File size: 8,989 Bytes
8ae83a5 e651c7c 29a1554 e651c7c 8ae83a5 c203127 8ae83a5 8ff00ad 7920930 f02c0dd 8ff00ad c233e00 7920930 ed8f410 77a5482 135da46 29a1554 8ae83a5 2c7a64d ada98c2 b742e39 b88c731 3f1cd08 c64b264 a7931ec 297b7cb 30aedec 9e04b6b b6db229 52013b0 2ae004c 5c9a4fb 81021a3 19c788a e98fbee 69eb7b2 7312d05 f9c51e4 21a9343 6eaff50 f1b6990 4796868 e6ecf7d ecae562 4cc2f21 912e263 71d71a7 c203127 29a1554 cb01482 1f21836 108081b 3693965 11caec3 8539c0e 3a17eee 9c18b50 5656c3d 0f999a1 a9f530d e82c550 fc93de7 d07f8e1 37ee60c 83b4121 edc3797 c61d33d 5bc1047 151867e 1d14cc5 77a5482 63ab2a1 8977f7c 1ae3700 c233e00 135da46 759788c cab0c07 a733109 3913976 ce69db2 318cc96 ed8f410 ea31b7c 26b06c7 543cb47 e05207d 9029232 000e05d c91c40e d503a0c e69849f d75b4ef caaa590 c1b5d12 25015b3 7920930 fcd20cb f582c42 f50a743 9c56ab8 4b4326c 8d902bf 583fcb4 9f1abc0 662e8e9 8ff00ad ad92bb6 d0c368b b33ab2f 8639df2 f02c0dd e651c7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** coldmind/x_dataset_94
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5CCrb9H6LoDjDFKNfKqiBuLe9NNUcCqkruQ2fpUY4R1RzCkb
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{coldmind2025datauniversex_dataset_94,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={coldmind},
year={2025},
url={https://huggingface.co/datasets/coldmind/x_dataset_94},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 20439
- **Date Range:** 2025-03-01T00:00:00Z to 2025-03-24T00:00:00Z
- **Last Updated:** 2025-05-13T19:37:02Z
### Data Distribution
- Tweets with hashtags: 99.97%
- Tweets without hashtags: 0.03%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | #btc | 2126 | 10.40% |
| 2 | #bitcoin | 1741 | 8.52% |
| 3 | #ukraine | 1215 | 5.94% |
| 4 | #trump | 1133 | 5.54% |
| 5 | #xrp | 1019 | 4.99% |
| 6 | #crypto | 967 | 4.73% |
| 7 | #eth | 899 | 4.40% |
| 8 | #sol | 721 | 3.53% |
| 9 | #zelena | 407 | 1.99% |
| 10 | #ai | 284 | 1.39% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-03-03T07:31:33Z | 2504 | 2504 |
| 2025-03-04T01:32:16Z | 1246 | 3750 |
| 2025-03-04T18:43:48Z | 1813 | 5563 |
| 2025-03-05T12:44:32Z | 1700 | 7263 |
| 2025-03-06T06:45:41Z | 1293 | 8556 |
| 2025-03-07T00:43:42Z | 712 | 9268 |
| 2025-03-07T18:44:25Z | 233 | 9501 |
| 2025-03-08T12:47:58Z | 151 | 9652 |
| 2025-03-09T06:48:31Z | 1173 | 10825 |
| 2025-03-10T00:49:05Z | 844 | 11669 |
| 2025-03-10T18:45:24Z | 1076 | 12745 |
| 2025-03-11T12:46:00Z | 1898 | 14643 |
| 2025-03-12T06:47:48Z | 1906 | 16549 |
| 2025-03-13T01:04:51Z | 1 | 16550 |
| 2025-03-13T19:10:35Z | 1 | 16551 |
| 2025-03-14T12:30:46Z | 150 | 16701 |
| 2025-03-15T06:52:09Z | 869 | 17570 |
| 2025-03-16T01:13:44Z | 1 | 17571 |
| 2025-03-16T19:37:55Z | 1 | 17572 |
| 2025-03-17T14:00:13Z | 967 | 18539 |
| 2025-03-18T08:17:34Z | 1 | 18540 |
