_volume_7 = jsondata['open_volume_7'], open_close_8 = jsondata['open_close_8'], open_open_8 = jsondata['open_open_8'], open_high_8 = jsondata['open_high_8'], open_low_8 = jsondata['open_low_8'], open_upband_8 = jsondata['open_upband_8'], open_lowband_8 = jsondata['open_lowband_8'], open_midleband_8 = jsondata['open_midleband_8'], open_jaw_8 = jsondata['open_jaw_8'], open_lips_8 = jsondata['open_lips_8'], open_teeth_8 = jsondata['open_teeth_8'], open_volume_8 = jsondata['open_volume_8'], open_close_9 = jsondata['open_close_9'], open_open_9 = jsondata['open_open_9'], open_high_9 = jsondata['open_high_9'], open_low_9 = jsondata['open_low_9'], open_upband_9 = jsondata['open_upband_9'], open_lowband_9 = jsondata['open_lowband_9'], open_midleband_9 = jsondata['open_midleband_9'], open_jaw_9 = jsondata['open_jaw_9'], open_lips_9 = jsondata['open_lips_9'], open_teeth_9 = jsondata['open_teeth_9'], open_volume_9 = jsondata['open_volume_9'], open_close_10 = jsondata['open_close_10'], open_open_10 = jsondata['open_open_10'], open_high_10 = jsondata['open_high_10'], open_low_10 = jsondata['open_low_10'], open_upband_10 = jsondata['open_upband_10'], open_lowband_10 = jsondata['open_lowband_10'], open_midleband_10 = jsondata['open_midleband_10'], open_jaw_10 = jsondata['open_jaw_10'], open_lips_10 = jsondata['open_lips_10'], open_teeth_10 = jsondata['open_teeth_10'], open_volume_10 = jsondata['open_volume_10'], ) dataToSave.save() DataSet.objects.filter(open_magicnum=jsondata['magicnum']).update( open_close_11 = jsondata['open_close_11'], open_open_11 = jsondata['open_open_11'], open_high_11 = jsondata['open_high_11'], open_low_11 = jsondata['open_low_11'], open_upband_11 = jsondata['open_upband_11'], open_lowband_11 = jsondata['open_lowband_11'], open_midleband_11 = jsondata['open_midleband_11'], open_jaw_11 = jsondata['open_jaw_11'], open_lips_11 = jsondata['open_lips_11'], open_teeth_11 = jsondata['open_teeth_11'], open_volume_11 = jsondata['open_volume_11'], open_close_12 = jsondata['open_close_12'], open_open_12 = jsondata['open_open_12'], open_high_12 = jsondata['open_high_12'], open_low_12 = jsondata['open_low_12'], open_upband_12 = jsondata['open_upband_12'], open_lowband_12 = jsondata['open_lowband_12'], open_midleband_12 = jsondata['open_midleband_12'], open_jaw_12 = jsondata['open_jaw_12'], open_lips_12 = jsondata['open_lips_12'], open_teeth_12 = jsondata['open_teeth_12'], open_volume_12 = jsondata['open_volume_12'], open_close_13 = jsondata['open_close_13'], open_open_13 = jsondata['open_open_13'], open_high_13 = jsondata['open_high_13'], open_low_13 = jsondata['open_low_13'], open_upband_13 = jsondata['open_upband_13'], open_lowband_13 = jsondata['open_lowband_13'], open_midleband_13 = jsondata['open_midleband_13'], open_jaw_13 = jsondata['open_jaw_13'], open_lips_13 = jsondata['open_lips_13'], open_teeth_13 = jsondata['open_teeth_13'], open_volume_13 = jsondata['open_volume_13'], open_close_14 = jsondata['open_close_14'], open_open_14 = jsondata['open_open_14'], open_high_14 = jsondata['open_high_14'], open_low_14 = jsondata['open_low_14'], open_upband_14 = jsondata['open_upband_14'], open_lowband_14 = jsondata['open_lowband_14'], open_midleband_14 = jsondata['open_midleband_14'], open_jaw_14 = jsondata['open_jaw_14'], open_lips_14 = jsondata['open_lips_14'], open_teeth_14 = jsondata['open_teeth_14'], open_volume_14 = jsondata['open_volume_14'], open_close_15 = jsondata['open_close_15'], open_open_15 = jsondata['open_open_15'], open_high_15 = jsondata['open_high_15'], open_low_15 = jsondata['open_low_15'], open_upband_15 = jsondata['open_upband_15'], open_lowband_15 = jsondata['open_lowband_15'], open_midleband_15 = jsondata['open_midleband_15'], open_jaw_15 = jsondata['open_jaw_15'], open_lips_15 = jsondata['open_lips_15'], open_teeth_15 = jsondata['open_teeth_15'], open_volume_15 = jsondata['open_volume_15'], open_close_16 = jsondata['open_close_16'], open_open_16 = jsondata['open_open_16'], open_high_16 = jsondata['open_high_16'], open_low_16 = jsondata['open_low_16'], open_upband_16 = jsondata['open_upband_16'], open_lowband_16 = jsondata['open_lowband_16'], open_midleband_16 = jsondata['open_midleband_16'], open_jaw_16 = jsondata['open_jaw_16'], open_lips_16 = jsondata['open_lips_16'], open_teeth_16 = jsondata['open_teeth_16'], open_volume_16 = jsondata['open_volume_16'], open_close_17 = jsondata['open_close_17'], open_open_17 = jsondata['open_open_17'], open_high_17 = jsondata['open_high_17'], open_low_17 = jsondata['open_low_17'], open_upband_17 = jsondata['open_upband_17'], open_lowband_17 = jsondata['open_lowband_17'], open_midleband_17 = jsondata['open_midleband_17'], open_jaw_17 = jsondata['open_jaw_17'], open_lips_17 = jsondata['open_lips_17'], open_teeth_17 = jsondata['open_teeth_17'], open_volume_17 = jsondata['open_volume_17'], open_close_18 = jsondata['open_close_18'], open_open_18 = jsondata['open_open_18'], open_high_18 = jsondata['open_high_18'], open_low_18 = jsondata['open_low_18'], open_upband_18 = jsondata['open_upband_18'], open_lowband_18 = jsondata['open_lowband_18'], open_midleband_18 = jsondata['open_midleband_18'], open_jaw_18 = jsondata['open_jaw_18'], open_lips_18 = jsondata['open_lips_18'], open_teeth_18 = jsondata['open_teeth_18'], open_volume_18 = jsondata['open_volume_18'], open_close_19 = jsondata['open_close_19'], open_open_19 = jsondata['open_open_19'], open_high_19 = jsondata['open_high_19'], open_low_19 = jsondata['open_low_19'], open_upband_19 = jsondata['open_upband_19'], open_lowband_19 = jsondata['open_lowband_19'], open_midleband_19 = jsondata['open_midleband_19'], open_jaw_19 = jsondata['open_jaw_19'], open_lips_19 = jsondata['open_lips_19'], open_teeth_19 = jsondata['open_teeth_19'], open_volume_19 = jsondata['open_volume_19'], open_close_20 = jsondata['open_close_20'], open_open_20 = jsondata['open_open_20'], open_high_20 = jsondata['open_high_20'], open_low_20 = jsondata['open_low_20'], open_upband_20 = jsondata['open_upband_20'], open_lowband_20 = jsondata['open_lowband_20'], open_midleband_20 = jsondata['open_midleband_20'], open_jaw_20 = jsondata['open_jaw_20'], open_lips_20 = jsondata['open_lips_20'], open_teeth_20 = jsondata['open_teeth_20'], open_volume_20 = jsondata['open_volume_20'], open_close_21 = jsondata['open_close_21'], open_open_21 = jsondata['open_open_21'], open_high_21 = jsondata['open_high_21'], open_low_21 = jsondata['open_low_21'], open_upband_21 = jsondata['open_upband_21'], open_lowband_21 = jsondata['open_lowband_21'], open_midleband_21 = jsondata['open_midleband_21'], open_jaw_21 = jsondata['open_jaw_21'], open_lips_21 = jsondata['open_lips_21'], open_teeth_21 = jsondata['open_teeth_21'], open_volume_21 = jsondata['open_volume_21'], open_close_22 = jsondata['open_close_22'], open_open_22 = jsondata['open_open_22'], open_high_22 = jsondata['open_high_22'], open_low_22 = jsondata['open_low_22'], open_upband_22 = jsondata['open_upband_22'], open_lowband_22 = jsondata['open_lowband_22'], open_midleband_22 = jsondata['open_midleband_22'], open_jaw_22 = jsondata['open_jaw_22'], open_lips_22 = jsondata['open_lips_22'], open_teeth_22 = jsondata['open_teeth_22'], open_volume_22 = jsondata['open_volume_22'], open_close_23 = jsondata['open_close_23'], open_open_23 = jsondata['open_open_23'], open_high_23 = jsondata['open_high_23'], open_low_23 = jsondata['open_low_23'], open_upband_23 = jsondata['open_upband_23'], open_lowband_23 = jsondata['open_lowband_23'], open_midleband_23 = jsondata['open_midleband_23'], open_jaw_23 = jsondata['open_jaw_23'], open_lips_23 = jsondata['open_lips_23'], open_teeth_23 = jsondata['open_teeth_23'], open_volume_23 = jsondata['open_volume_23'], open_close_24 = jsondata['open_close_24'], open_open_24 = jsondata['open_open_24'], open_high_24 = jsondata['open_high_24'], open_low_24 = jsondata['open_low_24'], open_upband_24 = jsondata['open_upband_24'], open_lowband_24 = jsondata['open_lowband_24'], open_midleband_24 = jsondata['open_midleband_24'], open_jaw_24 = jsondata['open_jaw_24'], open_lips_24 = jsondata['open_lips_24'], open_teeth_24 = jsondata['open_teeth_24'], open_volume_24 = jsondata['open_volume_24'] ) DataSet.objects.filter(open_magicnum=jsondata['magicnum']).update( close_close_1 = jsondata['close_close_1'], close_open_1 = jsondata['close_open_1'], close_high_1 = jsondata['close_high_1'], close_low_1 = jsondata['close_low_1'], close_upband_1 = jsondata['close_upband_1'], close_lowband_1 = jsondata['close_lowband_1'], close_midleband_1 = jsondata['close_midleband_1'], close_jaw_1 = jsondata['close_jaw_1'], close_lips_1 = jsondata['close_lips_1'], close_teeth_1 = jsondata['close_teeth_1'], close_volume_1 = jsondata['close_volume_1'], close_close_2 = jsondata['close_close_2'], close_open_2 = jsondata['close_open_2'], close_high_2 = jsondata['close_high_2'], close_low_2 = jsondata['close_low_2'], close_upband_2 = jsondata['close_upband_2'], close_lowband_2 = jsondata['close_lowband_2'], close_midleband_2 = jsondata['close_midleband_2'], close_jaw_2 = jsondata['close_jaw_2'], close_lips_2 = jsondata['close_lips_2'], close_teeth_2 = jsondata['close_teeth_2'], close_volume_2 = jsondata['close_volume_2'], close_close_3 = jsondata['close_close_3'], close_open_3 = jsondata['close_open_3'], close_high_3 = jsondata['close_high_3'], close_low_3 = jsondata['close_low_3'], close_upband_3 = jsondata['close_upband_3'], close_lowband_3 = jsondata['close_lowband_3'], close_midleband_3 = jsondata['close_midleband_3'], close_jaw_3 = jsondata['close_jaw_3'], close_lips_3 = jsondata['close_lips_3'], close_teeth_3 = jsondata['close_teeth_3'], close_volume_3 = jsondata['close_volume_3'], close_close_4 = jsondata['close_close_4'], close_open_4 = jsondata['close_open_4'], close_high_4 = jsondata['close_high_4'], close_low_4 = jsondata['close_low_4'], close_upband_4 = jsondata['close_upband_4'], close_lowband_4 = jsondata['close_lowband_4'], close_midleband_4 = jsondata['close_midleband_4'], close_jaw_4 = jsondata['close_jaw_4'], close_lips_4 = jsondata['close_lips_4'], close_teeth_4 = jsondata['close_teeth_4'], close_volume_4 = jsondata['close_volume_4'], close_close_5 = jsondata['close_close_5'], close_open_5 = jsondata['close_open_5'], close_high_5 = jsondata['close_high_5'], close_low_5 = jsondata['close_low_5'], close_upband_5 = jsondata['close_upband_5'], close_lowband_5 = jsondata['close_lowband_5'], close_midleband_5 = jsondata['close_midleband_5'], close_jaw_5 = jsondata['close_jaw_5'], close_lips_5 = jsondata['close_lips_5'], close_teeth_5 = jsondata['close_teeth_5'], close_volume_5 = jsondata['close_volume_5'], close_close_6 = jsondata['close_close_6'], close_open_6 = jsondata['close_open_6'], close_high_6 = jsondata['close_high_6'], close_low_6 = jsondata['close_low_6'], close_upband_6 = jsondata['close_upband_6'], close_lowband_6 = jsondata['close_lowband_6'], close_midleband_6 = jsondata['close_midleband_6'], close_jaw_6 = jsondata['close_jaw_6'], close_lips_6 = jsondata['close_lips_6'], close_teeth_6 = jsondata['close_teeth_6'], close_volume_6 = jsondata['close_volume_6'], close_close_7 = jsondata['close_close_7'], close_open_7 = jsondata['close_open_7'], close_high_7 = jsondata['close_high_7'], close_low_7 = jsondata['close_low_7'], close_upband_7 = jsondata['close_upband_7'], close_lowband_7 = jsondata['close_lowband_7'], close_midleband_7 = jsondata['close_midleband_7'], close_jaw_7 = jsondata['close_jaw_7'], close_lips_7 = jsondata['close_lips_7'], close_teeth_7 = jsondata['close_teeth_7'], close_volume_7 = jsondata['close_volume_7'], close_close_8 = jsondata['close_close_8'], close_open_8 = jsondata['close_open_8'], close_high_8 = jsondata['close_high_8'], close_low_8 = jsondata['close_low_8'], close_upband_8 = jsondata['close_upband_8'], close_lowband_8 = jsondata['close_lowband_8'], close_midleband_8 = jsondata['close_midleband_8'], close_jaw_8 = jsondata['close_jaw_8'], close_lips_8 = jsondata['close_lips_8'], close_teeth_8 = jsondata['close_teeth_8'], close_volume_8 = jsondata['close_volume_8'], close_close_9 = jsondata['close_close_9'], close_open_9 = jsondata['close_open_9'], close_high_9 = jsondata['close_high_9'], close_low_9 = jsondata['close_low_9'], close_upband_9 = jsondata['close_upband_9'], close_lowband_9 = jsondata['close_lowband_9'], close_midleband_9 = jsondata['close_midleband_9'], close_jaw_9 = jsondata['close_jaw_9'], close_lips_9 = jsondata['close_lips_9'], close_teeth_9 = jsondata['close_teeth_9'], close_volume_9 = jsondata['close_volume_9'], close_close_10 = jsondata['close_close_10'], close_open_10 = jsondata['close_open_10'], close_high_10 = jsondata['close_high_10'], close_low_10 = jsondata['close_low_10'], close_upband_10 = jsondata['close_upband_10'], close_lowband_10 = jsondata['close_lowband_10'], close_midleband_10 = jsondata['close_midleband_10'], close_jaw_10 = jsondata['close_jaw_10'], close_lips_10 = jsondata['close_lips_10'], close_teeth_10 = jsondata['close_teeth_10'], close_volume_10 = jsondata['close_volume_10'], close_close_11 = jsondata['close_close_11'], close_open_11 = jsondata['close_open_11'], close_high_11 = jsondata['close_high_11'], close_low_11 = jsondata['close_low_11'], close_upband_11 = jsondata['close_upband_11'], close_lowband_11 = jsondata['close_lowband_11'], close_midleband_11 = jsondata['close_midleband_11'], close_jaw_11 = jsondata['close_jaw_11'], close_lips_11 = jsondata['close_lips_11'], close_teeth_11 = jsondata['close_teeth_11'], close_volume_11 = jsondata['close_volume_11'], close_close_12 = jsondata['close_close_12'], close_open_12 = jsondata['close_open_12'], close_high_12 = jsondata['close_high_12'], close_low_12 = jsondata['close_low_12'], close_upband_12 = jsondata['close_upband_12'], close_lowband_12 = jsondata['close_lowband_12'], close_midleband_12 = jsondata['close_midleband_12'], close_jaw_12 = jsondata['close_jaw_12'], close_lips_12 = jsondata['close_lips_12'], close_teeth_12 = jsondata['close_teeth_12'], close_volume_12 = jsondata['close_volume_12'], ) DataSet.objects.filter(open_magicnum=jsondata['magicnum']).update( close_close_13 = jsondata['close_close_13'], close_open_13 = jsondata['close_open_13'], close_high_13 = jsondata['close_high_13'], close_low_13 = jsondata['close_low_13'], close_upband_13 = jsondata['close_upband_13'], close_lowband_13 = jsondata['close_lowband_13'], close_midleband_13 = jsondata['close_midleband_13'], close_jaw_13 = jsondata['close_jaw_13'], close_lips_13 = jsondata['close_lips_13'], close_teeth_13 = jsondata['close_teeth_13'], close_volume_13 = jsondata['close_volume_13'], close_close_14 = jsondata['close_close_14'], close_open_14 = jsondata['close_open_14'], close_high_14 = jsondata['close_high_14'], close_low_14 = jsondata['close_low_14'], close_upband_14 = jsondata['close_upband_14'], close_lowband_14 = jsondata['close_lowband_14'], close_midleband_14 = jsondata['close_midleband_14'], close_jaw_14 = jsondata['close_jaw_14'], close_lips_14 = jsondata['close_lips_14'], close_teeth_14 = jsondata['close_teeth_14'], close_volume_14 = jsondata['close_volume_14'], close_close_15 = jsondata['close_close_15'], close_open_15 = jsondata['close_open_15'], close_high_15 = jsondata['close_high_15'], close_low_15 = jsondata['close_low_15'], close_upband_15 = jsondata['close_upband_15'], close_lowband_15 = jsondata['close_lowband_15'], close_midleband_15 = jsondata['close_midleband_15'], close_jaw_15 = jsondata['close_jaw_15'], close_lips_15 = jsondata['close_lips_15'], close_teeth_15 = jsondata['close_teeth_15'], close_volume_15 = jsondata['close_volume_15'], close_close_16 = jsondata['close_close_16'], close_open_16 = jsondata['close_open_16'], close_high_16 = jsondata['close_high_16'], close_low_16 = jsondata['close_low_16'], close_upband_16 = jsondata['close_upband_16'], close_lowband_16 = jsondata['close_lowband_16'], close_midleband_16 = jsondata['close_midleband_16'], close_jaw_16 = jsondata['close_jaw_16'], close_lips_16 = jsondata['close_lips_16'], close_teeth_16 = jsondata['close_teeth_16'], close_volume_16 = jsondata['close_volume_16'], close_close_17 = jsondata['close_close_17'], close_open_17 = jsondata['close_open_17'], close_high_17 = jsondata['close_high_17'], close_low_17 = jsondata['close_low_17'], close_upband_17 = jsondata['close_upband_17'], close_lowband_17 = jsondata['close_lowband_17'], close_midleband_17 = jsondata['close_midleband_17'], close_jaw_17 = jsondata['close_jaw_17'], close_lips_17 = jsondata['close_lips_17'], close_teeth_17 = jsondata['close_teeth_17'], close_volume_17 = jsondata['close_volume_17'], close_close_18 = jsondata['close_close_18'], close_open_18 = jsondata['close_open_18'], close_high_18 = jsondata['close_high_18'], close_low_18 = jsondata['close_low_18'], close_upband_18 = jsondata['close_upband_18'], close_lowband_18 = jsondata['close_lowband_18'], close_midleband_18 = jsondata['close_midleband_18'], close_jaw_18 = jsondata['close_jaw_18'], close_lips_18 = jsondata['close_lips_18'], close_teeth_18 = jsondata['close_teeth_18'], close_volume_18 = jsondata['close_volume_18'], close_close_19 = jsondata['close_close_19'], close_open_19 = jsondata['close_open_19'], close_high_19 = jsondata['close_high_19'], close_low_19 = jsondata['close_low_19'], close_upband_19 = jsondata['close_upband_19'], close_lowband_19 = jsondata['close_lowband_19'], close_midleband_19 = jsondata['close_midleband_19'], close_jaw_19 = jsondata['close_jaw_19'], close_lips_19 = jsondata['close_lips_19'], close_teeth_19 = jsondata['close_teeth_19'], close_volume_19 = jsondata['close_volume_19'], close_close_20 = jsondata['close_close_20'], close_open_20 = jsondata['close_open_20'], close_high_20 = jsondata['close_high_20'], close_low_20 = jsondata['close_low_20'], close_upband_20 = jsondata['close_upband_20'], close_lowband_20 = jsondata['close_lowband_20'], close_midleband_20 = jsondata['close_midleband_20'], close_jaw_20 = jsondata['close_jaw_20'], close_lips_20 = jsondata['close_lips_20'], close_teeth_20 = jsondata['close_teeth_20'], close_volume_20 = jsondata['close_volume_20'], close_close_21 = jsondata['close_close_21'], close_open_21 = jsondata['close_open_21'], close_high_21 = jsondata['close_high_21'], close_low_21 = jsondata['close_low_21'], close_upband_21 = jsondata['close_upband_21'], close_lowband_21 = jsondata['close_lowband_21'], close_midleband_21 = jsondata['close_midleband_21'], close_jaw_21 = jsondata['close_jaw_21'], close_lips_21 = jsondata['close_lips_21'], close_teeth_21 = jsondata['close_teeth_21'], close_volume_21 = jsondata['close_volume_21'], close_close_22 = jsondata['close_close_22'], close_open_22 = jsondata['close_open_22'], close_high_22 = jsondata['close_high_22'], close_low_22 = jsondata['close_low_22'], close_upband_22 = jsondata['close_upband_22'], close_lowband_22 = jsondata['close_lowband_22'], close_midleband_22 = jsondata['close_midleband_22'], close_jaw_22 = jsondata['close_jaw_22'], close_lips_22 = jsondata['close_lips_22'], close_teeth_22 = jsondata['close_teeth_22'], close_volume_22 = jsondata['close_volume_22'], close_close_23 = jsondata['close_close_23'], close_open_23 = jsondata['close_open_23'], close_high_23 = jsondata['close_high_23'], close_low_23 = jsondata['close_low_23'], close_upband_23 = jsondata['close_upband_23'], close_lowband_23 = jsondata['close_lowband_23'], close_midleband_23 = jsondata['close_midleband_23'], close_jaw_23 = jsondata['close_jaw_23'], close_lips_23 = jsondata['close_lips_23'], close_teeth_23 = jsondata['close_teeth_23'], close_volume_23 = jsondata['close_volume_23'], close_close_24 = jsondata['close_close_24'], close_open_24 = jsondata['close_open_24'], close_high_24 = jsondata['close_high_24'], close_low_24 = jsondata['close_low_24'], close_upband_24 = jsondata['close_upband_24'], close_lowband_24 = jsondata['close_lowband_24'], close_midleband_24 = jsondata['close_midleband_24'], close_jaw_24 = jsondata['close_jaw_24'], close_lips_24 = jsondata['close_lips_24'], close_teeth_24 = jsondata['close_teeth_24'], close_volume_24 = jsondata['close_volume_24'], close_result = jsondata['result'], close_effectivnes = effectivnes, close_neuron_name = jsondata['neuron_name'], close_closeprice = jsondata['closeprice'], close_time = DP.parse(jsondata['orderclosetime']) )
gpl-3.0
-1,601,113,315,527,009,800
49.413008
135
0.546768
false
3.238692
false
false
false
diego-d5000/MisValesMd
env/lib/python2.7/site-packages/django/core/checks/model_checks.py
1
2454
# -*- coding: utf-8 -*- from __future__ import unicode_literals import inspect import types from django.apps import apps from django.core.checks import Error, Tags, register @register(Tags.models) def check_all_models(app_configs=None, **kwargs): errors = [] for model in apps.get_models(): if app_configs is None or model._meta.app_config in app_configs: if not inspect.ismethod(model.check): errors.append( Error( "The '%s.check()' class method is " "currently overridden by %r." % ( model.__name__, model.check), hint=None, obj=model, id='models.E020' ) ) else: errors.extend(model.check(**kwargs)) return errors @register(Tags.models, Tags.signals) def check_model_signals(app_configs=None, **kwargs): """ Ensure lazily referenced model signals senders are installed. """ # Avoid circular import from django.db import models errors = [] for name in dir(models.signals): obj = getattr(models.signals, name) if isinstance(obj, models.signals.ModelSignal): for reference, receivers in obj.unresolved_references.items(): for receiver, _, _ in receivers: # The receiver is either a function or an instance of class # defining a `__call__` method. if isinstance(receiver, types.FunctionType): description = "The '%s' function" % receiver.__name__ else: description = "An instance of the '%s' class" % receiver.__class__.__name__ errors.append( Error( "%s was connected to the '%s' signal " "with a lazy reference to the '%s' sender, " "which has not been installed." % ( description, name, '.'.join(reference) ), obj=receiver.__module__, hint=None, id='signals.E001' ) ) return errors
mit
6,105,422,011,354,093,000
36.34375
99
0.467808
false
5.155462
false
false
false
ahmetcemturan/SFACT
skeinforge_application/skeinforge_plugins/craft_plugins/limit.py
1
8282
