File size: 8,989 Bytes
8ae83a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e651c7c
29a1554
e651c7c
8ae83a5
 
 
c203127
 
8ae83a5
 
 
 
 
 
 
8ff00ad
7920930
f02c0dd
8ff00ad
c233e00
7920930
ed8f410
77a5482
135da46
29a1554
8ae83a5
 
 
 
 
 
2c7a64d
ada98c2
b742e39
b88c731
3f1cd08
c64b264
a7931ec
297b7cb
30aedec
9e04b6b
b6db229
52013b0
2ae004c
5c9a4fb
81021a3
19c788a
e98fbee
69eb7b2
7312d05
f9c51e4
21a9343
6eaff50
f1b6990
4796868
e6ecf7d
ecae562
4cc2f21
912e263
71d71a7
c203127
29a1554
cb01482
1f21836
108081b
3693965
11caec3
8539c0e
3a17eee
9c18b50
5656c3d
0f999a1
a9f530d
e82c550
fc93de7
d07f8e1
37ee60c
83b4121
edc3797
c61d33d
5bc1047
151867e
1d14cc5
77a5482
63ab2a1
8977f7c
1ae3700
c233e00
135da46
759788c
cab0c07
a733109
3913976
ce69db2
318cc96
ed8f410
ea31b7c
26b06c7
543cb47
e05207d
9029232
000e05d
c91c40e
d503a0c
e69849f
d75b4ef
caaa590
c1b5d12
25015b3
7920930
fcd20cb
f582c42
f50a743
9c56ab8
4b4326c
8d902bf
583fcb4
9f1abc0
662e8e9
8ff00ad
ad92bb6
d0c368b
b33ab2f
8639df2
f02c0dd
e651c7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 X (Twitter) Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** coldmind/x_dataset_94
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5CCrb9H6LoDjDFKNfKqiBuLe9NNUcCqkruQ2fpUY4R1RzCkb

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example: 
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single tweet with the following fields:


### Data Fields

- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{coldmind2025datauniversex_dataset_94,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={coldmind},
        year={2025},
        url={https://huggingface.co/datasets/coldmind/x_dataset_94},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 20439
- **Date Range:** 2025-03-01T00:00:00Z to 2025-03-24T00:00:00Z
- **Last Updated:** 2025-05-13T19:37:02Z

