File size: 8,918 Bytes
539215f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset for ProtoQA ("family feud") data. The dataset is gathered from an existing set of questions played in a long-running international game show – FAMILY-FEUD."""
from __future__ import absolute_import, division, print_function
import json
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning},
authors={Michael Boratko, Xiang Lorraine Li, Tim O’Gorman, Rajarshi Das, Dan Le, Andrew McCallum},
year={2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished={\\url{https://github.com/iesl/protoqa-data}},
}
"""
_DESCRIPTION = """\
This dataset is for studying computational models trained to reason about prototypical situations. Using deterministic filtering a sampling from a larger set of all transcriptions was built. It contains 9789 instances where each instance represents a survey question from Family Feud game. Each instance exactly is a question, a set of answers, and a count associated with each answer.
Each line is a json dictionary, in which:
1. question - contains the question (in original and a normalized form)
2. answerstrings - contains the original answers provided by survey respondents (when available), along with the counts for each string. Because the FamilyFeud data has only cluster names rather than strings, those cluster names are included with 0 weight.
3. answer-clusters - lists clusters, with the count of each cluster and the strings included in that cluster. Each cluster is given a unique ID that can be linked to in the assessment files.
"""
_HOMEPAGE = "https://github.com/iesl/protoqa-data"
_LICENSE = "cc-by-4.0"
_URLs = {
"proto_qa": {
"dev": "https://raw.githubusercontent.com/iesl/protoqa-data/master/data/dev/protoqa_scraped_dev.jsonl",
"train": "https://raw.githubusercontent.com/iesl/protoqa-data/master/data/train/protoqa_train.jsonl",
},
"proto_qa_cs": "https://raw.githubusercontent.com/iesl/protoqa-data/master/data/dev/crowdsource_dev.jsonl",
"proto_qa_cs_assessments": "https://raw.githubusercontent.com/iesl/protoqa-data/master/data/dev/crowdsource_dev.assessments.jsonl",
}
class ProtoQA(datasets.GeneratorBasedBuilder):
"""This is a question answering dataset for Prototypical Common-Sense Reasoning"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="proto_qa",
version=VERSION,
description="This is a question answering dataset for Prototypical Common-Sense Reasoning",
),
datasets.BuilderConfig(
name="proto_qa_cs",
version=VERSION,
description="Prototypical Common-Sense Reasoning, 51 questions collected with exhaustive answer collection and manual clustering, matching the details of the eval test set",
),
datasets.BuilderConfig(
name="proto_qa_cs_assessments",
version=VERSION,
description="Prototypical Common-Sense Reasoning, assessment file for study of assessment methods",
),
]
DEFAULT_CONFIG_NAME = "proto_qa"
def _info(self):
if self.config.name == "proto_qa_cs_assessments":
features = datasets.Features(
{
"question": datasets.Value("string"),
"assessments": datasets.Sequence(datasets.Value("string")),
}
)
else:
if self.config.name == "proto_qa_cs":
label = "answers-cleaned"
else:
label = "answer-clusters"
features = datasets.Features(
{
"normalized-question": datasets.Value("string"),
"question": datasets.Value("string"),
label: datasets.Sequence(
{
"count": datasets.Value("int32"),
"clusterid": datasets.Value("string"),
"answers": datasets.Sequence(datasets.Value("string")),
}
),
"answerstrings": datasets.Sequence(datasets.Value("string")),
"totalcount": datasets.Value("int32"),
"id": datasets.Value("string"),
"source": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "proto_qa":
train_fpath = dl_manager.download(_URLs[self.config.name]["train"])
dev_fpath = dl_manager.download(_URLs[self.config.name]["dev"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": train_fpath,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": dev_fpath,
},
),
]
else:
filepath = dl_manager.download(_URLs[self.config.name])
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepath,
},
)
]
def _generate_examples(self, filepath):
""" Yields examples. """
if self.config.name == "proto_qa_cs_assessments":
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
question = data["question"]
assessments = data["assessments"]
yield id_, {"question": question, "assessments": assessments}
else:
if self.config.name == "proto_qa_cs":
label = "answers-cleaned"
else:
label = "answer-clusters"
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
normalized_question = data["question"]["normalized-question"]
question = data["question"]["question"]
answer_clusters = data[label]
details = []
for answer_cluster in answer_clusters:
count = answer_cluster["count"]
answers = answer_cluster["answers"]
clusterid = answer_cluster["clusterid"]
details.append({"count": count, "answers": answers, "clusterid": clusterid})
answerstrings = data["answerstrings"]
metadata = data["metadata"]
yield id_, {
"normalized-question": normalized_question,
"question": question,
label: details,
"answerstrings": answerstrings,
"totalcount": metadata["totalcount"],
"id": metadata["id"],
"source": metadata["source"],
}
|