#! /usr/bin/env python """ This page is in the table of contents. This plugin limits the feed rate of the tool head, so that the stepper motors are not driven too fast and skip steps. The limit manual page is at: http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge_Limit The maximum z feed rate is defined in speed. ==Operation== The default 'Activate Limit' checkbox is on. When it is on, the functions described below will work, when it is off, nothing will be done. ==Settings== ===Maximum Initial Feed Rate=== Default is one millimeter per second. Defines the maximum speed of the inital tool head move. ==Examples== The following examples limit the file Screw Holder Bottom.stl. The examples are run in a terminal in the folder which contains Screw Holder Bottom.stl and limit.py. > python limit.py This brings up the limit dialog. > python limit.py Screw Holder Bottom.stl The limit tool is parsing the file: Screw Holder Bottom.stl .. The limit tool has created the file: .. Screw Holder Bottom_limit.gcode """ #Init has to be imported first because it has code to workaround the python bug where relative imports don't work if the module is imported as a main module. import __init__ from datetime import date from fabmetheus_utilities.fabmetheus_tools import fabmetheus_interpret from fabmetheus_utilities.vector3 import Vector3 from fabmetheus_utilities import archive from fabmetheus_utilities import euclidean from fabmetheus_utilities import gcodec from fabmetheus_utilities import intercircle from fabmetheus_utilities import settings from skeinforge_application.skeinforge_utilities import skeinforge_craft from skeinforge_application.skeinforge_utilities import skeinforge_polyfile from skeinforge_application.skeinforge_utilities import skeinforge_profile import math import os import sys __author__ = 'Enrique Perez ([email protected])' __date__ = '$Date: 2008/28/04 $' __license__ = 'GNU Affero General Public License http://www.gnu.org/licenses/agpl.html' def getCraftedText(fileName, gcodeText='', repository=None): 'Limit a gcode file or text.' return getCraftedTextFromText( archive.getTextIfEmpty(fileName, gcodeText), repository ) def getCraftedTextFromText(gcodeText, repository=None): 'Limit a gcode text.' if gcodec.isProcedureDoneOrFileIsEmpty(gcodeText, 'limit'): return gcodeText if repository == None: repository = settings.getReadRepository(LimitRepository()) if not repository.activateLimit.value: return gcodeText return LimitSkein().getCraftedGcode(gcodeText, repository) def getNewRepository(): 'Get new repository.' return LimitRepository() def writeOutput(fileName, shouldAnalyze=True): 'Limit a gcode file.' skeinforge_craft.writeChainTextWithNounMessage(fileName, 'limit', shouldAnalyze) class LimitRepository: 'A class to handle the limit settings.' def __init__(self): 'Set the default settings, execute title & settings fileName.' skeinforge_profile.addListsToCraftTypeRepository('skeinforge_application.skeinforge_plugins.craft_plugins.limit.html', self ) self.fileNameInput = settings.FileNameInput().getFromFileName( fabmetheus_interpret.getGNUTranslatorGcodeFileTypeTuples(), 'Open File for Limit', self, '') self.openWikiManualHelpPage = settings.HelpPage().getOpenFromAbsolute('http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge_Limit') self.activateLimit = settings.BooleanSetting().getFromValue('Activate Limit', self, False) self.maximumInitialFeedRate = settings.FloatSpin().getFromValue(0.5, 'Maximum Initial Feed Rate (mm/s):', self, 10.0, 1.0) self.executeTitle = 'Limit' def execute(self): 'Limit button has been clicked.' fileNames = skeinforge_polyfile.getFileOrDirectoryTypesUnmodifiedGcode(self.fileNameInput.value, fabmetheus_interpret.getImportPluginFileNames(), self.fileNameInput.wasCancelled) for fileName in fileNames: writeOutput(fileName) class LimitSkein: 'A class to limit a skein of extrusions.' def __init__(self): self.distanceFeedRate = gcodec.DistanceFeedRate() self.feedRateMinute = None self.lineIndex = 0 self.maximumZDrillFeedRatePerSecond = 987654321.0 self.maximumZFeedRatePerSecond = 2.0 self.oldLocation = None def getCraftedGcode(self, gcodeText, repository): 'Parse gcode text and store the limit gcode.' self.repository = repository self.lines = archive.getTextLines(gcodeText) self.parseInitialization() self.maximumZDrillFeedRatePerSecond = min(self.maximumZDrillFeedRatePerSecond, self.maximumZFeedRatePerSecond) self.maximumZCurrentFeedRatePerSecond = self.maximumZFeedRatePerSecond for lineIndex in xrange(self.lineIndex, len(self.lines)): self.parseLine( lineIndex ) return self.distanceFeedRate.output.getvalue() def getLimitedInitialMovement(self, line, splitLine): 'Get a limited linear movement.' if self.oldLocation == None: line = self.distanceFeedRate.getLineWithFeedRate(60.0 * self.repository.maximumInitialFeedRate.value, line, splitLine) return line def getZLimitedLine(self, deltaZ, distance, line, splitLine): 'Get a replaced z limited gcode movement line.' zFeedRateSecond = self.feedRateMinute * deltaZ / distance / 60.0 if zFeedRateSecond <= self.maximumZCurrentFeedRatePerSecond: return line limitedFeedRateMinute = self.feedRateMinute * self.maximumZCurrentFeedRatePerSecond / zFeedRateSecond return self.distanceFeedRate.getLineWithFeedRate(limitedFeedRateMinute, line, splitLine) def getZLimitedLineArc(self, line, splitLine): 'Get a replaced z limited gcode arc movement line.' self.feedRateMinute = gcodec.getFeedRateMinute(self.feedRateMinute, splitLine) if self.feedRateMinute == None or self.oldLocation == None: return line relativeLocation = gcodec.getLocationFromSplitLine(self.oldLocation, splitLine) self.oldLocation += relativeLocation deltaZ = abs(relativeLocation.z) distance = gcodec.getArcDistance(relativeLocation, splitLine) return self.getZLimitedLine(deltaZ, distance, line, splitLine) def getZLimitedLineLinear(self, line, location, splitLine): 'Get a replaced z limited gcode linear movement line.' self.feedRateMinute = gcodec.getFeedRateMinute(self.feedRateMinute, splitLine) if location == self.oldLocation: return '' if self.feedRateMinute == None or self.oldLocation == None: return line deltaZ = abs(location.z - self.oldLocation.z) distance = abs(location - self.oldLocation) return self.getZLimitedLine(deltaZ, distance, line, splitLine) def parseInitialization(self): 'Parse gcode initialization and store the parameters.' for self.lineIndex in xrange(len(self.lines)): line = self.lines[self.lineIndex] splitLine = gcodec.getSplitLineBeforeBracketSemicolon(line) firstWord = gcodec.getFirstWord(splitLine) self.distanceFeedRate.parseSplitLine(firstWord, splitLine) if firstWord == '(</extruderInitialization>)': self.distanceFeedRate.addTagBracketedProcedure('limit') return elif firstWord == '(<maximumZDrillFeedRatePerSecond>': self.maximumZDrillFeedRatePerSecond = float(splitLine[1]) elif firstWord == '(<maximumZFeedRatePerSecond>': self.maximumZFeedRatePerSecond = float(splitLine[1]) self.distanceFeedRate.addLine(line) def parseLine( self, lineIndex ): 'Parse a gcode line and add it to the limit skein.' line = self.lines[lineIndex].lstrip() splitLine = gcodec.getSplitLineBeforeBracketSemicolon(line) if len(splitLine) < 1: return firstWord = gcodec.getFirstWord(splitLine) if firstWord == 'G1': location = gcodec.getLocationFromSplitLine(self.oldLocation, splitLine) line = self.getLimitedInitialMovement(line, splitLine) line = self.getZLimitedLineLinear(line, location, splitLine) self.oldLocation = location elif firstWord == 'G2' or firstWord == 'G3': line = self.getZLimitedLineArc(line, splitLine) elif firstWord == 'M101': self.maximumZCurrentFeedRatePerSecond = self.maximumZDrillFeedRatePerSecond elif firstWord == 'M103': self.maximumZCurrentFeedRatePerSecond = self.maximumZFeedRatePerSecond self.distanceFeedRate.addLine(line) def main(): 'Display the limit dialog.' if len(sys.argv) > 1: writeOutput(' '.join(sys.argv[1 :])) else: settings.startMainLoopFromConstructor(getNewRepository()) if __name__ == '__main__': main()
agpl-3.0
246,727,834,341,910,940
40
180
0.781574
false
3.328778
false
false
false
mfnch/pyrtist
old/web/in/examples/create_example.py
1
2754
import sys, os, os.path, commands, re usage = "USAGE: python create_example.py box.example" if len(sys.argv) != 2: raise "Expected one argument.\n" + usage example_file = sys.argv[1] print "Working on '%s'..." % example_file # Default values for variables which may be changed inside example_file in_directory = ".." box = "box -l g" convert = "convert" convert_opts = "" highlight = "%s/../katehighlight/bin/highlight" % in_directory rst_skeleton = "skeleton" rst_out = None title = None description = None figure_caption = None box_source = None out_eps = None out_png = None _f = open(example_file) exec(_f) _f.close() if title == None: title = "Box example: %s" % crumb print "Removing old figure if present..." if out_eps and os.access(out_eps, os.W_OK): try: os.remove(out_eps) except: print "Failed to remove the figure: continuing anyway..." print "Executing the Box program..." print commands.getoutput("%s %s" % (box, box_source)) have_figure = False if out_eps and os.access(out_eps, os.R_OK): print "Adjusting eps figure..." out_png = os.path.splitext(out_eps)[0] + ".png" print commands.getoutput("%s %s %s %s" % (convert, convert_opts, out_eps, out_png)) print out_png have_figure = os.access(out_png, os.R_OK) if not have_figure: raise "The figure '%s' has not been produced: stopping here!" % out_png print "Highlighting the Box source..." highlighted_source = "/tmp/h.html" print commands.getoutput("%s Box %s %s" % (highlight, box_source, highlighted_source)) f = open(highlighted_source, "r") htmlized_box_program = f.read() f.close() print "Opening the skeleton..." f = open(rst_skeleton, "r") data_skeleton = f.read() f.close() vars_dict = { 'title': title, 'description': description, 'crumb': crumb, 'box_file':box_source, 'figure_caption':figure_caption, 'image': out_png, 'htmlized_box_program': htmlized_box_program } r = re.compile("[$][^$]*[$]") def substitutor(var): try: var_name = var.group(0)[1:-1] except: raise "Error when substituting variable." if vars_dict.has_key(var_name): return str(vars_dict[var_name]) print "WARNING: Variable '%s' not found!" % var_name return var.group(0) print "Filling the skeleton..." out = re.sub(r, substitutor, data_skeleton) f = open(rst_out, "w") f.write(out) f.close() print "Output produced (%s)" % rst_out print "Generating thumbnail..." html_out = os.path.splitext(out_png)[0] + ".html" out_thumb_png = "small_" + out_png scale_opts = "-scale 100" print commands.getoutput("%s %s %s %s" % (convert, scale_opts, out_png, out_thumb_png)) f = open("thumbnails.dat", "a") f.write("%s, %s\n" % (html_out, out_thumb_png)) f.close()
lgpl-2.1
1,265,988,056,238,007,300
24.738318
86
0.649601
false
2.932907
false
false
false
tkwon/dj-stripe
djstripe/migrations/0025_auto_20170322_0428.py
1
3906
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-22 04:28 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('djstripe', '0024_auto_20170308_0757'), ] operations = [ migrations.AlterField( model_name='account', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='account', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='charge', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='charge', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='customer', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='customer', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='event', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='event', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='eventprocessingexception', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='eventprocessingexception', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='invoice', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='invoice', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='invoiceitem', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='invoiceitem', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='plan', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='plan', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='stripesource', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='stripesource', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='subscription', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='subscription', name='modified', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='transfer', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='transfer', name='modified', field=models.DateTimeField(auto_now=True), ), ]
mit
8,493,379,797,407,598,000
30.248
58
0.536354
false
4.746051
false
false
false
eqcorrscan/ci.testing
eqcorrscan/utils/stacking.py
1
6254