| 2025-03-19T01:53:30Z | 1 | 18541 |
| 2025-03-19T19:56:54Z | 663 | 19204 |
| 2025-03-20T14:15:15Z | 1 | 19205 |
| 2025-03-21T08:17:06Z | 3 | 19208 |
| 2025-03-22T02:23:19Z | 282 | 19490 |
| 2025-03-22T19:45:34Z | 2 | 19492 |
| 2025-03-23T14:01:11Z | 22 | 19514 |
| 2025-03-24T08:15:21Z | 4 | 19518 |
| 2025-03-25T02:31:10Z | 684 | 20202 |
| 2025-03-25T20:13:34Z | 173 | 20375 |
| 2025-03-26T14:10:58Z | 1 | 20376 |
| 2025-03-27T07:24:40Z | 1 | 20377 |
| 2025-03-28T01:34:45Z | 1 | 20378 |
| 2025-03-28T18:45:03Z | 1 | 20379 |
| 2025-03-29T12:56:50Z | 1 | 20380 |
| 2025-03-30T07:11:20Z | 1 | 20381 |
| 2025-03-31T01:39:20Z | 1 | 20382 |
| 2025-03-31T19:50:29Z | 1 | 20383 |
| 2025-04-01T13:20:00Z | 1 | 20384 |
| 2025-04-02T07:36:50Z | 1 | 20385 |
| 2025-04-03T01:53:51Z | 1 | 20386 |
| 2025-04-03T20:13:09Z | 1 | 20387 |
| 2025-04-04T13:30:01Z | 1 | 20388 |
| 2025-04-05T07:50:37Z | 1 | 20389 |
| 2025-04-06T02:11:08Z | 1 | 20390 |
| 2025-04-06T20:22:45Z | 1 | 20391 |
| 2025-04-07T14:42:55Z | 1 | 20392 |
| 2025-04-08T08:40:39Z | 1 | 20393 |
| 2025-04-09T03:02:01Z | 1 | 20394 |
| 2025-04-09T21:24:16Z | 1 | 20395 |
| 2025-04-10T15:46:25Z | 1 | 20396 |
| 2025-04-11T10:32:11Z | 1 | 20397 |
| 2025-04-12T04:55:19Z | 1 | 20398 |
| 2025-04-12T23:02:24Z | 1 | 20399 |
| 2025-04-13T16:39:27Z | 1 | 20400 |
| 2025-04-14T10:59:32Z | 1 | 20401 |
| 2025-04-15T05:21:39Z | 1 | 20402 |
| 2025-04-15T22:44:16Z | 1 | 20403 |
| 2025-04-16T17:07:27Z | 1 | 20404 |
| 2025-04-17T02:26:09Z | 1 | 20405 |
| 2025-04-17T19:52:42Z | 1 | 20406 |
| 2025-04-18T14:09:22Z | 1 | 20407 |
| 2025-04-19T08:26:37Z | 1 | 20408 |
| 2025-04-20T02:44:21Z | 1 | 20409 |
| 2025-04-20T21:01:42Z | 1 | 20410 |
| 2025-04-21T15:22:26Z | 1 | 20411 |
| 2025-04-22T09:48:08Z | 1 | 20412 |
| 2025-04-23T04:15:21Z | 1 | 20413 |
| 2025-04-23T22:44:13Z | 1 | 20414 |
| 2025-04-24T17:13:12Z | 1 | 20415 |
| 2025-04-25T11:41:56Z | 1 | 20416 |
| 2025-04-26T06:09:42Z | 1 | 20417 |
| 2025-04-27T00:36:14Z | 1 | 20418 |
| 2025-04-27T19:05:07Z | 1 | 20419 |
| 2025-04-28T13:31:58Z | 1 | 20420 |
| 2025-04-29T08:01:23Z | 1 | 20421 |
| 2025-04-30T02:31:06Z | 1 | 20422 |
| 2025-04-30T20:59:14Z | 1 | 20423 |
| 2025-05-01T15:26:37Z | 1 | 20424 |
| 2025-05-02T09:36:57Z | 1 | 20425 |
| 2025-05-03T04:05:10Z | 1 | 20426 |
| 2025-05-03T22:29:05Z | 1 | 20427 |
| 2025-05-04T16:49:11Z | 1 | 20428 |
| 2025-05-05T11:09:02Z | 1 | 20429 |
| 2025-05-06T21:22:40Z | 1 | 20430 |
| 2025-05-07T15:52:05Z | 1 | 20431 |
| 2025-05-08T10:20:36Z | 1 | 20432 |
| 2025-05-09T04:41:37Z | 1 | 20433 |
| 2025-05-09T23:09:51Z | 1 | 20434 |
| 2025-05-10T17:39:39Z | 1 | 20435 |
| 2025-05-11T12:07:24Z | 1 | 20436 |
| 2025-05-12T06:35:47Z | 1 | 20437 |
| 2025-05-13T01:05:56Z | 1 | 20438 |
| 2025-05-13T19:37:02Z | 1 | 20439 |
|