Datasets:
Languages:
English
Size:
10K - 100K
Tags:
sarcasm
sarcasm-detection
mulitmodal-sarcasm-detection
sarcasm detection
multimodao sarcasm detection
tweets
DOI:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -114,31 +114,95 @@ This is a copy of the dataset uploaded on Hugging Face for easy access. The orig
|
|
114 |
## Usage
|
115 |
|
116 |
```python
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
123 |
-
|
124 |
-
def tokenization(example):
|
125 |
-
inputs = processor(
|
126 |
-
text=example["text"], images=example["image"], return_tensors="pt"
|
127 |
-
)
|
128 |
-
return {
|
129 |
-
"pixel_values": inputs["pixel_values"],
|
130 |
-
"input_ids": inputs["input_ids"],
|
131 |
-
"attention_mask": inputs["attention_mask"],
|
132 |
-
"label": example["label"],
|
133 |
-
}
|
134 |
-
|
135 |
-
dataset = load_dataset('coderchen01/MMSD2.0', 'mmsd-v2')
|
136 |
-
dataset.set_transform(tokenization)
|
137 |
-
|
138 |
-
# get torch dataloader
|
139 |
-
train_dl = DataLoader(dataset['train'], batch_size=256, shuffle=True)
|
140 |
-
test_dl = DataLoader(dataset['test'], batch_size=256, shuffle=True)
|
141 |
-
val_dl = DataLoader(dataset['validation'], batch_size=256, shuffle=True)
|
142 |
```
|
143 |
|
144 |
## References
|
|
|
114 |
## Usage
|
115 |
|
116 |
```python
|
117 |
+
from typing import TypedDict, cast
|
118 |
+
|
119 |
+
import pytorch_lightning as pl
|
120 |
+
from datasets import Dataset, load_dataset
|
121 |
+
from torch import Tensor
|
122 |
from torch.utils.data import DataLoader
|
123 |
+
from transformers import CLIPProcessor
|
124 |
+
|
125 |
+
|
126 |
+
class MMSDModelInput(TypedDict):
|
127 |
+
pixel_values: Tensor
|
128 |
+
input_ids: Tensor
|
129 |
+
attention_mask: Tensor
|
130 |
+
label: Tensor
|
131 |
+
id: list[str]
|
132 |
+
|
133 |
+
|
134 |
+
class MMSDDatasetModule(pl.LightningDataModule):
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
clip_ckpt_name: str = "openai/clip-vit-base-patch32",
|
139 |
+
dataset_version: str = "mmsd-v2",
|
140 |
+
max_length: int = 77,
|
141 |
+
train_batch_size: int = 32,
|
142 |
+
val_batch_size: int = 32,
|
143 |
+
test_batch_size: int = 32,
|
144 |
+
num_workers: int = 19,
|
145 |
+
) -> None:
|
146 |
+
super().__init__()
|
147 |
+
self.clip_ckpt_name = clip_ckpt_name
|
148 |
+
self.dataset_version = dataset_version
|
149 |
+
self.train_batch_size = train_batch_size
|
150 |
+
self.val_batch_size = val_batch_size
|
151 |
+
self.test_batch_size = test_batch_size
|
152 |
+
self.num_workers = num_workers
|
153 |
+
self.max_length = max_length
|
154 |
+
|
155 |
+
def setup(self, stage: str) -> None:
|
156 |
+
processor = CLIPProcessor.from_pretrained(self.clip_ckpt_name)
|
157 |
+
|
158 |
+
def preprocess(example):
|
159 |
+
inputs = processor(
|
160 |
+
text=example["text"],
|
161 |
+
images=example["image"],
|
162 |
+
return_tensors="pt",
|
163 |
+
padding="max_length",
|
164 |
+
truncation=True,
|
165 |
+
max_length=self.max_length,
|
166 |
+
)
|
167 |
+
|
168 |
+
return {
|
169 |
+
"pixel_values": inputs["pixel_values"],
|
170 |
+
"input_ids": inputs["input_ids"],
|
171 |
+
"attention_mask": inputs["attention_mask"],
|
172 |
+
"label": example["label"],
|
173 |
+
}
|
174 |
+
|
175 |
+
self.raw_dataset = cast(
|
176 |
+
Dataset,
|
177 |
+
load_dataset("coderchen01/MMSD2.0", name=self.dataset_version),
|
178 |
+
)
|
179 |
+
self.dataset = self.raw_dataset.map(
|
180 |
+
preprocess,
|
181 |
+
batched=True,
|
182 |
+
)
|
183 |
+
|
184 |
+
def train_dataloader(self) -> DataLoader:
|
185 |
+
return DataLoader(
|
186 |
+
self.dataset["train"],
|
187 |
+
batch_size=self.train_batch_size,
|
188 |
+
shuffle=True,
|
189 |
+
num_workers=self.num_workers,
|
190 |
+
)
|
191 |
+
|
192 |
+
def val_dataloader(self) -> DataLoader:
|
193 |
+
return DataLoader(
|
194 |
+
self.dataset["validation"],
|
195 |
+
batch_size=self.val_batch_size,
|
196 |
+
num_workers=self.num_workers,
|
197 |
+
)
|
198 |
+
|
199 |
+
def test_dataloader(self) -> DataLoader:
|
200 |
+
return DataLoader(
|
201 |
+
self.dataset["test"],
|
202 |
+
batch_size=self.test_batch_size,
|
203 |
+
num_workers=self.num_workers,
|
204 |
+
)
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
```
|
207 |
|
208 |
## References
|