""" Utility module of the EQcorrscan package to allow for different methods of \ stacking of seismic signal in one place. :copyright: EQcorrscan developers. :license: GNU Lesser General Public License, Version 3 (https://www.gnu.org/copyleft/lesser.html) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from scipy.signal import hilbert from copy import deepcopy from eqcorrscan.core.match_filter import normxcorr2 def linstack(streams, normalize=True): """ Compute the linear stack of a series of seismic streams of \ multiplexed data. :type streams: list :param streams: List of streams to stack :type normalize: bool :param normalize: Normalize traces before stacking, normalizes by the RMS \ amplitude. :returns: stacked data :rtype: :class:`obspy.core.stream.Stream` """ stack = streams[np.argmax([len(stream) for stream in streams])].copy() if normalize: for tr in stack: tr.data = tr.data / np.sqrt(np.mean(np.square(tr.data))) tr.data = np.nan_to_num(tr.data) for i in range(1, len(streams)): for tr in stack: matchtr = streams[i].select(station=tr.stats.station, channel=tr.stats.channel) if matchtr: # Normalize the data before stacking if normalize: norm = matchtr[0].data /\ np.sqrt(np.mean(np.square(matchtr[0].data))) norm = np.nan_to_num(norm) else: norm = matchtr[0].data tr.data = np.sum((norm, tr.data), axis=0) return stack def PWS_stack(streams, weight=2, normalize=True): """ Compute the phase weighted stack of a series of streams. .. note:: It is recommended to align the traces before stacking. :type streams: list :param streams: List of :class:`obspy.core.stream.Stream` to stack. :type weight: float :param weight: Exponent to the phase stack used for weighting. :type normalize: bool :param normalize: Normalize traces before stacking. :return: Stacked stream. :rtype: :class:`obspy.core.stream.Stream` """ # First get the linear stack which we will weight by the phase stack Linstack = linstack(streams) # Compute the instantaneous phase instaphases = [] print("Computing instantaneous phase") for stream in streams: instaphase = stream.copy() for tr in instaphase: analytic = hilbert(tr.data) envelope = np.sqrt(np.sum((np.square(analytic), np.square(tr.data)), axis=0)) tr.data = analytic / envelope instaphases.append(instaphase) # Compute the phase stack print("Computing the phase stack") Phasestack = linstack(instaphases, normalize=normalize) # Compute the phase-weighted stack for tr in Phasestack: tr.data = Linstack.select(station=tr.stats.station)[0].data *\ np.abs(tr.data ** weight) return Phasestack def align_traces(trace_list, shift_len, master=False, positive=False, plot=False): """ Align traces relative to each other based on their cross-correlation value. Uses the :func:`obspy.signal.cross_correlation.xcorr` function to find the optimum shift to align traces relative to a master event. Either uses a given master to align traces, or uses the first trace in the list. .. Note:: The cross-correlation function may yield an error/warning about shift_len being too large: this is raised by the :func:`obspy.signal.cross_correlation.xcorr` routine when the shift_len is greater than half the length of either master or a trace, then the correlation will not be robust. We may switch to a different correlation routine later. :type trace_list: list :param trace_list: List of traces to align :type shift_len: int :param shift_len: Length to allow shifting within in samples :type master: obspy.core.trace.Trace :param master: Master trace to align to, if set to False will align to \ the largest amplitude trace (default) :type positive: bool :param positive: Return the maximum positive cross-correlation, or the \ absolute maximum, defaults to False (absolute maximum). :type plot: bool :param plot: If true, will plot each trace aligned with the master. :returns: list of shifts and correlations for best alignment in seconds. :rtype: list """ from eqcorrscan.utils.plotting import xcorr_plot traces = deepcopy(trace_list) if not master: # Use trace with largest MAD amplitude as master master = traces[0] MAD_master = np.median(np.abs(master.data)) for i in range(1, len(traces)): if np.median(np.abs(traces[i])) > MAD_master: master = traces[i] MAD_master = np.median(np.abs(master.data)) else: print('Using master given by user') shifts = [] ccs = [] for i in range(len(traces)): if not master.stats.sampling_rate == traces[i].stats.sampling_rate: raise ValueError('Sampling rates not the same') cc_vec = normxcorr2(template=traces[i].data. astype(np.float32)[shift_len:-shift_len], image=master.data.astype(np.float32)) cc_vec = cc_vec[0] shift = np.abs(cc_vec).argmax() cc = cc_vec[shift] if plot: xcorr_plot(template=traces[i].data. astype(np.float32)[shift_len:-shift_len], image=master.data.astype(np.float32), shift=shift, cc=cc) shift -= shift_len if cc < 0 and positive: cc = cc_vec.max() shift = cc_vec.argmax() - shift_len shifts.append(shift / master.stats.sampling_rate) ccs.append(cc) return shifts, ccs if __name__ == "__main__": import doctest doctest.testmod()
lgpl-3.0
6,233,989,075,923,252,000
35.573099
79
0.624081
false
3.948232
false
false
false
gspilio/nova
nova/network/quantumv2/api.py
1
41934
# Copyright 2012 OpenStack Foundation # All Rights Reserved # Copyright (c) 2012 NEC Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # vim: tabstop=4 shiftwidth=4 softtabstop=4 import time from oslo.config import cfg from nova.compute import instance_types from nova import conductor from nova import context from nova.db import base from nova import exception from nova.network import api as network_api from nova.network import model as network_model from nova.network import quantumv2 from nova.network.security_group import openstack_driver from nova.openstack.common import excutils from nova.openstack.common import log as logging from nova.openstack.common import uuidutils quantum_opts = [ cfg.StrOpt('quantum_url', default='http://127.0.0.1:9696', help='URL for connecting to quantum'), cfg.IntOpt('quantum_url_timeout', default=30, help='timeout value for connecting to quantum in seconds'), cfg.StrOpt('quantum_admin_username', help='username for connecting to quantum in admin context'), cfg.StrOpt('quantum_admin_password', help='password for connecting to quantum in admin context', secret=True), cfg.StrOpt('quantum_admin_tenant_name', help='tenant name for connecting to quantum in admin context'), cfg.StrOpt('quantum_region_name', help='region name for connecting to quantum in admin context'), cfg.StrOpt('quantum_admin_auth_url', default='http://localhost:5000/v2.0', help='auth url for connecting to quantum in admin context'), cfg.BoolOpt('quantum_api_insecure', default=False, help='if set, ignore any SSL validation issues'), cfg.StrOpt('quantum_auth_strategy', default='keystone', help='auth strategy for connecting to ' 'quantum in admin context'), # TODO(berrange) temporary hack until Quantum can pass over the # name of the OVS bridge it is configured with cfg.StrOpt('quantum_ovs_bridge', default='br-int', help='Name of Integration Bridge used by Open vSwitch'), cfg.IntOpt('quantum_extension_sync_interval', default=600, help='Number of seconds before querying quantum for' ' extensions'), ] CONF = cfg.CONF CONF.register_opts(quantum_opts) CONF.import_opt('default_floating_pool', 'nova.network.floating_ips') CONF.import_opt('flat_injected', 'nova.network.manager') LOG = logging.getLogger(__name__) NET_EXTERNAL = 'router:external' refresh_cache = network_api.refresh_cache update_instance_info_cache = network_api.update_instance_cache_with_nw_info class API(base.Base): """API for interacting with the quantum 2.x API.""" conductor_api = conductor.API() security_group_api = openstack_driver.get_openstack_security_group_driver() def __init__(self): super(API, self).__init__() self.last_quantum_extension_sync = None self.extensions = {} def setup_networks_on_host(self, context, instance, host=None, teardown=False): """Setup or teardown the network structures.""" def _get_available_networks(self, context, project_id, net_ids=None): """Return a network list available for the tenant. The list contains networks owned by the tenant and public networks. If net_ids specified, it searches networks with requested IDs only. """ quantum = quantumv2.get_client(context) # If user has specified to attach instance only to specific # networks, add them to **search_opts # (1) Retrieve non-public network list owned by the tenant. search_opts = {"tenant_id": project_id, 'shared': False} if net_ids: search_opts['id'] = net_ids nets = quantum.list_networks(**search_opts).get('networks', []) # (2) Retrieve public network list. search_opts = {'shared': True} if net_ids: search_opts['id'] = net_ids nets += quantum.list_networks(**search_opts).get('networks', []) _ensure_requested_network_ordering( lambda x: x['id'], nets, net_ids) return nets @refresh_cache def allocate_for_instance(self, context, instance, **kwargs): """Allocate network resources for the instance. TODO(someone): document the rest of these parameters. :param macs: None or a set of MAC addresses that the instance should use. macs is supplied by the hypervisor driver (contrast with requested_networks which is user supplied). NB: QuantumV2 currently assigns hypervisor supplied MAC addresses to arbitrary networks, which requires openflow switches to function correctly if more than one network is being used with the bare metal hypervisor (which is the only one known to limit MAC addresses). """ hypervisor_macs = kwargs.get('macs', None) available_macs = None if hypervisor_macs is not None: # Make a copy we can mutate: records macs that have not been used # to create a port on a network. If we find a mac with a # pre-allocated port we also remove it from this set. available_macs = set(hypervisor_macs) quantum = quantumv2.get_client(context) LOG.debug(_('allocate_for_instance() for %s'), instance['display_name']) if not instance['project_id']: msg = _('empty project id for instance %s') raise exception.InvalidInput( reason=msg % instance['display_name']) requested_networks = kwargs.get('requested_networks') ports = {} fixed_ips = {} net_ids = [] if requested_networks: for network_id, fixed_ip, port_id in requested_networks: if port_id: port = quantum.show_port(port_id)['port'] if hypervisor_macs is not None: if port['mac_address'] not in hypervisor_macs: raise exception.PortNotUsable(port_id=port_id, instance=instance['display_name']) else: # Don't try to use this MAC if we need to create a # port on the fly later. Identical MACs may be # configured by users into multiple ports so we # discard rather than popping. available_macs.discard(port['mac_address']) network_id = port['network_id'] ports[network_id] = port elif fixed_ip and network_id: fixed_ips[network_id] = fixed_ip if network_id: net_ids.append(network_id) nets = self._get_available_networks(context, instance['project_id'], net_ids) security_groups = kwargs.get('security_groups', []) security_group_ids = [] # TODO(arosen) Should optimize more to do direct query for security # group if len(security_groups) == 1 if len(security_groups): search_opts = {'tenant_id': instance['project_id']} user_security_groups = quantum.list_security_groups( **search_opts).get('security_groups') for security_group in security_groups: name_match = None uuid_match = None for user_security_group in user_security_groups: if user_security_group['name'] == security_group: if name_match: msg = (_("Multiple security groups found matching" " '%s'. Use an ID to be more specific."), security_group) raise exception.NoUniqueMatch(msg) name_match = user_security_group['id'] if user_security_group['id'] == security_group: uuid_match = user_security_group['id'] # If a user names the security group the same as # another's security groups uuid, the name takes priority. if not name_match and not uuid_match: raise exception.SecurityGroupNotFound( security_group_id=security_group) security_group_ids.append(name_match) elif