### Data Distribution

- Tweets with hashtags: 99.97%
- Tweets without hashtags: 0.03%

### Top 10 Hashtags

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | #btc | 2126 | 10.40% |
| 2 | #bitcoin | 1741 | 8.52% |
| 3 | #ukraine | 1215 | 5.94% |
| 4 | #trump | 1133 | 5.54% |
| 5 | #xrp | 1019 | 4.99% |
| 6 | #crypto | 967 | 4.73% |
| 7 | #eth | 899 | 4.40% |
| 8 | #sol | 721 | 3.53% |
| 9 | #zelena | 407 | 1.99% |
| 10 | #ai | 284 | 1.39% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-03-03T07:31:33Z | 2504 | 2504 |
| 2025-03-04T01:32:16Z | 1246 | 3750 |
| 2025-03-04T18:43:48Z | 1813 | 5563 |
| 2025-03-05T12:44:32Z | 1700 | 7263 |
| 2025-03-06T06:45:41Z | 1293 | 8556 |
| 2025-03-07T00:43:42Z | 712 | 9268 |
| 2025-03-07T18:44:25Z | 233 | 9501 |
| 2025-03-08T12:47:58Z | 151 | 9652 |
| 2025-03-09T06:48:31Z | 1173 | 10825 |
| 2025-03-10T00:49:05Z | 844 | 11669 |
| 2025-03-10T18:45:24Z | 1076 | 12745 |
| 2025-03-11T12:46:00Z | 1898 | 14643 |
| 2025-03-12T06:47:48Z | 1906 | 16549 |
| 2025-03-13T01:04:51Z | 1 | 16550 |
| 2025-03-13T19:10:35Z | 1 | 16551 |
| 2025-03-14T12:30:46Z | 150 | 16701 |
| 2025-03-15T06:52:09Z | 869 | 17570 |
| 2025-03-16T01:13:44Z | 1 | 17571 |
| 2025-03-16T19:37:55Z | 1 | 17572 |
| 2025-03-17T14:00:13Z | 967 | 18539 |
| 2025-03-18T08:17:34Z | 1 | 18540 |
| 2025-03-19T01:53:30Z | 1 | 18541 |
| 2025-03-19T19:56:54Z | 663 | 19204 |
| 2025-03-20T14:15:15Z | 1 | 19205 |
| 2025-03-21T08:17:06Z | 3 | 19208 |
| 2025-03-22T02:23:19Z | 282 | 19490 |
| 2025-03-22T19:45:34Z | 2 | 19492 |
| 2025-03-23T14:01:11Z | 22 | 19514 |
| 2025-03-24T08:15:21Z | 4 | 19518 |
| 2025-03-25T02:31:10Z | 684 | 20202 |
| 2025-03-25T20:13:34Z | 173 | 20375 |
| 2025-03-26T14:10:58Z | 1 | 20376 |
| 2025-03-27T07:24:40Z | 1 | 20377 |
| 2025-03-28T01:34:45Z | 1 | 20378 |
| 2025-03-28T18:45:03Z | 1 | 20379 |
| 2025-03-29T12:56:50Z | 1 | 20380 |
| 2025-03-30T07:11:20Z | 1 | 20381 |
| 2025-03-31T01:39:20Z | 1 | 20382 |
| 2025-03-31T19:50:29Z | 1 | 20383 |
| 2025-04-01T13:20:00Z | 1 | 20384 |
| 2025-04-02T07:36:50Z | 1 | 20385 |
| 2025-04-03T01:53:51Z | 1 | 20386 |
| 2025-04-03T20:13:09Z | 1 | 20387 |
| 2025-04-04T13:30:01Z | 1 | 20388 |
| 2025-04-05T07:50:37Z | 1 | 20389 |
| 2025-04-06T02:11:08Z | 1 | 20390 |
| 2025-04-06T20:22:45Z | 1 | 20391 |
| 2025-04-07T14:42:55Z | 1 | 20392 |
| 2025-04-08T08:40:39Z | 1 | 20393 |
| 2025-04-09T03:02:01Z | 1 | 20394 |
| 2025-04-09T21:24:16Z | 1 | 20395 |
| 2025-04-10T15:46:25Z | 1 | 20396 |
| 2025-04-11T10:32:11Z | 1 | 20397 |
| 2025-04-12T04:55:19Z | 1 | 20398 |
| 2025-04-12T23:02:24Z | 1 | 20399 |
| 2025-04-13T16:39:27Z | 1 | 20400 |
| 2025-04-14T10:59:32Z | 1 | 20401 |
| 2025-04-15T05:21:39Z | 1 | 20402 |
| 2025-04-15T22:44:16Z | 1 | 20403 |
| 2025-04-16T17:07:27Z | 1 | 20404 |
| 2025-04-17T02:26:09Z | 1 | 20405 |
| 2025-04-17T19:52:42Z | 1 | 20406 |
| 2025-04-18T14:09:22Z | 1 | 20407 |
| 2025-04-19T08:26:37Z | 1 | 20408 |
| 2025-04-20T02:44:21Z | 1 | 20409 |
| 2025-04-20T21:01:42Z | 1 | 20410 |
| 2025-04-21T15:22:26Z | 1 | 20411 |
| 2025-04-22T09:48:08Z | 1 | 20412 |
| 2025-04-23T04:15:21Z | 1 | 20413 |
| 2025-04-23T22:44:13Z | 1 | 20414 |
| 2025-04-24T17:13:12Z | 1 | 20415 |
| 2025-04-25T11:41:56Z | 1 | 20416 |
| 2025-04-26T06:09:42Z | 1 | 20417 |
| 2025-04-27T00:36:14Z | 1 | 20418 |
| 2025-04-27T19:05:07Z | 1 | 20419 |
| 2025-04-28T13:31:58Z | 1 | 20420 |
| 2025-04-29T08:01:23Z | 1 | 20421 |
| 2025-04-30T02:31:06Z | 1 | 20422 |
| 2025-04-30T20:59:14Z | 1 | 20423 |
| 2025-05-01T15:26:37Z | 1 | 20424 |
| 2025-05-02T09:36:57Z | 1 | 20425 |
| 2025-05-03T04:05:10Z | 1 | 20426 |
| 2025-05-03T22:29:05Z | 1 | 20427 |
| 2025-05-04T16:49:11Z | 1 | 20428 |
| 2025-05-05T11:09:02Z | 1 | 20429 |
| 2025-05-06T21:22:40Z | 1 | 20430 |
| 2025-05-07T15:52:05Z | 1 | 20431 |
| 2025-05-08T10:20:36Z | 1 | 20432 |
| 2025-05-09T04:41:37Z | 1 | 20433 |
| 2025-05-09T23:09:51Z | 1 | 20434 |
| 2025-05-10T17:39:39Z | 1 | 20435 |
| 2025-05-11T12:07:24Z | 1 | 20436 |
| 2025-05-12T06:35:47Z | 1 | 20437 |
| 2025-05-13T01:05:56Z | 1 | 20438 |
| 2025-05-13T19:37:02Z | 1 | 20439 |