jpc commited on
Commit
a50716b
·
1 Parent(s): fbef0ba

Added a README with training instructions

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md CHANGED
@@ -5,3 +5,47 @@ license: cc0-1.0
5
  This is a processed LibriLight dataset ready for training the WhisperSpeech models.
6
 
7
  See [https://github.com/collabora/WhisperSpeech](https://github.com/collabora/WhisperSpeech) for more details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  This is a processed LibriLight dataset ready for training the WhisperSpeech models.
6
 
7
  See [https://github.com/collabora/WhisperSpeech](https://github.com/collabora/WhisperSpeech) for more details.
8
+
9
+ ## Quick start
10
+
11
+ If you want to quickly train a basic WhisperSpeech model you can start by downloading the small subset:
12
+
13
+ ```bash
14
+ # magic includes to download only the small and validation data splits and the accompanying config files
15
+ huggingface-cli download --repo-type dataset --include '*-small-*' '*small.dataset' '*-speakers*' --local-dir . -- collabora/whisperspeech-librilight
16
+
17
+ # download the semantic token model to extract the token embeddings from it
18
+ huggingface-cli download collabora/whisperspeech whisper-vq-stoks-medium-en+pl.model
19
+
20
+ # the T2S training invocation:
21
+ python3 -m whisperspeech.train_multi \
22
+ --task "t2s_up_wds_mlang_enclm base --frozen_embeddings_model whisper-vq-stoks-medium-en+pl.model" \
23
+ --batch-size 32 --accumulate-grad-batches 2 \
24
+ --epochs 2 --lr-schedule wsd \
25
+ --tunables="--cps_input --causal_encoder --warmup_steps=300 --encoder_depth_ratio=.25" \
26
+ --dataset-config=--vq_codes=513 \
27
+ --training-data @librilight-t2s-train-small.dataset \
28
+ --validation-data @librilight-t2s-val-common-speakers.dataset \
29
+ --validation-data @librilight-t2s-val-unseen-speakers.dataset \
30
+ --monitored-metric 'val_loss/dataloader_idx_0'
31
+
32
+ # the S2A training invocation:
33
+ python3 -m whisperspeech.train_multi \
34
+ --task "s2a_delar_mup_wds_mlang tiny --quantizers 4 --spk_width=192 --frozen_embeddings_model whisper-vq-stoks-medium-en+pl.model" \
35
+ --batch-size 48 \
36
+ --epochs 4 --lr-schedule wsd \
37
+ --tunables="--rope --warmup_steps=300" \
38
+ --dataset-config=--vq_codes=513 \
39
+ --training-data @librilight-s2a-train-small.dataset \
40
+ --validation-data @librilight-s2a-val-common-speakers.dataset \
41
+ --validation-data @librilight-s2a-val-unseen-speakers.dataset \
42
+ --monitored-metric 'val_loss/dataloader_idx_0'
43
+ ```
44
+
45
+ The `--accumulate-grad-batches` option is set to get a good effective batch size a single 4090 GPU.
46
+ If you have multiple GPUs it will probably make sense to lower the batch size. For example 16 GPUs
47
+ with a batch size of 16 seem to be give good performance and fast training.
48
+
49
+ Because we use Maximum Update Parametrization, higher effective batch sizes always result in lower
50
+ losses and you don't need to adjust the learning rate. Unfortunately the effect is not linear so
51
+ there is an optimal batch size and there is little benefit to increase it further.