name_match: security_group_ids.append(name_match) elif uuid_match: security_group_ids.append(uuid_match) touched_port_ids = [] created_port_ids = [] for network in nets: # If security groups are requested on an instance then the # network must has a subnet associated with it. Some plugins # implement the port-security extension which requires # 'port_security_enabled' to be True for security groups. # That is why True is returned if 'port_security_enabled' # is not found. if (security_groups and not ( network['subnets'] and network.get('port_security_enabled', True))): raise exception.SecurityGroupCannotBeApplied() network_id = network['id'] zone = 'compute:%s' % instance['availability_zone'] port_req_body = {'port': {'device_id': instance['uuid'], 'device_owner': zone}} try: port = ports.get(network_id) if port: quantum.update_port(port['id'], port_req_body) touched_port_ids.append(port['id']) else: fixed_ip = fixed_ips.get(network_id) if fixed_ip: port_req_body['port']['fixed_ips'] = [{'ip_address': fixed_ip}] port_req_body['port']['network_id'] = network_id port_req_body['port']['admin_state_up'] = True port_req_body['port']['tenant_id'] = instance['project_id'] if security_group_ids: port_req_body['port']['security_groups'] = ( security_group_ids) if available_macs is not None: if not available_macs: raise exception.PortNotFree( instance=instance['display_name']) mac_address = available_macs.pop() port_req_body['port']['mac_address'] = mac_address self._populate_quantum_extension_values(instance, port_req_body) created_port_ids.append( quantum.create_port(port_req_body)['port']['id']) except Exception: with excutils.save_and_reraise_exception(): for port_id in touched_port_ids: port_in_server = quantum.show_port(port_id).get('port') if not port_in_server: raise Exception(_('Port not found')) port_req_body = {'port': {'device_id': None}} quantum.update_port(port_id, port_req_body) for port_id in created_port_ids: try: quantum.delete_port(port_id) except Exception as ex: msg = _("Fail to delete port %(portid)s with" " failure: %(exception)s") LOG.debug(msg, {'portid': port_id, 'exception': ex}) self.trigger_security_group_members_refresh(context, instance) self.trigger_instance_add_security_group_refresh(context, instance) nw_info = self._get_instance_nw_info(context, instance, networks=nets) # NOTE(danms): Only return info about ports we created in this run. # In the initial allocation case, this will be everything we created, # and in later runs will only be what was created that time. Thus, # this only affects the attach case, not the original use for this # method. return network_model.NetworkInfo([port for port in nw_info if port['id'] in created_port_ids + touched_port_ids]) def _refresh_quantum_extensions_cache(self): if (not self.last_quantum_extension_sync or ((time.time() - self.last_quantum_extension_sync) >= CONF.quantum_extension_sync_interval)): quantum = quantumv2.get_client(context.get_admin_context()) extensions_list = quantum.list_extensions()['extensions'] self.last_quantum_extension_sync = time.time() self.extensions.clear() self.extensions = dict((ext['name'], ext) for ext in extensions_list) def _populate_quantum_extension_values(self, instance, port_req_body): self._refresh_quantum_extensions_cache() if 'nvp-qos' in self.extensions: instance_type = instance_types.extract_instance_type(instance) rxtx_factor = instance_type.get('rxtx_factor') port_req_body['port']['rxtx_factor'] = rxtx_factor def deallocate_for_instance(self, context, instance, **kwargs): """Deallocate all network resources related to the instance.""" LOG.debug(_('deallocate_for_instance() for %s'), instance['display_name']) search_opts = {'device_id': instance['uuid']} data = quantumv2.get_client(context).list_ports(**search_opts) ports = data.get('ports', []) for port in ports: try: quantumv2.get_client(context).delete_port(port['id']) except Exception as ex: LOG.exception(_("Failed to delete quantum port %(portid)s ") % {'portid': port['id']}) self.trigger_security_group_members_refresh(context, instance) self.trigger_instance_remove_security_group_refresh(context, instance) @refresh_cache def allocate_port_for_instance(self, context, instance, port_id, network_id=None, requested_ip=None, conductor_api=None): return self.allocate_for_instance(context, instance, requested_networks=[(network_id, requested_ip, port_id)], conductor_api=conductor_api) @refresh_cache def deallocate_port_for_instance(self, context, instance, port_id, conductor_api=None): try: quantumv2.get_client(context).delete_port(port_id) except Exception as ex: LOG.exception(_("Failed to delete quantum port %(port_id)s ") % locals()) self.trigger_security_group_members_refresh(context, instance) self.trigger_instance_remove_security_group_refresh(context, instance) return self._get_instance_nw_info(context, instance) def list_ports(self, context, **search_opts): return quantumv2.get_client(context).list_ports(**search_opts) def show_port(self, context, port_id): return quantumv2.get_client(context).show_port(port_id) def get_instance_nw_info(self, context, instance, conductor_api=None, networks=None): result = self._get_instance_nw_info(context, instance, networks) update_instance_info_cache(self, context, instance, result, conductor_api) return result def _get_instance_nw_info(self, context, instance, networks=None): LOG.debug(_('get_instance_nw_info() for %s'), instance['display_name']) nw_info = self._build_network_info_model(context, instance, networks) return network_model.NetworkInfo.hydrate(nw_info) @refresh_cache def add_fixed_ip_to_instance(self, context, instance, network_id, conductor_api=None): """Add a fixed ip to the instance from specified network.""" search_opts = {'network_id': network_id} data = quantumv2.get_client(context).list_subnets(**search_opts) ipam_subnets = data.get('subnets', []) if not ipam_subnets: raise exception.NetworkNotFoundForInstance( instance_id=instance['uuid']) zone = 'compute:%s' % instance['availability_zone'] search_opts = {'device_id': instance['uuid'], 'device_owner': zone, 'network_id': network_id} data = quantumv2.get_client(context).list_ports(**search_opts) ports = data['ports'] for p in ports: for subnet in ipam_subnets: fixed_ips = p['fixed_ips'] fixed_ips.append({'subnet_id': subnet['id']}) port_req_body = {'port': {'fixed_ips': fixed_ips}} try: quantumv2.get_client(context).update_port(p['id'], port_req_body) return except Exception as ex: msg = _("Unable to update port %(portid)s on subnet " "%(subnet_id)s with failure: %(exception)s") LOG.debug(msg, {'portid': p['id'], 'subnet_id': subnet['id'], 'exception': ex}) raise exception.NetworkNotFoundForInstance( instance_id=instance['uuid']) @refresh_cache def remove_fixed_ip_from_instance(self, context, instance, address, conductor_api=None): """Remove a fixed ip from the instance.""" zone = 'compute:%s' % instance['availability_zone'] search_opts = {'device_id': instance['uuid'], 'device_owner': zone, 'fixed_ips': 'ip_address=%s' % address} data = quantumv2.get_client(context).list_ports(**search_opts) ports = data['ports'] for p in ports: fixed_ips = p['fixed_ips'] new_fixed_ips = [] for fixed_ip in fixed_ips: if fixed_ip['ip_address'] != address: new_fixed_ips.append(fixed_ip) port_req_body = {'port': {'fixed_ips': new_fixed_ips}} try: quantumv2.get_client(context).update_port(p['id'], port_req_body) except Exception as ex: msg = _("Unable to update port %(portid)s with" " failure: %(exception)s") LOG.debug(msg, {'portid': p['id'], 'exception': ex}) return raise exception.FixedIpNotFoundForSpecificInstance( instance_uuid=instance['uuid'], ip=address) def validate_networks(self, context, requested_networks): """Validate that the tenant can use the requested networks.""" LOG.debug(_('validate_networks() for %s'), requested_networks) if not requested_networks: return net_ids = [] for (net_id, _i, port_id) in requested_networks: if not port_id: net_ids.append(net_id) continue port = quantumv2.get_client(context).show_port(port_id).get('port') if not port: raise exception.PortNotFound(port_id=port_id) if port.get('device_id', None): raise exception.PortInUse(port_id=port_id) net_id = port['network_id'] if net_id in net_ids: raise exception.NetworkDuplicated(network_id=net_id) net_ids.append(net_id) nets = self._get_available_networks(context, context.project_id, net_ids) if len(nets) != len(net_ids): requsted_netid_set = set(net_ids) returned_netid_set = set([net['id'] for net in nets]) lostid_set = requsted_netid_set - returned_netid_set id_str = '' for _id in lostid_set: id_str = id_str and id_str + ', ' + _id or _id raise exception.NetworkNotFound(network_id=id_str) def _get_instance_uuids_by_ip(self, context, address): """Retrieve instance uuids associated with the given ip address. :returns: A list of dicts containing the uuids keyed by 'instance_uuid' e.g. [{'instance_uuid': uuid}, ...] """ search_opts = {"fixed_ips": 'ip_address=%s' % address} data = quantumv2.get_client(context).list_ports(**search_opts) ports = data.get('ports', []) return [{'instance_uuid': port['device_id']} for port in ports if port['device_id']] def get_instance_uuids_by_ip_filter(self, context, filters): """Return a list of dicts in the form of [{'instance_uuid': uuid}] that matched the ip filter. """ # filters['ip'] is composed as '^%s$' % fixed_ip.replace('.', '\\.') ip = filters.get('ip') # we remove ^$\ in the ip filer if ip[0] == '^': ip = ip[1:] if ip[-1] == '$': ip = ip[:-1] ip = ip.replace('\\.', '.') return self._get_instance_uuids_by_ip(context, ip) def trigger_instance_add_security_group_refresh(self, context, instance_ref): admin_context = context.elevated() for group in instance_ref['security_groups']: self.conductor_api.security_groups_trigger_handler(context, 'instance_add_security_group', instance_ref, group['name']) def trigger_instance_remove_security_group_refresh(self, context, instance_ref): admin_context = context.elevated() for group in instance_ref['security_groups']: self.conductor_api.security_groups_trigger_handler(context, 'instance_remove_security_group', instance_ref, group['name']) def trigger_security_group_members_refresh(self, context, instance_ref): admin_context = context.elevated() group_ids = [group['id'] for group in instance_ref['security_groups']] self.conductor_api.security_groups_trigger_members_refresh( admin_context, group_ids) self.conductor_api.security_groups_trigger_handler(admin_context, 'security_group_members', group_ids) def _get_port_id_by_fixed_address(self, client, instance, address): zone = 'compute:%s' % instance['availability_zone'] search_opts = {'device_id': instance['uuid'], 'device_owner': zone} data = client.list_ports(**search_opts) ports = data['ports'] port_id = None for p in ports: for ip in p['fixed_ips']: if ip['ip_address'] == address: port_id = p['id'] break if not port_id: raise exception.FixedIpNotFoundForAddress(address=address) return port_id @refresh_cache def associate_floating_ip(self, context, instance, floating_address, fixed_address, affect_auto_assigned=False): """Associate a floating ip with a fixed ip.""" # Note(amotoki): 'affect_auto_assigned' is not respected # since it is not used anywhere in nova code and I could # find why this parameter exists. client = quantumv2.get_client(context) port_id = self._get_port_id_by_fixed_address(client, instance, fixed_address) fip = self._get_floating_ip_by_address(client, floating_address) param = {'port_id': port_id, 'fixed_ip_address': fixed_address} client.update_floatingip(fip['id'], {'floatingip': param}) def get_all(self, context): client = quantumv2.get_client(context) networks = client.list_networks().get('networks') or {} for network in networks: network['label'] = network['name'] return networks def get(self, context, network_uuid): client = quantumv2.get_client(context) network = client.show_network(network_uuid).get('network') or {} network['label'] = network['name'] return network def delete(self, context, network_uuid): raise NotImplementedError() def disassociate(self, context, network_uuid): raise NotImplementedError() def get_fixed_ip(self, context, id): raise NotImplementedError() def get_fixed_ip_by_address(self, context, address): uuid_maps = self._get_instance_uuids_by_ip(context, address) if len(uuid_maps) == 1: return uuid_maps[0] elif not uuid_maps: raise exception.FixedIpNotFoundForAddress(address=address) else: raise exception.FixedIpAssociatedWithMultipleInstances( address=address) def _setup_net_dict(self, client, network_id): if not network_id: return {} pool = client.show_network(network_id)['network'] return {pool['id']: pool} def _setup_port_dict(self, client, port_id): if not port_id: return {} port = client.show_port(port_id)['port'] return {port['id']: port} def _setup_pools_dict(self, client): pools = self._get_floating_ip_pools(client) return dict([(i['id'], i) for i in pools]) def _setup_ports_dict(self, client, project_id=None): search_opts = {'tenant_id': project_id} if project_id else {} ports = client.list_ports(**search_opts)['ports'] return dict([(p['id'], p) for p in ports]) def get_floating_ip(self, context, id): client = quantumv2.get_client(context) fip = client.show_floatingip(id)['floatingip'] pool_dict = self._setup_net_dict(client, fip['floating_network_id']) port_dict = self._setup_port_dict(client, fip['port_id']) return self._format_floating_ip_model(fip, pool_dict, port_dict) def _get_floating_ip_pools(self, client, project_id=None): search_opts = {NET_EXTERNAL: True} if project_id: search_opts.update({'tenant_id': project_id}) data = client.list_networks(**search_opts) return data['networks'] def get_floating_ip_pools(self, context): client = quantumv2.get_client(context) pools = self._get_floating_ip_pools(client) return [{'name': n['name'] or n['id']} for n in pools] def _format_floating_ip_model(self, fip, pool_dict, port_dict): pool = pool_dict[fip['floating_network_id']] result = {'id': fip['id'], 'address': fip['floating_ip_address'], 'pool': pool['name'] or pool['id'], 'project_id': fip['tenant_id'], # In Quantum v2, an exact fixed_ip_id does not exist. 'fixed_ip_id': fip['port_id'], } # In Quantum v2 API fixed_ip_address and instance uuid # (= device_id) are known here, so pass it as a result. result['fixed_ip'] = {'address': fip['fixed_ip_address']} if fip['port_id']: instance_uuid = port_dict[fip['port_id']]['device_id'] result['instance'] = {'uuid': instance_uuid} else: result['instance'] = None return result def get_floating_ip_by_address(self, context, address): client = quantumv2.get_client(context) fip = self._get_floating_ip_by_address(client, address) pool_dict = self._setup_net_dict(client, fip['floating_network_id']) port_dict = self._setup_port_dict(client, fip['port_id']) return self._format_floating_ip_model(fip, pool_dict, port_dict) def get_floating_ips_by_project(self, context): client = quantumv2.get_client(context) project_id = context.project_id fips = client.list_floatingips(tenant_id=project_id)['floatingips'] pool_dict = self._setup_pools_dict(client) port_dict = self._setup_ports_dict(client, project_id) return [self._format_floating_ip_model(fip, pool_dict, port_dict) for fip in fips] def get_floating_ips_by_fixed_address(self, context, fixed_address): return [] def get_instance_id_by_floating_address(self, context, address): """Returns the instance id a floating ip's fixed ip is allocated to.""" client = quantumv2.get_client(context) fip = self._get_floating_ip_by_address(client, address) if not fip['port_id']: return None port = client.show_port(fip['port_id'])['port'] return port['device_id'] def get_vifs_by_instance(self, context, instance): raise NotImplementedError() def get_vif_by_mac_address(self, context, mac_address): raise NotImplementedError() def _get_floating_ip_pool_id_by_name_or_id(self, client, name_or_id): search_opts = {NET_EXTERNAL: True, 'fields': 'id'} if uuidutils.is_uuid_like(name_or_id): search_opts.update({'id': name_or_id}) else: search_opts.update({'name': name_or_id}) data = client.list_networks(**search_opts) nets = data['networks'] if len(nets) == 1: return nets[0]['id'] elif len(nets) == 0: raise exception.FloatingIpPoolNotFound() else: msg = (_("Multiple floating IP pools matches found for name '%s'") % name_or_id) raise exception.NovaException(message=msg) def allocate_floating_ip(self, context, pool=None): """Add a floating ip to a project from a pool.""" client = quantumv2.get_client(context) pool = pool or CONF.default_floating_pool pool_id = self._get_floating_ip_pool_id_by_name_or_id(client, pool) # TODO(amotoki): handle exception during create_floatingip() # At this timing it is ensured that a network for pool exists. # quota error may be returned. param = {'floatingip': {'floating_network_id': pool_id}} fip = client.create_floatingip(param) return fip['floatingip']['floating_ip_address'] def _get_floating_ip_by_address(self, client, address): """Get floatingip from floating ip address.""" data = client.list_floatingips(floating_ip_address=address) fips = data['floatingips'] if len(fips) == 0: raise exception.FloatingIpNotFoundForAddress(address=address) elif len(fips) > 1: raise exception.FloatingIpMultipleFoundForAddress(address=address) return fips[0] def _get_floating_ips_by_fixed_and_port(self, client, fixed_ip, port): """Get floatingips from fixed ip and port.""" data = client.list_floatingips(fixed_ip_address=fixed_ip, port_id=port) return data['floatingips'] def release_floating_ip(self, context, address, affect_auto_assigned=False): """Remove a floating ip with the given address from a project.""" # Note(amotoki): We cannot handle a case where multiple pools # have overlapping IP address range. In this case we cannot use # 'address' as a unique key. # This is a limitation of the current nova. # Note(amotoki): 'affect_auto_assigned' is not respected # since it is not used anywhere in nova code and I could # find why this parameter exists. client = quantumv2.get_client(context) fip = self._get_floating_ip_by_address(client, address) if fip['port_id']: raise exception.FloatingIpAssociated(address=address) client.delete_floatingip(fip['id']) @refresh_cache def disassociate_floating_ip(self, context, instance, address, affect_auto_assigned=False): """Disassociate a floating ip from the instance.""" # Note(amotoki): 'affect_auto_assigned' is not respected # since it is not used anywhere in nova code and I could # find why this parameter exists. client = quantumv2.get_client(context) fip = self._get_floating_ip_by_address(client, address) client.update_floatingip(fip['id'], {'floatingip': {'port_id': None}}) def migrate_instance_start(self, context, instance, migration): """Start to migrate the network of an instance.""" # NOTE(wenjianhn): just pass to make migrate instance doesn't # raise for now. pass def migrate_instance_finish(self, context, instance, migration): """Finish migrating the network of an instance.""" # NOTE(wenjianhn): just pass to make migrate instance doesn't # raise for now. pass def add_network_to_project(self, context, project_id, network_uuid=None): """Force add a network to the project.""" raise NotImplementedError() def _build_network_info_model(self, context, instance, networks=None): search_opts = {'tenant_id': instance['project_id'], 'device_id': instance['uuid'], } client = quantumv2.get_client(context, admin=True) data = client.list_ports(**search_opts) ports = data.get('ports', []) if networks is None: networks = self._get_available_networks(context, instance['project_id']) else: # ensure ports are in preferred network order _ensure_requested_network_ordering( lambda x: x['network_id'], ports, [n['id'] for n in networks]) nw_info = network_model.NetworkInfo() for port in ports: network_name = None for net in networks: if port['network_id'] == net['id']: network_name = net['name'] break if network_name is None: raise exception.NotFound(_('Network %(net)s for ' 'port %(port_id)s not found!') % {'net': port['network_id'], 'port': port['id']}) network_IPs = [] for fixed_ip in port['fixed_ips']: fixed = network_model.FixedIP(address=fixed_ip['ip_address']) floats = self._get_floating_ips_by_fixed_and_port( client, fixed_ip['ip_address'], port['id']) for ip in floats: fip = network_model.IP(address=ip['floating_ip_address'], type='floating') fixed.add_floating_ip(fip) network_IPs.append(fixed) subnets = self._get_subnets_from_port(context, port) for subnet in subnets: subnet['ips'] = [fixed_ip for fixed_ip in network_IPs if fixed_ip.is_in_subnet(subnet)] bridge = None ovs_interfaceid = None # Network model metadata should_create_bridge = None vif_type = port.get('binding:vif_type') # TODO(berrange) Quantum should pass the bridge name # in another binding metadata field if vif_type == network_model.VIF_TYPE_OVS: bridge = CONF.quantum_ovs_bridge ovs_interfaceid = port['id'] elif vif_type == network_model.VIF_TYPE_BRIDGE: bridge = "brq" + port['network_id'] should_create_bridge = True if bridge is not None: bridge = bridge[:network_model.NIC_NAME_LEN] devname = "tap" + port['id'] devname = devname[:network_model.NIC_NAME_LEN] network = network_model.Network( id=port['network_id'], bridge=bridge, injected=CONF.flat_injected, label=network_name, tenant_id=net['tenant_id'] ) network['subnets'] = subnets if should_create_bridge is not None: network['should_create_bridge'] = should_create_bridge nw_info.append(network_model.VIF( id=port['id'], address=port['mac_address'], network=network, type=port.get('binding:vif_type'), ovs_interfaceid=ovs_interfaceid, devname=devname)) return nw_info def _get_subnets_from_port(self, context, port): """Return the subnets for a given port.""" fixed_ips = port['fixed_ips'] # No fixed_ips for the port means there is no subnet associated # with the network the port is created on. # Since list_subnets(id=[]) returns all subnets visible for the # current tenant, returned subnets may contain subnets which is not # related to the port. To avoid this, the method returns here. if not fixed_ips: return [] search_opts = {'id': [ip['subnet_id'] for ip in fixed_ips]} data = quantumv2.get_client(context).list_subnets(**search_opts) ipam_subnets = data.get('subnets', []) subnets = [] for subnet in ipam_subnets: subnet_dict = {'cidr': subnet['cidr'], 'gateway': network_model.IP( address=subnet['gateway_ip'], type='gateway'), } # attempt to populate DHCP server field search_opts = {'network_id': subnet['network_id'], 'device_owner': 'network:dhcp'} data = quantumv2.get_client(context).list_ports(**search_opts) dhcp_ports = data.get('ports', []) for p in dhcp_ports: for ip_pair in p['fixed_ips']: if ip_pair['subnet_id'] == subnet['id']: subnet_dict['dhcp_server'] = ip_pair['ip_address'] break subnet_object = network_model.Subnet(**subnet_dict) for dns in subnet.get('dns_nameservers', []): subnet_object.add_dns( network_model.IP(address=dns, type='dns')) # TODO(gongysh) get the routes for this subnet subnets.append(subnet_object) return subnets def get_dns_domains(self, context): """Return a list of available dns domains. These can be used to create DNS entries for floating ips. """ raise NotImplementedError() def add_dns_entry(self, context, address, name, dns_type, domain): """Create specified DNS entry for address.""" raise NotImplementedError() def modify_dns_entry(self, context, name, address, domain): """Create specified DNS entry for address.""" raise NotImplementedError() def delete_dns_entry(self, context, name, domain): """Delete the specified dns entry.""" raise NotImplementedError() def delete_dns_domain(self, context, domain): """Delete the specified dns domain.""" raise NotImplementedError() def get_dns_entries_by_address(self, context, address, domain): """Get entries for address and domain.""" raise NotImplementedError() def get_dns_entries_by_name(self, context, name, domain): """Get entries for name and domain.""" raise NotImplementedError() def create_private_dns_domain(self, context, domain, availability_zone): """Create a private DNS domain with nova availability zone.""" raise NotImplementedError() def create_public_dns_domain(self, context, domain, project=None): """Create a private DNS domain with optional nova project.""" raise NotImplementedError() def _ensure_requested_network_ordering(accessor, unordered, preferred): """Sort a list with respect to the preferred network ordering.""" if preferred: unordered.sort(key=lambda i: preferred.index(accessor(i)))
apache-2.0
8,649,179,692,638,891,000
43.374603
79
0.563147
false
4.311536
false
false
false
Chealion/yycbike
archive/weatherLoad.py
1
6271
#! /usr/bin/python # :set tabstop=4 shiftwidth=4 expandtab # Downoads Environment Canada data and sends the data to Graphite. Additionally logs the data to a file we can use to import later import csv import time import graphitesend import urllib2 from datetime import date, timedelta import datetime graphitesend.init(graphite_server='localhost',prefix='yycbike',system_name='') metriclog = open('/home/ubuntu/devmetriclog.log', 'a') # Watch out for timezones - this script fails to function past 5 PM MST. yesterday = date.today() - timedelta(1) year = yesterday.strftime('%Y') month = yesterday.strftime('%m') day = yesterday.strftime('%d') #Installations # URLs per ftp://ftp.tor.ec.gc.ca/Pub/Get_More_Data_Plus_de_donnees/Readme.txt HOURLY_URL='http://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&stationID=50430&Year=' + year + '&Month=' + month + '&Day=' + day + '&submit=Download+Data&timeframe=1' DAILY_URL= 'http://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&stationID=50430&Year=' + year + '&Month=' + month + '&Day=' + day + '&submit=Download+Data&timeframe=2' ## HOURLY url = HOURLY_URL print 'Loading Hourly Weather Data...' response = urllib2.urlopen(url) csv_data = response.read() # Delete first 17 lines - up to and inlcuding header line cleaned_data = '\n'.join(csv_data.split('\n')[17:]) # split into list, and use non unicode field names csv_reader = csv.DictReader(cleaned_data.split('\n'), fieldnames=['Date', 'Year', 'Month', 'Day', 'Time', 'Quality', 'Temp', 'TempFlag', 'DewPoint', 'DewPointFlag', 'Humidity', 'HumFlag', 'WindDir', 'WindFlag', 'WindSpd', 'WindFlg', 'Visbility', 'VisFlag', 'Pressure', 'PressFlag', 'Humidex', 'HmdxFlag', 'WindChill', 'WindChillFlag', 'Weather']) for row in csv_reader: #Create timestamp timestamp = time.mktime(datetime.datetime.strptime(row['Date'], "%Y-%m-%d %H:%M").timetuple()) yesterday_timestamp = float(yesterday.strftime('%s')) #Ignore any data "newer" than yesterday. Data that doesn't exist yet. if timestamp > yesterday_timestamp: break else: timestamp = str(int(timestamp)) #print row # Data Cleaning - Wind Chill or Humidex - merge if row['Temp'] is None or row['Temp'] == '': continue if row['Humidex'] == '' and row['WindChill'] == '': feelslike = row['Temp'] elif row['Humidex'] == '': feelslike = row['WindChill'] else: feelslike = row['Humidex'] if row['WindSpd'] == '': row['WindSpd'] = 0 if row['WindDir'] == '': row['WindDir'] = 0 metric_string = 'weather.hourly.temp ' + str(row['Temp']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.hourly.temp', str(row['Temp']), timestamp) metric_string = 'weather.hourly.windspeed ' + str(row['WindSpd']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.hourly.windspeed', str(row['WindSpd']), timestamp) metric_string = 'weather.hourly.winddir ' + str(row['WindDir']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.hourly.winddir', str(row['WindDir']), timestamp) metric_string = 'weather.hourly.humidity ' + str(row['Humidity']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.hourly.humidity', str(row['Humidity']), timestamp) metric_string = 'weather.hourly.feelslike ' + str(feelslike) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.hourly.feelslike', str(feelslike), timestamp) ## DAILY url = DAILY_URL print 'Loading Daily Weather Data...' response = urllib2.urlopen(url) csv_data = response.read() # Delete first 26 lines - up to and including header line cleaned_data = '\n'.join(csv_data.split('\n')[26:]) # split into list, and use non unicode field names csv_reader = csv.DictReader(cleaned_data.split('\n'), fieldnames=['Date', 'Year', 'Month', 'Day', 'Quality', 'Max', 'MaxFlag', 'Min', 'MinFlag', 'Mean', 'MeanFlag', 'Heat1', 'Heat2', 'Heat3', 'Heat4', 'Rain', 'RainFlag', 'Snow', 'SnowFlag', 'TotalPrecip', 'PrecipFlag', 'SnowonGround', 'SnowFlag', 'Wind1', 'Wind2', 'Wind3', 'Wind4']) for row in csv_reader: #Create timestamp timestamp = time.mktime(datetime.datetime.strptime(row['Date'], "%Y-%m-%d").timetuple()) yesterday_timestamp = float(yesterday.strftime('%s')) #Ignore any data "newer" than yesterday. Data that doesn't exist yet. if timestamp > yesterday_timestamp: break else: timestamp = str(int(timestamp)) #print row if row['Max'] is None or row['Max'] == '' or row['Min'] == '': continue metric_string = 'weather.daily.high ' + str(row['Max']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.daily.high', str(row['Max']), timestamp) metric_string = 'weather.daily.low ' + str(row['Min']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.daily.low', str(row['Min']), timestamp) metric_string = 'weather.daily.mean ' + str(row['Mean']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.daily.mean', str(row['Mean']), timestamp) # Data Cleaning if row['TotalPrecip'] == '': row['TotalPrecip'] = 0 metric_string = 'weather.daily.precip ' + str(row['TotalPrecip']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.daily.precip', str(row['TotalPrecip']), timestamp) # Data Cleaning if row['SnowonGround'] == '': row['SnowonGround'] = 0 metric_string = 'weather.daily.snowamt ' + str(row['SnowonGround']) + ' ' + timestamp metriclog.write(metric_string + "\n") graphitesend.send('weather.daily.snowamt', str(row['SnowonGround']), timestamp) # OUTPUT FORMAT: # <metric path> <metric value> <metric timestamp> # yycbike.peacebridge.north.trips 5 123456789 metriclog.close() print 'Done.'
mit
2,237,672,961,989,469,700
39.986928
346
0.635784
false
3.267848
false
false
false
Ziqi-Li/bknqgis
bokeh/bokeh/server/server.py
1
10467
''' Provides a Server which instantiates Application instances as clients connect ''' from __future__ import absolute_import, print_function import atexit import logging log = logging.getLogger(__name__) import signal import tornado from tornado.httpserver import HTTPServer from tornado.ioloop import IOLoop from tornado import netutil from .tornado import BokehTornado from bokeh import __version__ from bokeh.application import Application from bokeh.resources import DEFAULT_SERVER_PORT def _create_hosts_whitelist(host_list, port): if not host_list: return ['localhost:' + str(port)] hosts = [] for host in host_list: if '*' in host: log.warning( "Host wildcard %r will allow websocket connections originating " "from multiple (or possibly all) hostnames or IPs. Use non-wildcard " "values to restrict access explicitly", host) if host == '*': # do not append the :80 port suffix in that case: any port is # accepted hosts.append(host) continue parts = host.split(':') if len(parts) == 1: if parts[0] == "": raise ValueError("Empty host value") hosts.append(host+":80") elif len(parts) == 2: try: int(parts[1]) except ValueError: raise ValueError("Invalid port in host value: %s" % host) if parts[0] == "": raise ValueError("Empty host value") hosts.append(host) else: raise ValueError("Invalid host value: %s" % host) return hosts def _bind_sockets(address, port): '''Like tornado.netutil.bind_sockets(), but also returns the assigned port number. ''' ss = netutil.bind_sockets(port=port or 0, address=address) assert len(ss) ports = {s.getsockname()[1] for s in ss} assert len(ports) == 1, "Multiple ports assigned??" actual_port = ports.pop() if port: assert actual_port == port return ss, actual_port class Server(object): ''' A Server which creates a new Session for each connection, using an Application to initialize each Session. Args: applications (dict of str: bokeh.application.Application) or bokeh.application.Application: mapping from URL paths to Application instances, or a single Application to put at the root URL The Application is a factory for Document, with a new Document initialized for each Session. Each application should be identified by a path meant to go in a URL, like "/" or "/foo" Kwargs: num_procs (str): Number of worker processes for an app. Default to one. Using 0 will autodetect number of cores tornado_server_kwargs (dict): Additional arguments passed to tornado.httpserver.HTTPServer. E.g. max_buffer_size to specify the maximum upload size. More details can be found at: http://www.tornadoweb.org/en/stable/httpserver.html#http-server ''' def __init__(self, applications, io_loop=None, tornado_server_kwargs=None, **kwargs): log.info("Starting Bokeh server version %s (running on Tornado %s)" % (__version__, tornado.version)) if isinstance(applications, Application): self._applications = { '/' : applications } else: self._applications = applications tornado_kwargs = { key: kwargs[key] for key in ['extra_patterns', 'secret_key', 'sign_sessions', 'generate_session_ids', 'keep_alive_milliseconds', 'check_unused_sessions_milliseconds', 'unused_session_lifetime_milliseconds', 'stats_log_frequency_milliseconds', ] if key in kwargs } prefix = kwargs.get('prefix') if prefix is None: prefix = "" prefix = prefix.strip("/") if prefix: prefix = "/" + prefix self._prefix = prefix self._started = False self._stopped = False port = kwargs.get('port', DEFAULT_SERVER_PORT) self._address = kwargs.get('address') or None if tornado_server_kwargs is None: tornado_server_kwargs = {} tornado_server_kwargs.setdefault('xheaders', kwargs.get('use_xheaders', False)) self._num_procs = kwargs.get('num_procs', 1) if self._num_procs != 1: assert all(app.safe_to_fork for app in self._applications.values()), ( 'User code has ran before attempting to run multiple ' 'processes. This is considered an unsafe operation.') sockets, self._port = _bind_sockets(self._address, port) try: tornado_kwargs['extra_websocket_origins'] = _create_hosts_whitelist(kwargs.get('allow_websocket_origin'), self._port) tornado_kwargs['use_index'] = kwargs.get('use_index', True) tornado_kwargs['redirect_root'] = kwargs.get('redirect_root', True) self._tornado = BokehTornado(self._applications, self.prefix, **tornado_kwargs) self._http = HTTPServer(self._tornado, **tornado_server_kwargs) self._http.start(self._num_procs) self._http.add_sockets(sockets) except Exception: for s in sockets: s.close() raise # Can only instantiate the IO loop after HTTPServer.start() was # called because of `num_procs`, see issue #5524 if io_loop is None: io_loop = IOLoop.current() self._loop = io_loop self._tornado.initialize(io_loop=io_loop, **tornado_kwargs) @property def port(self): '''The actual port number the server is listening on for HTTP requests. ''' return self._port @property def address(self): '''The address the server is listening on for HTTP requests (may be empty or None). ''' return self._address @property def prefix(self): return self._prefix @property def io_loop(self): return self._loop def start(self): ''' Start the Bokeh Server and its background tasks. Notes: This method does not block and does not affect the state of the Tornado I/O loop. You must start and stop the loop yourself. ''' assert not self._started, "Already started" self._started = True self._tornado.start() def stop(self, wait=True): ''' Stop the Bokeh Server. Args: fast (boolean): whether to wait for orderly cleanup (default: True) Returns: None ''' assert not self._stopped, "Already stopped" self._stopped = True self._tornado.stop(wait) self._http.stop() def run_until_shutdown(self): ''' Run the Bokeh Server until shutdown is requested by the user, either via a Keyboard interrupt (Ctrl-C) or SIGTERM. ''' if not self._started: self.start() # Install shutdown hooks atexit.register(self._atexit) signal.signal(signal.SIGTERM, self._sigterm) try: self._loop.start() except KeyboardInterrupt: print("\nInterrupted, shutting down") self.stop() _atexit_ran = False def _atexit(self): if self._atexit_ran: return self._atexit_ran = True log.debug("Shutdown: cleaning up") if not self._stopped: self.stop(wait=False) def _sigterm(self, signum, frame): print("Received signal %d, shutting down" % (signum,)) # Tell self._loop.start() to return. self._loop.add_callback_from_signal(self._loop.stop) def unlisten(self): '''Stop listening on ports (Server will no longer be usable after calling this) Returns: None ''' self._http.close_all_connections() self._http.stop() def get_session(self, app_path, session_id): '''Gets a session by name (session must already exist)''' return self._tornado.get_session(app_path, session_id) def get_sessions(self, app_path=None): '''Gets all live sessions for an application.''' if app_path is not None: return self._tornado.get_sessions(app_path) all_sessions = [] for path in self._tornado.app_paths: all_sessions += self._tornado.get_sessions(path) return all_sessions def show(self, app_path, browser=None, new='tab'): ''' Opens an app in a browser window or tab. Useful for testing server applications on your local desktop but should not call when running bokeh-server on an actual server. Args: app_path (str) : the app path to open The part of the URL after the hostname:port, with leading slash. browser (str, optional) : browser to show with (default: None) For systems that support it, the **browser** argument allows specifying which browser to display in, e.g. "safari", "firefox", "opera", "windows-default" (see the ``webbrowser`` module documentation in the standard lib for more details). new (str, optional) : window or tab (default: "tab") If ``new`` is 'tab', then opens a new tab. If ``new`` is 'window', then opens a new window. Returns: None ''' if not app_path.startswith("/"): raise ValueError("app_path must start with a /") address_string = 'localhost' if self.address is not None and self.address != '': address_string = self.address url = "http://%s:%d%s%s" % (address_string, self.port, self.prefix, app_path) from bokeh.util.browser import view view(url, browser=browser, new=new)
gpl-2.0
7,007,244,162,705,073,000
35.217993
129
0.572179
false
4.513583
false
false
false
jelly/calibre
src/calibre/db/cli/cmd_catalog.py
2
3866
#!/usr/bin/env python2 # vim:fileencoding=utf-8 # License: GPLv3 Copyright: 2017, Kovid Goyal <kovid at kovidgoyal.net> from __future__ import absolute_import, division, print_function, unicode_literals import os from calibre.customize.ui import available_catalog_formats, plugin_for_catalog_format from calibre.db.cli import integers_from_string readonly = True version = 0 # change this if you change signature of implementation() needs_srv_ctx = True no_remote = True def implementation(db, notify_changes, ctx): raise NotImplementedError() def option_parser(get_parser, args): # {{{ def add_plugin_parser_options(fmt, parser): # Fetch the extension-specific CLI options from the plugin # library.catalogs.<format>.py plugin = plugin_for_catalog_format(fmt) p = parser.add_option_group(_('{} OPTIONS').format(fmt.upper())) for option in plugin.cli_options: if option.action: p.add_option( option.option, default=option.default, dest=option.dest, action=option.action, help=option.help ) else: p.add_option( option.option, default=option.default, dest=option.dest, help=option.help ) # Entry point parser = get_parser( _( '''\ %prog catalog /path/to/destination.(csv|epub|mobi|xml...) [options] Export a catalog in format specified by path/to/destination extension. Options control how entries are displayed in the generated catalog output. Note that different catalog formats support different sets of options. ''' ) ) # Add options common to all catalog plugins parser.add_option( '-i', '--ids', default=None, dest='ids', help=_( "Comma-separated list of database IDs to catalog.\n" "If declared, --search is ignored.\n" "Default: all" ) ) parser.add_option( '-s', '--search', default=None, dest='search_text', help=_( "Filter the results by the search query. " "For the format of the search query, please see " "the search-related documentation in the User Manual.\n" "Default: no filtering" ) ) parser.add_option( '-v', '--verbose', default=False, action='store_true', dest='verbose', help=_('Show detailed output information. Useful for debugging') ) fmt = 'epub' if args and '.' in args[0]: fmt = args[0].rpartition('.')[-1].lower() if fmt not in available_catalog_formats(): fmt = 'epub' # Add options specific to fmt plugin add_plugin_parser_options(fmt, parser) return parser # }}} def main(opts, args, dbctx): if len(args) < 1: raise SystemExit(_('You must specify a catalog output file')) if opts.ids: opts.ids = list(integers_from_string(opts.ids)) fmt = args[0].rpartition('.')[-1] if fmt not in available_catalog_formats(): raise SystemExit( _('Cannot generate a catalog in the {} format').format(fmt.upper()) ) # No support for connected device in CLI environment # Parallel initialization in calibre.gui2.tools:generate_catalog() opts.connected_device = { 'is_device_connected': False, 'kind': None, 'name': None, 'save_template': None, 'serial': None, 'storage': None, } dest = os.path.abspath(os.path.expanduser(args[0])) plugin = plugin_for_catalog_format(fmt) with plugin: plugin.run(dest, opts, dbctx.db) return 0
gpl-3.0
3,301,390,566,288,786,000
28.51145
85
0.579152
false
4.170442
false
false
false
geotagx/geotagx-pybossa-archive
pybossa/auth/task.py
1
1535
# -*- coding: utf8 -*- # This file is part of PyBossa. # # Copyright (C) 2013 SF Isle of Man Limited # # PyBossa is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyBossa is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with PyBossa. If not, see <http://www.gnu.org/licenses/>. from flask.ext.login import current_user import pybossa.model as model from pybossa.core import db def create(task=None): if not current_user.is_anonymous(): app = db.session.query(model.App).filter_by(id=task.app_id).one() if app.owner_id == current_user.id or current_user.admin is True: return True else: return False else: return False def read(task=None): return True def update(task): if not current_user.is_anonymous(): app = db.session.query(model.App).filter_by(id=task.app_id).one() if app.owner_id == current_user.id or current_user.admin is True: return True else: return False else: return False def delete(task): return update(task)
agpl-3.0
-5,745,328,043,428,878,000
29.098039
77
0.683388
false
3.725728
false
false
false
MasterGowen/moonrain
moonrain/accounts/models.py
1
2939
from django.db import models from django.contrib.auth.models import BaseUserManager, AbstractBaseUser from ..projects.models import Project class UserManager(BaseUserManager): def create_user(self, email, username, password=None): if not email: raise ValueError('Необходимо ввести электронный адрес') user = self.model( email=UserManager.normalize_email(email), username=username, ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, username, password): user = self.create_user(email, password=password, username=username) user.is_admin = True user.save(using=self._db) return user class User(AbstractBaseUser): ''' Пользователь ''' email = models.EmailField( verbose_name='Электронная почта', max_length=32, unique=True, db_index=True, ) username = models.CharField( verbose_name='Имя пользователя', blank=False, max_length=32, unique=True, ) avatar = models.ImageField( verbose_name='Аватар', upload_to='images/%Y/%m', blank=True, ) first_name = models.CharField( verbose_name='Имя', max_length=16, blank=True, ) last_name = models.CharField( verbose_name='Фамилия', max_length=32, blank=True, ) department = models.CharField( verbose_name='Подразделение', max_length=255, blank=True, ) is_admin = models.BooleanField( verbose_name='Является администратором?', default=False, ) is_superuser = models.BooleanField( verbose_name='Является суперпользователем?', default=False, ) projects = models.ManyToManyField(Project, verbose_name='Проекты', blank=True, help_text='Проекты, в которых участвует пользователь',) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username'] objects = UserManager() def get_full_name(self): return '%s %s' % (self.last_name, self.first_name,) def get_short_name(self): return self.username def __str__(self): return self.email def has_perm(self, perm, obj=None): return True def has_module_perms(self, app_label): return True @property def is_staff(self): return self.is_admin class Meta: verbose_name = ('Пользователь') verbose_name_plural = ('Пользователи')
gpl-2.0
7,740,447,189,795,986,000
23.070796
93
0.573005
false
3.433081
false
false
false
agaveapi/SC17-container-tutorial
content/images/jupyter/examples/setvars.py
1
2421
# Here we define some utility commands to simplify interaction with the shell. # You don't need to read or understand this, but it's here in case you want to. import re import os def repvar(v): """ repvar() is short for "Replace Variables." The idea is that this function looks for strings of the form $VAR or ${VAR} or even $(CMD) in the input string and replaces them, either with the contents of os.environ[VAR] or os.pipe(CMD), mimicking the behavior of bash. If a backslace precedes the $, then the backslash will be removed but the string will not be evaluated. Thus: ${HOME} becomes "/home/user" $HOME becomes "/home/usr" $(echo Hello) becomes "Hello" \$HOME becomes $HOME """ epos = 0 buf = '' for g in re.finditer(r'\$((\w+)|\{([^}]*)\}|\(([^())]*)\))|(\\+\$)',v): if g: i = 2 while g.group(i) == None: i += 1 p = g.start(0) buf += v[epos:p] epos = p + len(g.group(0)) if i == 4: fh = os.popen(g.group(i),"r") c = repvar(fh.read()) fh.close() elif i == 5: c = '$' else: if not g.group(i) in os.environ: raise Exception("no such environment variable: "+g.group(i)) c = repvar(os.environ[g.group(i)]) buf += c else: break buf += v[epos:] return buf.strip() def setvar(e): """ setvar() emulates the ability of BASH to set environment variables. Thus, NAME=VALUE will set os.environ["NAME"]="VALUE". Bash-style comments will be stripped, and bash-line continuations will be processed. """ e = re.sub(r'#[^\r\n]*','',e) e = re.sub(r'\\\n\s*','',e) for m in re.finditer(r'(?m)(\w+)=(.*)',e): k = m.group(1) v = repvar(m.group(2)) print(k+"="+v) os.environ[k]=v def readfile(f): """ Reads in a file. repvar() will be applied to the file name. """ n = repvar(f) print("Reading file `"+n+"'") fh = open(n) c = fh.read() fh.close() return c def writefile(f,c): """ Writes out a file. repvar() will be applied both to the file name and the file contents. """ n = repvar(f) print("Writing file `"+n+"'") fh = open(n,"w") fh.write(repvar(c)) fh.close()
bsd-3-clause
6,554,591,777,941,709,000
31.28
80
0.523337
false
3.3625
false
false
false